Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Research Article

Suppression of mTOR Expression by siRNA Leads to Cell Cycle Arrest and Apoptosis Induction in MDA-MB-231 Breast Cancer Cells

Author(s): Roja Sahu, Shivesh Jha and Shakti P. Pattanayak*

Volume 23, Issue 3, 2023

Published on: 14 April, 2023

Page: [228 - 242] Pages: 15

DOI: 10.2174/1566523223666230329085606

Price: $65

Abstract

Background: Mammary carcinogenesis, being ranked second in cancer-related mortality and the inadequacy of existing chemotherapy advocates the development of a novel treatment approach targeting its molecular signalling. Hyperactivation of mammalian target of rapamycin (mTOR) has a critical role in developing invasive mammary cancer and it can be a potential target.

Objective: This experiment was to explore the efficacy of mTOR-specific siRNA on therapeutic targeting of the mTOR gene, assess its proficiency in suppressing in vitro breast cancer and determine underlying molecular mechanisms.

Methods: Specific siRNA targeting mTOR was transfected into MDA-MB-231 cells and mTOR downregulation was validated through qRT-PCR and western blot analysis. Cell proliferation was analysed by MTT assay and confocal microscopy. Apoptosis was studied through flow cytometry and S6K, GSK-3β and caspase 3 expression were estimated. Further, the effect of mTOR blockade on cell cycle progression was determined.

Results: Following transfection of mTOR-siRNA into the MDA-MB-231 cells, cell viability and apoptosis were examined which indicates that clinically relevant concentration of mTOR-siRNA inhibited cell growth and proliferation and promote apoptosis, resulting from the suppression of mTOR. This leads to the downregulation of mTOR downstream S6K and upregulation of GSK-3β. An increased level of caspase 3 symbolises that the apoptotic activity is mediated through caspasedependent pathway. Further, mTOR downregulation causes cell cycle arrest in G0/G1 phase as observed in the flow cytometry study.

Conclusion: With these results, we can conclude that mTOR-siRNA exerts direct ‘anti-breast cancer’ activity propagated by the S6K-GSK-3β- caspase 3 mediated apoptosis and by inducing cell cycle arrest.

Graphical Abstract

[1]
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin 2019; 69(6): 438-51.
[http://dx.doi.org/10.3322/caac.21583] [PMID: 31577379]
[2]
Zhou B, Li M, Xu X, et al. Integrin α 2 β 1 targeting DGEA-modified liposomal doxorubicin enhances antitumor efficacy against breast cancer. Mol Pharm 2021; 18(7): 2634-46.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00132] [PMID: 34134485]
[3]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[4]
Mathur P, Sathishkumar K, Chaturvedi M, et al. Cancer statistics, 2020: Report from national cancer registry programme, India. JCO Glob Oncol 2020; 6(6): 1063-75.
[http://dx.doi.org/10.1200/GO.20.00122] [PMID: 32673076]
[5]
Akin M, Cinkaya A, Sengul A. Evaluation of treatment outcomes of triple-negative breast cancer. J Cancer Res Ther 2016; 12(1): 150-4.
[http://dx.doi.org/10.4103/0973-1482.154000] [PMID: 27072229]
[6]
Wang M, Li J, Li X, et al. Magnetically and pH dual responsive dendrosomes for tumor accumulation enhanced folate-targeted hybrid drug delivery. J Control Release 2016; 232: 161-74.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.015] [PMID: 27090165]
[7]
Xu Y, Asghar S, Li H, et al. Preparation of a paclitaxel-loaded cationic nanoemulsome and its biodistribution via direct intratumoral injection. Colloids Surf B Biointerfaces 2016; 142: 81-8.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.046] [PMID: 26938323]
[8]
Polychemotherapy for early breast cancer: An overview of the randomised trials. Lancet 1998; 352(9132): 930-42.
[http://dx.doi.org/10.1016/S0140-6736(98)03301-7] [PMID: 9752815]
[9]
Bjornsti MA, Houghton PJ. The tor pathway: A target for cancer therapy. Nat Rev Cancer 2004; 4(5): 335-48.
[http://dx.doi.org/10.1038/nrc1362] [PMID: 15122205]
[10]
Dutcher JP. Mammalian target of rapamycin inhibition. Clin Cancer Res 2004; 10(18): 6382S-7S.
[http://dx.doi.org/10.1158/1078-0432.CCR-050008] [PMID: 15448035]
[11]
Rowinsky EK. Targeting the molecular target of rapamycin (mTOR). Curr Opin Oncol 2004; 16(6): 564-75.
[http://dx.doi.org/10.1097/01.cco.0000143964.74936.d1] [PMID: 15627018]
[12]
Ali SM, Kim D-H, Guertin DA, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14(14): 1296-302.
[http://dx.doi.org/10.1016/j.cub.2004.06.054] [PMID: 15268862]
[13]
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307(5712): 1098-101.
[http://dx.doi.org/10.1126/science.1106148] [PMID: 15718470]
[14]
Sahu R, Pattanayak SP. Strategic developments & future perspective on gene therapy for breast cancer: role of mTOR and Brk/PTK6 as molecular targets. Curr Gene Ther 2020; 20(4): 237-58.
[http://dx.doi.org/10.2174/1566523220999200731002408] [PMID: 32807051]
[15]
Gentzler RD, Altman JK, Platanias LC. An overview of the mTOR pathway as a target in cancer therapy. Expert Opin Ther Targets 2012; 16(5): 481-9.
[http://dx.doi.org/10.1517/14728222.2012.677439] [PMID: 22494490]
[16]
Ke N, Zhou D, Chatterton JE, et al. A new inducible RNAi xenograft model for assessing the staged tumor response to mTOR silencing. Exp Cell Res 2006; 312(15): 2726-34.
[http://dx.doi.org/10.1016/j.yexcr.2006.05.001] [PMID: 16765945]
[17]
Liu J, Li HQ, Zhou FX, Yu JW, Sun L, Han ZH. Targeting the mTOR pathway in breast cancer. Tumour Biol 2017; 39(6): 1010428317710825.
[http://dx.doi.org/10.1177/1010428317710825] [PMID: 28639903]
[18]
Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci 2020; 10(1): 31.
[http://dx.doi.org/10.1186/s13578-020-00396-1] [PMID: 32175074]
[19]
Unni N, Arteaga CL. Is dual mTORC1 and mTORC2 therapeutic blockade clinically feasible in cancer? JAMA Oncol 2019; 5(11): 1564-5.
[http://dx.doi.org/10.1001/jamaoncol.2019.2525] [PMID: 31465107]
[20]
Hsieh AC, Liu Y, Edlind MP, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012; 485(7396): 55-61.
[http://dx.doi.org/10.1038/nature10912] [PMID: 22367541]
[21]
Liu J, Li D, Luo H, Zhu X. Circular RNAs: The star molecules in cancer. Mol Aspects Med 2019; 70: 141-52.
[http://dx.doi.org/10.1016/j.mam.2019.10.006] [PMID: 31676107]
[22]
de Melo Gagliato D, Leonardo Fontes Jardim D, Marchesi MSP, Hortobagyi GN. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget 2016; 7(39): 64431-46.
[http://dx.doi.org/10.18632/oncotarget.7043] [PMID: 26824988]
[23]
Miller TW, Hennessy BT, González-Angulo AM, et al. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor–positive human breast cancer. J Clin Invest 2010; 120(7): 2406-13.
[http://dx.doi.org/10.1172/JCI41680] [PMID: 20530877]
[24]
Margariti N, Fox SB, Bottini A, Generali D. “Overcoming breast cancer drug resistance with mTOR inhibitors”. Could it be a myth or a real possibility in the short-term future? Breast Cancer Res Treat 2011; 128(3): 599-606.
[http://dx.doi.org/10.1007/s10549-010-0986-9] [PMID: 20945086]
[25]
Brady SW, Zhang J, Tsai MH, Yu D. PI3K-independent mTOR activation promotes lapatinib resistance and IAP expression that can be effectively reversed by mTOR and Hsp90 inhibition. Cancer Biol Ther 2015; 16(3): 402-11.
[http://dx.doi.org/10.1080/15384047.2014.1002693] [PMID: 25692408]
[26]
Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006; 5(8): 671-88.
[http://dx.doi.org/10.1038/nrd2062] [PMID: 16883305]
[27]
Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci 2012; 13(2): 1886-918.
[http://dx.doi.org/10.3390/ijms13021886] [PMID: 22408430]
[28]
Lacroix M, Haibe-Kains B, Hennuy B, et al. Gene regulation by phorbol 12-myristate 13-acetate in MCF-7 and MDA-MB-231, two breast cancer cell lines exhibiting highly different phenotypes. Oncol Rep 2004; 12(4): 701-7.
[http://dx.doi.org/10.3892/or.12.4.701] [PMID: 15375488]
[29]
Forozan F, Mahlamäki EH, Monni O, et al. Comparative genomic hybridization analysis of 38 breast cancer cell lines: A basis for interpreting complementary DNA microarray data. Cancer Res 2000; 60(16): 4519-25.
[PMID: 10969801]
[30]
Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 2017; 8(16): 3131-41.
[http://dx.doi.org/10.7150/jca.18457] [PMID: 29158785]
[31]
Liu H, Zang C, Fenner MH, Possinger K, Elstner E. PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Res Treat 2003; 79(1): 63-74.
[http://dx.doi.org/10.1023/A:1023366117157] [PMID: 12779083]
[32]
Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: One tool in the search for better treatment of triple negative breast cancer. Breast Dis 2011; 32(1-2): 35-48.
[http://dx.doi.org/10.3233/BD-2010-0307] [PMID: 21778573]
[33]
Pattanayak SP, Bose P, Priyam A. Herniarin, a natural coumarin loaded novel targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy in preclinical model of breast cancer. Pharmacogn Mag 2020; 16(5): 474-85.
[http://dx.doi.org/10.4103/pm.pm_223_20]
[34]
Bose P, Priyam A, Kar R, Pattanayak SP. Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats. RSC Advances 2020; 10(53): 31961-78.
[http://dx.doi.org/10.1039/D0RA05793B] [PMID: 35518142]
[35]
Khan MA, Jain VK, Rizwanullah M, Ahmad J, Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges. Drug Discov Today 2019; 24(11): 2181-91.
[http://dx.doi.org/10.1016/j.drudis.2019.09.001] [PMID: 31520748]
[36]
Cheng SH, Tseng YM, Wu SH, Tsai SM, Tsai LY. Whey protein concentrate renders MDA-MB-231 cells sensitive to rapamycin by altering cellular redox state and activating GSK3β/mTOR signaling. Sci Rep 2017; 7(1): 15976.
[http://dx.doi.org/10.1038/s41598-017-14159-5] [PMID: 28127051]
[37]
Cheng XF, Liu Q, Zhang XF, Zhao HD, Wang W, Chu AJ. Expression of mTOR and its inhibitory effect on cell proliferation and apoptosis of breast cancer cells. J Biol Regul Homeost Agents 2015; 29(4): 869-73.
[PMID: 26753650]
[38]
Ueng SH, Chen SC, Chang YS, et al. Phosphorylated mTOR expression correlates with poor outcome in early-stage triple negative breast carcinomas. Int J Clin Exp Pathol 2012; 5(8): 806-13.
[PMID: 23071863]
[39]
Walsh S, Flanagan L, Quinn C, et al. mTOR in breast cancer: Differential expression in triple-negative and non-triple-negative tumors. Breast 2012; 21(2): 178-82.
[http://dx.doi.org/10.1016/j.breast.2011.09.008] [PMID: 21963359]
[40]
Lee JJ, Loh K, Yap YS. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol Med 2015; 12(4): 342-54.
[http://dx.doi.org/10.7497/j.issn.2095-3941.2015.0089] [PMID: 26779371]
[41]
Ekizceli G, Uluer ET, Inan S. Investigation of the effects of rapamycin on the mTOR pathway and apoptosis in metastatic and non-metastatic human breast cancer cell lines. Bratisl Med J 2020; 121(4): 308-15.
[http://dx.doi.org/10.4149/BLL_2020_049] [PMID: 32356448]
[42]
Sahu R, Jha S, Pattanayak SP. Therapeutic silencing of mTOR by systemically administered siRNA-loaded neutral liposomal nanoparticles inhibits DMBA-induced mammary carcinogenesis. Br J Cancer 2022; 127(12): 2207-19.
[http://dx.doi.org/10.1038/s41416-022-02011-1] [PMID: 36261586]
[43]
Hu Y, Zhu Q, Tang L. MiR-99a antitumor activity in human breast cancer cells through targeting of mTOR expression. PLoS One 2014; 9(3): e92099.
[http://dx.doi.org/10.1371/journal.pone.0092099] [PMID: 24637915]
[44]
Zhang W, Xia D, Li Z, et al. Aurora-A/ERK1/2/mTOR axis promotes tumor progression in triple-negative breast cancer and dual-targeting Aurora-A/mTOR shows synthetic lethality. Cell Death Dis 2019; 10(8): 606.
[http://dx.doi.org/10.1038/s41419-019-1855-z] [PMID: 31406104]
[45]
McCaffrey AP, Meuse L, Pham TTT, Conklin DS, Hannon GJ, Kay MA. RNA interference in adult mice. Nature 2002; 418(6893): 38-9.
[http://dx.doi.org/10.1038/418038a] [PMID: 12097900]
[46]
Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: Biology, mechanism, and applications. Microbiol Mol Biol Rev 2003; 67(4): 657-85.
[http://dx.doi.org/10.1128/MMBR.67.4.657-685.2003] [PMID: 14665679]
[47]
Armstead A, Li B. In vitro inflammatory effects of hard metal (WC–Co) nanoparticle exposure. Int J Nanomedicine 2016; 11: 6195-206.
[http://dx.doi.org/10.2147/IJN.S121141] [PMID: 27920526]
[48]
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136(4): 642-55.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[49]
Babu A, Muralidharan R, Amreddy N, Mehta M, Munshi A, Ramesh R. Nanoparticles for siRNA-based gene silencing in tumor therapy. IEEE Trans Nanobiosci 2016; 15(8): 849-63.
[http://dx.doi.org/10.1109/TNB.2016.2621730] [PMID: 28092499]
[50]
Rossi JJ, Rossi DJ. siRNA drugs: Here to stay. Mol Ther 2021; 29(2): 431-2.
[http://dx.doi.org/10.1016/j.ymthe.2021.01.015] [PMID: 33472033]
[51]
Chakrabarti S, Finnes HD, Mahipal A. Fibroblast growth factor receptor (FGFR) inhibitors in cholangiocarcinoma: Current status, insight on resistance mechanisms and toxicity management. Expert Opin Drug Metab Toxicol 2022; 18(1): 85-98.
[http://dx.doi.org/10.1080/17425255.2022.2039118] [PMID: 35129006]
[52]
Tekedereli I, Alpay SN, Akar U, et al. Therapeutic silencing of Bcl-2 by systemically administered siRNA nanotherapeutics inhibits tumor growth by autophagy and apoptosis and enhances the efficacy of chemotherapy in orthotopic xenograft models of ER (-) and ER (+) breast cancer. Mol Ther Nucleic Acids 2013; 2(9): e121.
[http://dx.doi.org/10.1038/mtna.2013.45] [PMID: 24022053]
[53]
Haque MW, Bose P, Siddique MUM, Sunita P, Lapenna A, Pattanayak SP. Taxifolin binds with LXR (α & β) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/PTEN pathway. Biomed Pharmacother 2018; 105: 27-36.
[http://dx.doi.org/10.1016/j.biopha.2018.05.114] [PMID: 29843042]
[54]
Kumar A, Sunita P, Jha S, Pattanayak SP. Daphnetin inhibits TNF-α and VEGF-induced angiogenesis through inhibition of the IKKs/IκBα/NF-κB, Src/FAK/ERK1/2 and Akt signalling pathways. Clin Exp Pharmacol Physiol 2016; 43(10): 939-50.
[http://dx.doi.org/10.1111/1440-1681.12608] [PMID: 27297262]
[55]
Sahu R, Kar RK, Sunita P, et al. LC-MS characterized methanolic extract of zanthoxylum armatum possess anti-breast cancer activity through Nrf2-Keap1 pathway: An in silico, in vitro and in vivo evaluation. J Ethnopharmacol 2021; 269: 113758.
[http://dx.doi.org/10.1016/j.jep.2020.113758] [PMID: 33359860]
[56]
Banerjee M, Chattopadhyay S, Choudhuri T, et al. Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line. J Biomed Sci 2016; 23(1): 40.
[http://dx.doi.org/10.1186/s12929-016-0257-0] [PMID: 27084510]
[57]
Liu DD, Han CC, Wan HF, et al. Effects of inhibiting PI3K-Akt-mTOR pathway on lipid metabolism homeostasis in goose primary hepatocytes. Animal 2016; 10(8): 1319-27.
[http://dx.doi.org/10.1017/S1751731116000380] [PMID: 26956906]
[58]
El-Asfar RK, El-Derany MO, Sallam AAM, et al. Luteolin mitigates tamoxifen-associated fatty liver and cognitive impairment in rats by modulating beta-catenin. Eur J Pharmacol 2021; 908: 174337.
[http://dx.doi.org/10.1016/j.ejphar.2021.174337] [PMID: 34265292]
[59]
Ullah I, Khalil AT, Ali M, et al. Green-synthesized silver nanoparticles induced apoptotic cell death in MCF-7 breast cancer cells by generating reactive oxygen species and activating caspase 3 and 9 enzyme activities. Oxid Med Cell Longev 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/1215395] [PMID: 33082906]
[60]
Xuan W, Zhao H, Hankin J, Chen L, Yao S, Ma D. Local anesthetic bupivacaine induced ovarian and prostate cancer apoptotic cell death and underlying mechanisms in vitro. Sci Rep 2016; 6(1): 26277.
[http://dx.doi.org/10.1038/srep26277] [PMID: 27195613]
[61]
Aletaha M, Mansoori B, Mohammadi A, Fazeli M, Baradaran B. The effect of snail1 gene silencing by siRNA in metastatic breast cancer cell lines. Iran J Public Health 2017; 46(5): 659-70.
[PMID: 28560197]
[62]
Zhang YJ, Dai Q, Sun DF, et al. mTOR signaling pathway is a target for the treatment of colorectal cancer. Ann Surg Oncol 2009; 16(9): 2617-28.
[http://dx.doi.org/10.1245/s10434-009-0555-9] [PMID: 19517193]
[63]
Gandhi NS, Godeshala S, Koomoa-Lange DLT, Miryala B, Rege K, Chougule MB. Bioreducible poly (amino ethers) based mTOR siRNA delivery for lung cancer. Pharm Res 2018; 35(10): 188.
[http://dx.doi.org/10.1007/s11095-018-2460-z] [PMID: 30105526]
[64]
Harrell JC, Pfefferle AD, Zalles N, et al. Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability and metastasis. Clin Exp Metastasis 2014; 31(1): 33-45.
[http://dx.doi.org/10.1007/s10585-013-9607-4] [PMID: 23975155]
[65]
Kenny PA, Lee GY, Myers CA, et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 2007; 1(1): 84-96.
[http://dx.doi.org/10.1016/j.molonc.2007.02.004] [PMID: 18516279]
[66]
Mita MM, Mita A, Rowinsky EK. Mammalian target of rapamycin: A new molecular target for breast cancer. Clin Breast Cancer 2003; 4(2): 126-37.
[http://dx.doi.org/10.3816/CBC.2003.n.018] [PMID: 12864941]
[67]
Sharma V, Sharma AK, Punj V, Priya P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer. Semin Cancer Biol 2019; 59: 133-46.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.005] [PMID: 31408722]
[68]
Yan J, Xie Y, Si J, et al. Crosstalk of the caspase family and mammalian target of rapamycin signaling. Int J Mol Sci 2021; 22(2): 817.
[http://dx.doi.org/10.3390/ijms22020817] [PMID: 33467535]
[69]
Raught B, Peiretti F, Gingras AC, et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 2004; 23(8): 1761-9.
[http://dx.doi.org/10.1038/sj.emboj.7600193] [PMID: 15071500]
[70]
Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO J 2001; 20(16): 4370-9.
[http://dx.doi.org/10.1093/emboj/20.16.4370] [PMID: 11500364]
[71]
Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 2006; 314(5798): 467-71.
[http://dx.doi.org/10.1126/science.1130276] [PMID: 17053147]
[72]
Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci 2001; 98(17): 9666-70.
[http://dx.doi.org/10.1073/pnas.171301998] [PMID: 11493700]
[73]
Lai KP, Leong WF, Chau JFL, et al. S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response. EMBO J 2010; 29(17): 2994-3006.
[http://dx.doi.org/10.1038/emboj.2010.166] [PMID: 20657550]
[74]
Evangelisti C, Chiarini F, Paganelli F, Marmiroli S, Martelli AM. Crosstalks of GSK3 signaling with the mTOR network and effects on targeted therapy of cancer. Biochim Biophys Acta Mol Cell Res 2020; 1867(4): 118635.
[http://dx.doi.org/10.1016/j.bbamcr.2019.118635] [PMID: 31884070]
[75]
Sun Y, Ai JZ, Jin X, et al. IL-8 protects prostate cancer cells from GSK-3β-induced oxidative stress by activating the mTOR signaling pathway. Prostate 2019; 79(10): 1180-90.
[http://dx.doi.org/10.1002/pros.23836] [PMID: 31104320]
[76]
Olsson M, Zhivotovsky B. Caspases and cancer. Cell Death Differ 2011; 18(9): 1441-9.
[http://dx.doi.org/10.1038/cdd.2011.30] [PMID: 21455218]
[77]
Kerr J F R, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26(4): 239-57.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[78]
Zhang HW, Hu JJ, Fu RQ, et al. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci Rep 2018; 8(1): 11255.
[http://dx.doi.org/10.1038/s41598-018-29308-7] [PMID: 30050147]
[79]
Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int J Mol Sci 2020; 22(1): 173.
[http://dx.doi.org/10.3390/ijms22010173] [PMID: 33375317]
[80]
Devarajan E, Sahin AA, Chen JS, et al. Down-regulation of caspase 3 in breast cancer: A possible mechanism for chemoresistance. Oncogene 2002; 21(57): 8843-51.
[http://dx.doi.org/10.1038/sj.onc.1206044] [PMID: 12483536]
[81]
Wong RSY. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res 2011; 30(1): 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[82]
Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005; 55(3): 178-94.
[http://dx.doi.org/10.3322/canjclin.55.3.178] [PMID: 15890640]
[83]
Foster DA, Yellen P, Xu L, Saqcena M. Regulation of G1 cell cycle progression: Distinguishing the restriction point from a nutrient-sensing cell growth checkpoint (s). Genes Cancer 2010; 1(11): 1124-31.
[http://dx.doi.org/10.1177/1947601910392989] [PMID: 21779436]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy