[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68, 394-424.
[2]
Hayes, B.; Murphy, C.; Crawley, A.; O’Kennedy, R. Developments in point-of-care diagnostic technology for cancer detection. Diagnostics, 2018, 8, 39.
[3]
Sandbhor Gaikwad, P.; Banerjee, R. Advances in point-of-care diagnostic devices in cancers. Analyst, 2018, 143, 1326-1348.
[4]
Ludwig, J.A.; Weinstein, J.N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer, 2005, 5, 845-856.
[5]
Chang, Y.; Sun, J.; Dong, L.; Jiao, F.; Chang, S.; Wang, Y.; Liao, J.; Shang, Y.; Wu, W.; Qi, Y.; Shan, C.X. Self-powered multi-color display based on stretchable self-healing alternating current electroluminescent devices. Nano Energy, 2022, 95, 107061.
[6]
Sun, J.; Li, N.; Dong, L.; Niu, X.; Zhao, M.; Xu, Z.; Zhou, H.; Shan, C.X.; Pan, C. Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells. Nanotechnology, 2021, 32, 475204.
[7]
Sun, J.; Hua, Q.; Zhou, R.; Li, D.; Guo, W.; Li, X.; Hu, G.; Shan, C.X.; Meng, Q.; Dong, L.; Pan, C.; Wang, Z.L. Piezo-phototronic effect enhanced efficient flexible perovskite solar cells. ACS Nano, 2019, 13 4, 4507-4513.
[8]
Sun, J.; Hua, Q.; Zhao, M.; Dong, L.; Chang, Y.; Wu, W.; Li, J.; Chen, Q.; Xi, J.; Hu, W.; Pan, C.; Shanz, C. Stable ultrathin perovskite/polyvinylidene fluoride composite films for imperceptible multi-color fluorescent anti-counterfeiting labels. Adv. Mater. Technol., 2021, 6, 2100229.
[9]
Khan, A.A.; Yu, Z.; Khan, U.; Dong, L. Solution processed tri-layer structure for high-performance perovskite photodetector. Nanoscale Res. Lett., 2018, 13, 399.
[10]
Dong, L.; Cao, G.; Ma, Y.; Jia, X.; Ye, G.; Guan, S. Enhanced photocatalytic degradation properties of nitrogen-doped titania nanotube arrays. Trans. Nonferrous Met. Soc. China, 2009, 19, 1583.
[11]
Sudha, P.N.; Sangeetha, K.; Vijayalakshmi, K.; Barhoum, A. Nanomaterials history, classification, unique properties, production and market, in book Emerging Applications of Nanoparticles and Architecture Nanostructures. Elsevier 2018, 341-384.
[12]
Sekunowo, O.I.; Durowaye, S.I.; Lawal, G.I. An overview of nano-particles effect on mechanical properties of composites. Int. J. Mech. Aero. Ind. Mech. Manuf. Eng., 2015, 9, 1-7.
[13]
Pokropivny, V.; Skorokhod, V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C, 2007, 27, 990-993.
[14]
Wang, Z. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312, 242-246.
[15]
She, G.; Zhang, X.; Shi, W.; Fan, X.; Chang, J. Electrochemical/chemical synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Electrochem. Commun., 2007, 9, 2784-2788.
[16]
Yamano, A.; Takata, K.; Kozuka, H. Ferroelectric domain structures of 0.4-µm-thick Pb(Zr,Ti)O3 films prepared by polyvinylpyrrolidone-assisted Sol-Gel method. J. Appl. Phys., 2012, 111, 054109.
[17]
Qi, Y.; Jafferis, N.; Lyons, K.; Lee, C.; Ahmad, H.; McAlpine, M. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett., 2010, 10, 524-528.
[18]
Liu, J.L.; Bashir, S. Advanced Nanomaterials and Their Applications in Renewabel Energy, Elsevier, Amsterdam, The Netherlands. 2015, (Chapter 1).
[19]
Cai, X.; Luo, Y.; Lio, B.; Cheng, H.M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev., 2018, 6224.
[19a]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced materials., 2011, 23, 4248-4253.
[20]
Alam, S.; Chowdhury, M.A.; Shahid, A.; Alam, R.; Rahim, A. Synthesis of emerging two-dimensional (2D) materials-Advances, challenges and prospects. FlatChem, 2021, 100305.
[21]
BBhuyan. M. S.A.; Uddin, M.N.; Islam, M.M.; Bipasha, F.A.; Hossain, S. S. Synthesis of graphene. Int. Nano Lett., 2016, 6, 65-83.
[22]
Mbayachi, V. B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E. R.; Khan, A. U. Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 2021, 100163.
[23]
Yan, Y.; Nashath, F.Z.; Chen, S.; Manickam, S.; Lim, S.S.; Zhao, H.; Lester, E.; Wu, T.; Pang, C.H. Synthesis of graphene: Potential carbon precursors and approaches. Nanotechnol. Rev., 2020, 1284-1314.
[24]
Shams, S.; Zhang, R.; Zhu, J. (2015) Graphene synthesis: a Review. Materials Science-Poland, 2015, 33, 566-578.
[24a]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.
[25]
Noorden, R.V. Production: Beyond sticky tape. Nature, 2012, 483, S32-S33.
[25]
Wang, Z. Progress on preparation of graphene and its application. Mater. Sci. Eng., 2017, 242, 012032.
[25a]
Boehm, H.P.; Clauss, A.; Fischer, G.O.; Hofmann, U. The adsor tion behavior of very thin carbon films. Z. Anorg. Allg. Chem., 1962, 316, 119-127.
[26]
Santhiran, A.; Iyngaran, P.; Abiman, P.; Kuganathan, N. Graphene Synthesis and Its Recent Advances in Applications-A Review. Journal of Carbon Research., 2021, 7, 76.
[27]
Beitollahi, H.; Safaei, M.; Tajik, S. Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review. Int. J. Nanodimens., 2019, 10, 125-140.
[27a]
Brodie, B.C. XIII. On the atomic weight of graphite. Philosophical transactions of the Royal Society of London, 1859, 249-259.
[27b]
Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft., 1898, 1481-1487.
[27c]
Eizenberg, M.; Blakely, J.M. Carbon monolayer phase condensation on Ni (111). Surface Science. 1979, 82, 228-236. [27d] Li, Y.; Chen, Q.; Xu, K.; Kaneko, T.; Hatakeyama, R. Synthesis of graphene nanosheets from petroleum asphalt by pulsed arc discharge in water. Chemical Engineering Journal., 2013, 215, 45-49.
[28]
Baig, N.; Kawde, A.N. A novel, fast and cost-effective graphene-modified graphite pencil electrode for trace quantification of L-tyrosine. Anal. Methods, 2015, 7, 9535-9541.
[29]
Briman, M.; Joshi, V. Carbon-based electrodes with graphene modification, 2015.
[30]
Gevaerd, A.; Watanabe, E.Y.; Fernandes, K.; Papi, M.A.P.; Banks, C.E.; Bergamini, F.M.; Junior, L.H.M. Electrochemically Reduced Graphene Oxide as Screen‐printed Electrode Modifier for Fenamiphos Determination. Electroanalyais, 2020, 32, 1689-1695.
[31]
Zhang, L.; Wang, H.; Shen, W.; Qin, Z.; Wang, J.; Fan, W. Controlled synthesis of graphitic carbon nitride and its catalytic properties in Knoevenagel condensations. J. Catal., 2016, 344, 293-302.
[32]
Bagheri, H.; Afkhami, A.; Khoshsafar, H.; Rezaei, M.; Sabounchei, S.J.; Sarlakifar, M. Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Anal. Chim. Acta, 2015, 870, 56-66.
[32a]
Xing, H.; Xu, J.; Zhu, X.; Duan, X.; Lu, L.; Wang, W.; Zhang, Y.; Yang, T. Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. Journal of Electroanalytical Chemistry., 2016, 760, 52-58.
[32b]
Chen, D.; Tian, C.; Li, X.; Li, Z.; Han, Z.; Zhai, C.; Quan, Y.; Cui, R.; Zhang, G. Electrochemical determination of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous platinum-yttrium and graphene. Mikrochim. Acta, 2018, 185, 1-7.
[33]
Rauf, S.; Mishra, G.K.; Azhar, J.; Mishra, R.K.; Goud, K.Y.; Nawaz, M.A.H.; Hayat, A. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Anal. Biochem., 2018, 545, 13-19.
[33a]
Ekabutr, P.; Klinkajon, W.; Sangsanoh, P.; Chailapakul, O.; Niamlang, P.; Khampieng, T.; Supaphol, P. Electrospinning: a carbonized gold/graphene/PAN nanofiber for high performance biosensing. Anal. Methods, 2018, 10, 874-883.
[33b]
Arvand, M.; Sanayeei, M.; Hemmati, S. Label-free electrochemical DNA biosensor for guanine and adenine by ds-DNA/poly (L-cysteine)/Fe3O4 nanoparticles-graphene oxide nanocomposite modified electrode. Biosens. Bioelectron., 2018, 102, 70-79.
[34]
Mahmodi, M.H.; Beitollahi, H.; Dehghannoudeh, G.; Forootanfar, H. Electrochemical determination of amsacrine at a ds-DNA modified graphene carbon paste electrode and its application as a label-free electrochemical biosensor. Int. J. Electrochem. Sci., 2017, 12, 9958-9971.
[34a]
Movlaee, K.; Ganjali, M.R.; Aghazadeh, M.; Beitollahi, H.; Hosseini, M.; Shahabi, S.; Norouzi, P. Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid. Int. J. Electrochem. Sci., 2017, 12, 305-315.
[35]
Li, X.; Zou, R.; Niu, Y.; Shao, T.; Chen, Y.; Sun, W.; He, M. (2018), Voltammetric determination of bergenin with graphene modified glassy carbon electrode. Int. J. Electrochem. Sci., 2018, 13, 1976-1984.
[36]
Ganjali, M.R.; Dourandish, Z.; Beitollahi, H.; Tajik, S.; Hajiaghababaei, L.; Larijani, B. (2018), Highly sensitive determination of theophylline based on graphene quantum dots modified electrode. Int. J. Electrochem. Sci., 2018, 13, 2448-2461.
[36a]
Baccarin, M.; Cervini, P.; Cavalheiro, E.T. Comparative performances of a bare graphite-polyurethane composite electrode unmodified and modified with grapheme and carbon nanotubes in the electrochemical determination of escitalopram. Talanta, 2018, 178, 1024-1032.
[36b]
Dourandish, Z.; Beitollahi, H. Electrochemical sensing of isoproterenol using graphite screen-printed electrode modified with graphene quantum dots. Anal. Bioanal. Electrochem., 2018, 10, 192-202.
[36c]
Chaiyo, S.; Mehmeti, E.; Siangproh, W.; Hoang, T.L.; Nguyen, H.P.; Chailapakul, O.; Kalcher, K. Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine–ionic liquid–graphene composite. Biosensors and Bioelectronics. 2018,102,113-120. [36d] Hashemi, P.; Bagheri, H.; Afkhami, A.; Amidi, S.; Madrakian, T. Graphene nanoribbon/FePt bimetallic nanoparticles/uric acid as a novel magnetic sensing layer of screen-printed electrode for sensitive determination of ampyra. Talanta. 2018 176, 350-359. [36e] Kahlouche, K.; Jijie, R.; Hosu, I.; Barras, A.; Gharbi, T.; Yahiaoui, R.; Herlem, G.; Ferhat, M.; Szunerits, S.; Boukherroub, R. Controlled modification of electrochemical microsystems with polyethylenimine/reduced graphene oxide using electrophoretic deposition: Sensing of dopamine levels in meat samples. Talanta, 2018, 178, 432-440.
[36f]
Pruneanu, S.; Biris, A.R.; Pogacean, F.; Socaci, C.; Coros, M.; Rosu, M.C.; Watanabe, F.; Biris, A.S. The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochim. Acta, 2015, 154, 197-204.
[36g]
Zhang, X.; Liao, Q.; Chu, M.; Liu, S.; Zhang, Y. Structure effect on graphene-modified enzyme electrode glucose sensors. Biosens. Bioelectron., 2014, 52, 281-287.
[36h]
Zhou, S.; Guo, P.; Li, J.; Meng, L.; Gao, H.; Yuan, X.; Wu, D. An electrochemical method for evaluation the cytotoxicity of fluorene on reduced graphene oxide quantum dots modified electrode. Sens. Actuators B Chem., 2018, 255, 2595-2600.
[36i]
Chen, J.; Fu, B.; Liu, T.; Yan, Z.; Li, K. (2018), A graphene oxide-DNA electrochemical sensor based on glassy carbon electrode for sensitive determination of methotrexate. Electroanalys., 2018, 30, 288-295.
[37]
Wang, H.; Zhang, S.; Li, S.; Qu, J. Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta, 2018, 178, 188-194.
[38]
Zhang, L.; Wang, H.; Shen, W.; Qin, Z.; Wang, J.; Fan, W. Controlled synthesis of graphitic carbon nitride and its catalytic properties in Knoevenagel condensations. Journal of Catalysis, 2016, 344, 293-302.
[39]
Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci., 2012, 5, 6717-6731.
[40]
Liu, Z.; Wang, C.; Zhu, Z.; Lou, Q.; Shen, C.; Chen, Y.; Sun, J.; Ye, Y.; Zang, J.; Dong, L.; Shan, C.X. Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter, 2021, 4, 1625.
[41]
Dante, R.C.; Ramos, P.M.; Guimaraes, A.C.; Gil, J.M. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid. Materials Chemistry and Physics, 2011, 130, 1094-1102.
[42]
Iqbal, W.; Yang, B.; Zhao, X.; Rauf, M.; Waqas, M.; Gong, Y.; Zhang, J.; Mao, Y. Controllable synthesis of graphitic carbon nitride NMs for solar energy conversion, and environmental remediation: The road travelled and the way forward. Catal. Sci. Technol., 2018, 8, 4576-4599.
[43]
Li, C.; Yang, X.; Yang, B.; Yan, Y.; Qian, Y. Synthesis and characterization of nitrogen-rich graphitic carbon nitride. Mater. Chem. Phys., 2007, 103, 427-432.
[44]
Mo, Z.; She, X.; Li, Y.; Liu, L.; Huang, L.; Chen, Z.; Zhang, Q.; Xu, H.; Li, H. Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution. RSC Advances, 2015, 5, 101552-101562.
[45]
Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem., 2012, 22, 8083-8091.
[46]
Martin, D.J.; Qiu, K.; Shevlin, S.A.; Handoko, A.D.; Chen, X.; Guo, Z.; Tang, J. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed., 2014, 53, 9240-9245.
[47]
Zhai, H.S.; Cao, L.; Xia, X.H. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chinese Chemical Letters, 2013, 24, 103-106.
[48]
Yan, H.; Chen, Y.; Xu, S. Synthesis of graphitic carbon nitride by directly heatingsulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light. Int. J. Hydrogen Energy, 2012, 37, 125-133.
[49]
Li, G.; Shi, J.; Zhang, G.; Fang, Y.; Anpo, M.; Wang, X. The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2 production. Res. Chem. Intermed., 2017, 43, 5137-5152.
[50]
Jun, Y-S.; Hong, W.H.; Antonietti, M.; Thomas, A. Mesoporous, 2D hexagonal carbon nitride and nitanium nitride/carbon composites. Adv. Mater., 2009, 21, 4270-4274.
[51]
Park, S.S.; Chu, S-W.; Xue, C.; Zhao, D.; Ha, C-S. Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent. J. Mater. Chem., 2011, 21, 10801-10807.
[52]
Vinu, A.; Ariga, K.; Mori, T.; Nakanishi, T.; Hishita, S.; Golberg, D.; Bando, Y. Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Adv. Mater., 2005, 17, 1648-1652.
[53]
Bian, S-W.; Ma, Z.; Song, W-G. Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter. J. Phys. Chem. C, 2009, 113, 8668-8672.
[54]
Wang, J.; Zhang, C.; Shen, Y.; Zhou, Z.; Yu, J.; Li, Y.; Wei, W.; Liu, S.; Zhang, Y. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity. J. Mater. Chem. A, 2015, 3, 5126-5131.
[55]
Veerakumar, P.; Rajkumar, C.; Chen, S.M.; Thirumalraj, B.; Lin, K.C. Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. J. Electroanal. Chem., 2018, 826, 207-216.
[56]
Vinoth, S.; Devi, K.S.S.; Pandikumar, A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. Trac-Trend. Anal. Chem., 2021, 140, 116274.
[57]
Idris, A.O.; Oseghe, E.O.; Msagati, T.A.M.; Kuvarega, A.T.; Feleni, U.; Mamba, B. Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing. Sensors, 2020, 20, 5743.
[58]
Amiri, M.; Salehniya, H.; Habibi-yangjeh, A. Graphitic carbon nitride/chitosan composite for adsorption and electrochemical determination of mercury in real samples. Ind. Eng. Chem. Res., 2016, 55(29), 8114-8122.
[59]
Zhang, J.; Zhu, Z.; Di, J.; Long, Y.; Li, W.; Tu, Y. A sensitive sensor for trace Hg2+ determination based on ultrathin g-C3N4 modified glassy carbon electrode. Electrochim. Acta, 2015, 186, 192-200.
[60]
Zou, J.; Mao, D.; Li, N.; Ph, D.; Jiang, J.; Ph, D. Applied Surface Science Reliable and selective lead-ion sensor of sulfur-doped graphitic carbon nitride nano flakes. Appl. Surf. Sci., 2020, 506, 144672.
[61]
Hatamie, A.; Jalilian, P.; Rezvani, E.; Kakavand, A.; Simchi, A. Fast and ultra-sensitive voltammetric detection of lead ions by two-dimensional graphitic carbon nitride (g-C3N4) nanolayers as glassy carbon electrode modifier. Measurment, 2019, 134, 679-687.
[61a]
Li, Y.; Cheng, C.; Yang, Y.; Dun, X.; Gao, J.; Jin, X.J. A novel electrochemical sensor based on CuO/H-C3N4/rGO nanocomposite for efficient electrochemical sensing nitrite. Journal of Alloys and Compounds., 2019, 798, 764-772.
[61b]
Wang, S.; Liu, M.; He, S.; Zhang, S.; Lv, X.; Song, H.; Han, J.; Chen, D. Protonated carbon nitride induced hierarchically ordered Fe2O3/HC3N4/rGO architecture with enhanced electrochemical sensing of nitrite. Sensors and Actuators B: Chemical, 2018, 260, 490-498.
[61c]
Mohammad, A.; Ahmad, K.; Qureshi, A.; Tauqeer, M.; Mobin, S.M. Zinc oxidegraphitic carbon nitride nanohybrid as an efficient ele trochemical sensor and photocatalyst. Sensors and Actuators B: Chemical., 2018, 277, 467-476.
[61d]
Vinoth, S.; Sampathkumar, P.; Giribabu, K.; Pandikumar, A. Ultrasonically assisted synthesis of barium stannate incorporated graphitic carbon nitride nanocomposite and its analytical performance in electrochemical sensing of 4-nitrophenol. Ultrasonics Sonochemistry., 2020, 62, 104855.
[61e]
Rajkumar, C.; Veerakumar, P.; Chen, S.M.; Thirumalraj, B.; Lin, K.C. Ultrathin sulfurdoped graphitic carbon nitride nanosheets as metal-free catalyst for electrochemical sensing and catalytic removal of 4-nitrophenol. ACS Sustainable Chemistry & Engineering., 2018, 6, 16021-16031.
[61f]
Vinoth, S.; Rajaitha, P.M.; Pandikumar, A. In-situ pyrolytic processed zinc stannate incorporated graphitic carbon nitride nanocomposite for selective and sensitive electrochemical determination of nitrobenzene. Composites Science and Technology, 2020, 195, 108192.
[62]
Selvarajan, S.; Suganthi, A.; Rajarajan, M. Ultrasonics - sonochemistry Fabrication of g-C3N4/NiO heterostructured nanocomposite modi fi ed glassy carbon electrode for quercetin biosensor. Ultrason. Sonochem., 2018, 41, 651-660.
[63]
Zhu, Z.; Pan, T.Y.; Hsieh, C.Y.; Wu, R.J. Fabrication of novel Ag/g-C3N4 electrode for resveratrol sensors. J. Chin. Chem. Soc., 2020, 67, 1195-1200.
[63a]
Jahani, P.M.; Beitollahi, H.; Nejad, F.G.; Dourandish, Z.; Di Bartolomeo, A. Screenprinted graphite electrode modified with Co3O4 nanoparticles and 2D graphitic carbon nitride as an effective electrochemical sensor for 4-aminophenol detection. Nanotechnology, 2022, 33, 395702.
[64]
Jahani, P.M.; Beitollahi, H.; Nejad, F.G.; Dourandish, Z.; Bartolomeo, A.D. Screen-printed Graphite Electrode Modified with Co3O4 Nanoparticles and 2D Graphitic Carbon Nitride as an Effective Electrochemical Sensor for 4-Aminophenol Detection. Nanotechnology, 2022, 33, 395702.
[65]
Tian, J.; Liu, Q.; Ge, C.; Xing, Z.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale, 2013, 5, 8921-8924.
[65a]
Tashkhourian, J.; Nami-Ana, S.F.; Shamsipur, M. A new bifunctional nanostructure based on Two-Dimensional nanolayered of Co(OH)2 exfoliated graphitic carbon nitride as a high performance enzyme-less glucose sensor: Impedimetric and amperometric detection. Analytica Chimica Acta, 2018, 1034, 63-73.
[66]
Tashkhourian, J.; Ana, S. F. N.; Shamsipur, M. A New Bifunctional Nanostructure Based on Two‐Dimensional Nanolayered of Co(OH)2 Exfoliated Graphitic Carbon Nitride as a High Performance Enzyme-Lesz Glucose Sensor: Impedimetric and Amperometric Detection Analytica Chimica Acta 2018, 63-73.
[67]
Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J.P.; Shen, A.T. Wee, Jiang, J. An ultrasensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon N. Y., 2018, 130, 652-663.
[68]
Yola, M.L.; Atar, N. Development of molecular imprinted sensor including graphitic carbon nitride/N-doped carbon dots composite for novel recognition of epinephrine, Compos. B Eng., 2019, 175, 107113.
[69]
Zhu, J.; Nie, W.; Wang, Q.; Li, J.; Li, H.; Wen, W.; Bao, T.; Xiong, H.; Zhang, X.; Wang, S. In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide. Carbon, 2018, 129, 29-37.
[70]
Dai, G.; Xie, J.; Li, C.; Liu, S. Flower-like Co3O4/graphitic carbon nitride nanocomposite based electrochemical sensor and its highly sensitive electrocatalysis of hydrazine. J. Alloys Compd., 2017, 727, 43-51.
[71]
Mohammad, A.; Khan, M.E.; Cho, M.H. Sulfur-doped-graphitic-carbon nitride (S-g C3N4) for low-cost electrochemical sensing of hydrazine. J. Alloys Compd., 2020, 816, 152522.
[72]
Ansari, S.; Ansari, M.S.; Devnani, H.; Satsangee, S.P.; Jain, R. CeO2/g-C3N4 nanocomposite: a perspective for electrochemical sensing of anti-depressant drug, Sensor. Actuator. Biol. Chem., 2018, 273, 1226-1236.
[73]
Balasubramanian, P.; Annalakshmi, M.; Chen, S.M.; Chen, T.W. Sonochemical synthesis of molybdenum oxide (MoO3) microspheres anchored graphitic carbon nitride (g-C3N4) ultrathin sheets for enhanced electrochemical sensing of Furazolidone. Ultrason. Sonochem., 2019, 50, 96-104.
[74]
Chen, T.W.; Rajaji, U.; Chen, S.M.; Lou, B.S.; Al-Zaqri, N.; Alsalme, A.; Alharthi, F.A.; Lee, S.Y.; Chang, W.H. A sensitive electrochemical determination of chemotherapy agent using graphitic carbon nitride covered vanadium oxide nanocomposite; sonochemical approach. Ultrason. Sonochem., 2019, 58, 104664.
[75]
Fu, L.; Xie, K.; Wu, D.; Wang, A.; Zhang, H.; Ji, Z. Electrochemical determination of vanillin in food samples by using pyrolyzed graphitic carbon nitride. Mater. Chem. Phys., 2020, 242, 122462.
[76]
Wang, B.; Ye, C.; Zhong, X.; Chai, Y.; Chen, S.; Yuan, R. Electrochemical biosensor for organophosphate pesticides and Huperzine-A detection based on Pd wormlike nanochains/graphitic carbon nitride nanocomposites and acetylcholinesterase. Electroanalysis, 2016, 28, 304-311.
[77]
Choi, W.; Choudhary, N.; Han, G.H.; Park, J.D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today, 2017, 20, 116-130.
[78]
Seo, B.; Jung, G. Y.; Sa, Y. J.; Jeong, H. Y.; Cheon, J. Y.; Lee, J. H.; Kim, H. Y.; Kim, J. C.; Shin, H. S.; Kwak, S. K.; Joo, S. H. Monolayer-Precision Synthesis of Molybdenum Sulfide Nanoparticles and Their Nanoscale Size Effects in the Hydrogen Evolution Reaction ACS Nano, 2015, 3728-3739.
[79]
Zhong, W.; Deng, S.; Wang, K.; Li, G.; Li, G.; Chen, R.; Kwok, H.S. Feasible Route for a Large Area Few-Layer MoS2 with Magnetron Sputtering. NMs, 2018, 8, 590.
[80]
Zhao, W.; Jiang, T.; Shan, Y.; Ding, H.; Shi, J.; Chu, H.; Lu, A. Direct Exfoliation of Natural SiO2-Containing Molybdenite in Isopropanol: A Cost-Efficient Solution for Large-Scale Production of MoS2 Nanosheetes. NMs, 2018, 8, 843.
[81]
Vattikuti, S.V.P.; Byon, C. Synthesis and Characterization of Molybdenum Disulfide Nanoflowers and Nanosheets: Nanotribology. J. Nanomater., 2015, 2015, 710462.
[82]
Vilian, A.T.E.; Bose, D.; Kang, S.M.; Krishnan, U.M.; Huh, Y.S.; Han, Y.K. Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Mikrochim. Acta, 2019, 186, 203.
[83]
Rees, J.D.; Gorby, Y.A.; Sawyer, S.M. Synthesis and characteriza-tion of molybdenum disulfide nanoparticles in Shewanella onei-densis MR-1 biofilms. Biointerphases, 2020, 15(4), 041006.
[84]
Tucker, M.D.; Barton, L.L.; Thomson, B.M. Reduction and Immobilization of Molybdenum by Desulfovibrio desulfuricans. J. Environ. Qual., 1997, 26, 1146-1152.
[85]
Duphil, D.; Bastide, S.; Clement, C.L. Chemical synthesis of molybdenum disulfide nanoparticles in an organic solution. J. Mater. Chem., 2002, 12, 2430-2432.
[86]
Nguyen, E.P.; Carey, B.J.; Daeneke, T.; Ou, J.Z.; Latham, K.; Zhuiykov, S.; Kalantar-zadeh, K. Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2. Chem. Mater., 2015, 27, 53-59.
[87]
Zribi, R.; Foti, A.; Donato, M.G.; Gucciardi, P.G.; Neri, G. Fabrication of a Novel Electrochemical Sensor Based on Carbon Cloth Matrix Functionalized with MoO3 and 2D-MoS2 Layers for Riboflavin Determination. Sensors, 2021, 21, 1371.
[88]
Govea, R.R.; Hickey, D.P.; Morales, R.G.; Delgado, M.R.; Rovira, M.A.D.; Minteer, S.D.; Soto, N.O.; Garcia, A.G. MoS2 nanostructured materials for electrode modification in the development of a laccase based amperometric biosensor for non-invasive dopamine detection. Microchem. J., 2020, 155, 104792.
[89]
Guo, C.; Wang, C.; Sun, H.; Dai, D.; Gao, H. A simple electrochemical sensor based on rGO/MoS2/CS modified GCE for highly sensitive detection of Pb(ii) in tobacco leaves. RSC Advances, 2021, 11, 29590-29597.
[90]
Wang, H.; Chen, P. F, Wen.; Y, Zhu.; Zhang, Y. (2015) Flower-like Fe2O3@MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite. Sens. Actuators B., 2015, 220, 749-754.
[90a]
Ghanei-Motlagh, M.; Taher, M.A. A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosensors and Bioelectronics, 2018, 109, 279-285.
[91]
Yang, Y.; Zhang, J.; Li, Y.W.; Shan, Q.; Wu, W. Ni nanosheets evenly distributed on MoS2 for selective electrochemical detection of nitrite. Colloids Surf. A, 2021, 625, 126865.
[92]
Madhuvilakku, R.; Alagar, S.; Mariappan, R.; Piraman, S. Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal. Chim. Acta, 2020, 1093, 93-105.
[93]
Huang, K.J.; Liu, Y.J.; Liu, Y.M.; Wang, L.L. Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination. J. Hazard. Mater., 2014, 276, 207-215.
[93a]
Lin, D.; Li, Y.; Zhang, P.; Zhang, W.; Ding, J.; Li, J.; Wei, G.; Su, Z. Fast preparation of MoS2 nanoflowers decorated with platinum nanoparticles for electrochemical detection of hydrogen peroxide. RSC Advances, 2016, 6, 52739-52745.
[94]
Alfambra, A.M.P.; Casero, E.; Vazquez, L.; Quintana, C.; Pozo, M.D.; Dominguez, M.D.P. MoS2 nanosheets for improving analytical performance of lactate biosensors. Sens. Actuators B Chem., 2018, 274, 310-317.
[95]
Zribi, R.; Maalej, R.; Gillibert, R.; Donato, M.G.; Marago, O.M.; Gucciardi, P.G.; Leonardi, S.G.; Neri, G. Exfoliated 2D-MoS2 nanosheets on carbon and gold screen printed electrodes for enzyme-free electrochemical sensing of tyrosine. Sens. Actuators B Chem., 2020, 303, 127229.
[96]
Altuntas, D.B.; Kuralay, F. MoS2/Chitosan/GOx-Gelatin modified graphite surface: Preparation, characterization and its use for glucose determination. Mater. Sci. Eng. B, 2021, 270, 115215.
[97]
Mani, V.; Govindasamy, M. S-M, Chen.; R, Karthik Huang S-T (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Mikrochim. Acta, 183, 7, 2267-2275.
[98]
Vijayaraj, K.; Dinakaran, T.; Lee, Y.; Kim, S.; Kim, H.S.; Lee, J.; Chang, S-C. (2017) One-step construction of a molybdenum disulfide/multi-walled carbon nanotubes/polypyrrole nanocomposite biosensor for the ex-vivo detection of dopamine in mouse brain tissue. Biochem. Biophys. Res. Commun., 2017, (494), 181-187.
[99]
Pramoda, K. U, Moses, K.; Maitra, Rao, C. Superior performance of a MoS2-RGO composite and a Borocarbonitride in the electrochemical detection of dopamine, uric acid and adenine. Electroanalysis, 2015, 272015, 18920898.
[100]
Cheng, M.; Zhang, X.; Wang, M.; Huang, H. J, Ma. A facile electrochemical sensor based on well-dispersed graphene-molybdenum disulfide modified electrode for highly sensitive detection of dopamine. J. Electroanal. Chem., 2017, 786, 1-7.
[101]
Dolinska, J.; Chidambaram, A.; Adamkiewicz, W.; Estili, M.; Lisowski, W.; Iwan, M.; Palys, B.; Sudholter, E.J.; Marken, F. M, Opallo. Synthesis and characterization of porous carbon-MoS2 nanohybrid materials: electrocatalytic performance towards selected biomolecules. J. Mater. Chem. B, 2016, 4(8), 1448-1457.
[102]
Chekin, F.; Teodorescu, F.; Coffinier, Y.; Pan, G-H.; Barras, A.; Boukherroub, R.; Szunerits, S. MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens. Bioelectron., 2016, 85, 807-813.
[102a]
Yang, T.; Chen, H.; Ge, T.; Wang, J.; Li, W.; Jiao, K. Highly sensitive determination of chloramphenicol based on thin-layered MoS2/polyaniline nanocomposite. Talanta, 2015, 144, 1324-1328.
[102b]
Zhang, Y.; Liu, Z.; Zou, L.; Ye, B. A new voltammetry sensor platform for eriocitrin based on CoS2-MoS2-PDDA-GR nanocomposite. Talanta, 2018, 189, 345-352.
[103]
Mehmandoust, M.; Cakar, S.; Ozacar, M.; Salmanpour, S.; Erk, N. Electrochemical Sensor for Facile and Highly Selective Determination of Antineoplastic Agent in Real Samples Using Glassy Carbon Electrode Modified by 2D-MoS2 NFs/TiO2 NPs. Top. Catal., 2021, 65, 564-576.
[104]
Wang, Y.; Wang, Y. D, Wu.; H, Ma.; Y, Zhang.; D. Fan.; Pa, X.; Du, B.; Wei, Q. Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem., 2018, 255, 125-132.
[104a]
Shuai, H.L.; Huang, K.J.; Chen, Y.X.; Fang, L.X.; Jia, M.P. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification. Biosensors and Bioelectronics, 2017, 89, 989-997.
[105]
Sumathi, C.; Muthukumaran, P.; Thivya, P.; Wilson, J.; Ravi, G. DNA mediated electrocatalytic enhancement of α-Fe2O3-PEDOT-C-MoS2 hybrid nanostructures for riboflavin detection on screen printed electrode. RSC Advances, 2016, 6(85), 81500-81509.
[105a]
Wang, X.; Nan, F.; Zhao, J.; Yang, T.; Ge, T.; Jiao, K. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosensors and Bioelectronics, 2015, 64, 386-391.
[105b]
Shim, J.; Banerjee, S.; Qiu, H.; Smithe, K.K.; Estrada, D.; Bello, J.; Pop, E.; Schulten, K.; Bashir, R. Detection of methylation on dsDNA using nanopores in a MoS2 membrane. Nanoscale, 2017, 9, 14836-14845.
[105c]
Tian, L.; Qi, J.; Qian, K.; Oderinde, O.; Cai, Y.; Yao, C.; Song, W.; Wang, Y. An ultrasensitive electrochemical cytosensor based on the magnetic field assisted binanozymes synergistic catalysis of Fe3O4 nanozyme and reduced grapheme oxide/molybdenum disulfide nanozyme. Sensors and Actuators B: Chemical, 2018, 260, 676-684.
[106]
Soni, A.; Pandey, C.M.; Pandey, M.K.; Sumana, G. Highly efficient Polyaniline-MoS2 hybrid nanostructures-based biosensor for cancer biomarker detection. Anal. Chim. Acta, 2019, 1055, 26-35.
[107]
Zhang, X.; Hu, R.; Zhang, K.; Bai, R.; Li, D.; Yang, Y. An ultrasensitive label-free immunoassay for C-reactive protein detection in human serum based on electron transfer. Anal. Methods, 2016, 8(32), 6202-6207.
[108]
He, B. A sandwich-type electrochemical biosensor for alpha-fetoprotein based on au nanoparticles decorating a hollow molybdenum disulfide microbox coupled with a hybridization chain reaction. New J. Chem., 2017, 41(19), 11353-11360.
[109]
Sofer, Z.; Sedmidubsky, D.; Huber, S.; Luxa, J.; Bous, D.; Boothroyd, C.; Pumera, M. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties. Angew. Chem., 2016, 128, 3443-3447.
[110]
Li, P.; Zhang, D.; Liu, J.; Chang, H.; Sun, Y.; Yin, N. Air-Stable Black Phosphorus Devices for Ion Sensing. ACS Appl. Mater. Interfaces, 2015, 7, 24396-24402.
[111]
Kumar, V.; Brent, J.R.; Shorie, M.; Kaur, H.; Chadha, G.; Thomas, A.G.; Lewis, E.A.; Rooney, A.P. Nguyen, Lan.; Zhong, X. Li.; Burke, M. G.; Haigh, S. J.; Walton, A.; McNaughter, P. D.; Tedstone, A. A.; Savjani, N.; Muryn, C. A.; O’Brien, P.; Ganguli, A. K.; Lewis, D. J.; Sabherwal, P. Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker. ACS Appl. Mater. Interfaces, 2016, 8, 22860-22868.
[112]
Liu, G.; Tsai, H-I.; Zeng, X.; Qi, J.; Luo, M.; Wang, X.; Mei, L.; Deng, W. Black phosphorus nanosheets-based stable drug delivery system via drug-self-stabilization for combined photothermal and chemo cancer therapy. Chem. Eng. J., 2019, 375, 121917.