Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis, Anti-acetylcholinesterase Evaluation, Molecular Docking and Molecular Dynamics Simulation of Novel Psoralen Derivatives

Author(s): Aso Hameed Hasan, Faten Syahira Mohamed Yusof, Natasha Amira Kamarudin, Sankaranarayanan Murugesan, Sonam Shakya and Joazaizulfazli Jamalis*

Volume 21, Issue 1, 2024

Published on: 01 June, 2023

Page: [61 - 77] Pages: 17

DOI: 10.2174/1570179420666230328121554

Price: $65

Abstract

Introduction: Seven new psoralen derivatives were synthesised by carbodiimide coupling to active carboxylic acid to amide formation in mild reaction conditions.

Methods: The psoralen derivatives were produced through the condensation of seven different types of amine groups consisting of electron withdrawing groups and electron donating groups.

Results: All the synthesised compounds were obtained with moderate to high yields. Structural characterization using ATR-FTIR, 1H NMR, 13C NMR, and HRMS has confirmed their structure. Moreover, in silico evaluation of the psoralen derivatives against the AChE enzyme was performed, and acetylcholinesterase inhibitory activity of psoralen derivatives was also conducted.

Conclusion: Results from molecular docking show the potential of compound 12e as AChE inhibitors due to its highest binding energy value. It was further supported by the antiacetylcholinesterase activity of compound 12e, which has 91.69% inhibition, comparable to galantamine (94.12%). Furthermore, 100 ns run molecular dynamics (MD) simulation was used to refine docking results.

Graphical Abstract

[1]
Fernandez-Martos, C.M.; Atkinson, R.A.K.; Chuah, M.I.; King, A.E.; Vickers, J.C. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer’s disease. Alzheimers Dement., 2017, 3(1), 92-106.
[http://dx.doi.org/10.1016/j.trci.2016.11.002] [PMID: 29067321]
[2]
Hasan, A.H.; Amran, S.I.; Saeed Hussain, F.H.; Jaff, B.A.; Jamalis, J. Molecular docking and recent advances in the design and development of cholinesterase inhibitor scaffolds: Coumarin hybrids. ChemistrySelect, 2019, 4(48), 14140-14156.
[http://dx.doi.org/10.1002/slct.201903607]
[3]
Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Li, Q.; Li, Q.; Xie, S.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 146, 287-298.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.055] [PMID: 29407958]
[4]
Zhang, W.; Huang, M.; Bijani, C.; Liu, Y.; Robert, A.; Meunier, B. Synthesis and characterization of copper-specific tetradendate ligands as potential treatment for Alzheimer’s disease. C. R. Chim., 2018, 21(5), 475-483.
[http://dx.doi.org/10.1016/j.crci.2018.01.005]
[5]
Tonda-Turo, C.; Origlia, N.; Mattu, C.; Accorroni, A.; Chiono, V. Current limitations in the treatment of parkinson’s and alzheimer’s diseases: State-of-the-art and future perspective of polymeric carriers. Curr. Med. Chem., 2019, 25(41), 5755-5771.
[http://dx.doi.org/10.2174/0929867325666180221125759] [PMID: 29473493]
[6]
Stites, S.D.; Rubright, J.D.; Karlawish, J. What features of stigma do the public most commonly attribute to Alzheimer’s disease dementia? Results of a survey of the U.S. general public. Alzheimers Dement., 2018, 14(7), 925-932.
[http://dx.doi.org/10.1016/j.jalz.2018.01.006] [PMID: 29602733]
[7]
Shaik, J.B.; Palaka, B.K.; Penumala, M.; Kotapati, K.V.; Devineni, S.R.; Eadlapalli, S.; Darla, M.M.; Ampasala, D.R.; Vadde, R.; Amooru, G.D. Synthesis, pharmacological assessment, molecular modeling and in silico studies of fused tricyclic coumarin derivatives as a new family of multifunctional anti-Alzheimer agents. Eur. J. Med. Chem., 2016, 107, 219-232.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.046] [PMID: 26588065]
[8]
Adalat, B.; Rahim, F.; Taha, M.; Alshamrani, F.J.; Anouar, E.H.; Uddin, N.; Shah, S.A.A.; Ali, Z.; Zakaria, Z.A. Synthesis of benzimidazole–based analogs as anti alzheimer’s disease compounds and their molecular docking studies. Molecules, 2020, 25(20), 4828.
[http://dx.doi.org/10.3390/molecules25204828] [PMID: 33092223]
[9]
Lan, J.S.; Ding, Y.; Liu, Y.; Kang, P.; Hou, J.W.; Zhang, X.Y.; Xie, S.S.; Zhang, T. Design, synthesis and biological evaluation of novel coumarin- N -benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.055] [PMID: 28797883]
[10]
de Souza, L.G.; Rennó, M.N.; Figueroa-Villar, J.D. Coumarins as cholinesterase inhibitors: A review. Chem. Biol. Interact., 2016, 254, 11-23.
[http://dx.doi.org/10.1016/j.cbi.2016.05.001] [PMID: 27174134]
[11]
Jadhav, N.K.; Kale, B.R.; Alam, M.S.; Gaikwad, V.B.; Prasad, V.; Kale, R.R. Synthesis and functionalization of coumarin-pyrazole scaffold: Recent development, challenges, and opportunities. Curr. Org. Synth., 2021, 18(7), 685-710.
[http://dx.doi.org/10.2174/1570179418666210301122322] [PMID: 33645484]
[12]
Agbo, E.N.; Gildenhuys, S.; Choong, Y.S.; Mphahlele, M.J.; More, G.K. Synthesis of furocoumarin–stilbene hybrids as potential multifunctional drugs against multiple biochemical targets associated with Alzheimer’s disease. Bioorg. Chem., 2020, 101, 103997.
[http://dx.doi.org/10.1016/j.bioorg.2020.103997] [PMID: 32554280]
[13]
Hu, Y.; Shen, Y.; Wu, X.; Tu, X.; Wang, G.X. Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. Eur. J. Med. Chem., 2018, 143, 958-969.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.100] [PMID: 29232586]
[14]
Nikpassand, M.; Fekri, L.; Karimian, L.; Rassa, M. Synthesis of biscoumarin derivatives using nanoparticle Fe3O4 as an efficient reusable heterogeneous catalyst in aqueous media and their antimicrobial activity. Curr. Org. Synth., 2015, 12(3), 358-362.
[http://dx.doi.org/10.2174/1570179411666141101001949]
[15]
Vukovic, N.; Sukdolak, S.; Solujic, S.; Niciforovic, N. An efficient synthesis and antioxidant properties of novel imino and amino derivatives of 4-hydroxy coumarins. Arch. Pharm. Res., 2010, 33(1), 5-15.
[http://dx.doi.org/10.1007/s12272-010-2220-z] [PMID: 20191339]
[16]
Witaicenis, A.; Seito, L.N.; da Silveira Chagas, A.; de Almeida, L.D., Jr; Luchini, A.C.; Rodrigues-Orsi, P.; Cestari, S.H.; Di Stasi, L.C. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine, 2014, 21(3), 240-246.
[http://dx.doi.org/10.1016/j.phymed.2013.09.001] [PMID: 24176844]
[17]
Monti, M.; Pinotti, M.; Appendino, G.; Dallocchio, F.; Bellini, T.; Antognoni, F.; Poli, F.; Bernardi, F. Characterization of anti-coagulant properties of prenylated coumarin ferulenol. Biochim. Biophys., 2007, 1770(10), 1437-1440.
[http://dx.doi.org/10.1016/j.bbagen.2007.06.013] [PMID: 17693024]
[18]
Keri, R.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem., 2015, 100, 257-269.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.017] [PMID: 26112067]
[19]
Abdel-Aziem, A.; Abdelhamid, A.O. Synthesis of coumarin analogues clubbed 1,3,4-thiadiazine or thiazole and their anticancer activity. Polycycl. Aromat. Compd., 2021, 1-11.
[20]
Song, Z.; Lu, Q.; Tao, A.; Wu, T. Synthesis and anti-cancer activity of paclitaxel−coumarin conjugate. Curr. Org. Synth., 2021, 18(6), 587-591.
[http://dx.doi.org/10.2174/1570179418666210303113406] [PMID: 33655867]
[21]
Hasan, A.H.; Murugesan, S.; Amran, S.I.; Chander, S.; Alanazi, M.M.; Hadda, T.B.; Shakya, S.; Pratama, M.R.F.; Das, B.; Biswas, S.; Jamalis, J. Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorg. Chem., 2022, 119, 105572.
[http://dx.doi.org/10.1016/j.bioorg.2021.105572] [PMID: 34971946]
[22]
Saeed, A.; Zaib, S.; Ashraf, S.; Iftikhar, J.; Muddassar, M.; Zhang, K.Y.J.; Iqbal, J. Synthesis, cholinesterase inhibition and molecular modelling studies of coumarin linked thiourea derivatives. Bioorg. Chem., 2015, 63, 58-63.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.009] [PMID: 26440714]
[23]
Ji, L.; Lu, D.; Cao, J.; Zheng, L.; Peng, Y.; Zheng, J. Psoralen, a mechanism-based inactivator of CYP2B6. Chem. Biol. Interact., 2015, 240, 346-352.
[http://dx.doi.org/10.1016/j.cbi.2015.08.020] [PMID: 26335194]
[24]
Siva, G.; Sivakumar, S.; Prem Kumar, G.; Vigneswaran, M.; Vinoth, S.; Muthamil Selvan, A.; Parveez Ahamed, A.; Manivannan, K.; Rajesh Kumar, R.; Thajuddin, N.; Senthil Kumar, T.; Jayabalan, N. Optimization of elicitation condition with Jasmonic Acid, characterization and antimicrobial activity of Psoralen from direct regenerated plants of Psoralea corylifolia L. Biocatal. Agric. Biotechnol., 2015, 4(4), 624-631.
[http://dx.doi.org/10.1016/j.bcab.2015.10.012]
[25]
Xin, D.; Wang, H.; Yang, J.; Su, Y.F.; Fan, G.W.; Wang, Y.F.; Zhu, Y.; Gao, X.M. Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity. Phytomedicine, 2010, 17(2), 126-131.
[http://dx.doi.org/10.1016/j.phymed.2009.05.015] [PMID: 19577453]
[26]
Razavi, S.F.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 64, 252-259.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.021] [PMID: 23644208]
[27]
Xie, S.S.; Lan, J.S.; Wang, X.; Wang, Z.M.; Jiang, N.; Li, F.; Wu, J.J.; Wang, J.; Kong, L.Y. Design, synthesis and biological evaluation of novel donepezil–coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(7), 1528-1539.
[http://dx.doi.org/10.1016/j.bmc.2016.02.023] [PMID: 26917219]
[28]
Chen, C.Y.; Sun, J.G.; Liu, F.Y.; Fung, K.P.; Wu, P.; Huang, Z.Z. Synthesis and biological evaluation of glycosylated psoralen derivatives. Tetrahedron, 2012, 68(12), 2598-2606.
[http://dx.doi.org/10.1016/j.tet.2012.01.090]
[29]
El-Gogary, S.; Hashem, N.; Khodeir, M.N. Synthesis and photooxygenation of angular furocoumarins: Isopsedopsoralen and allopsoralen. Res. Chem. Intermed., 2015, 41(3), 1591-1600.
[http://dx.doi.org/10.1007/s11164-013-1295-9]
[30]
Nagorichna, I.V.; Dubovik, I.P.; Garazd, M.M.; Khilya, V.P. Modified coumarins. 10. Synthesis of substituted 2-(7-Oxofuro [3, 2-g] chromen-6-yl) acetic acids. Chem. Nat. Compd., 2003, 39(3), 253-261.
[http://dx.doi.org/10.1023/A:1025466317733]
[31]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[32]
Choe, H.; Nah, K.H.; Lee, S.N.; Lee, H.S.; Lee, H.S.; Jo, S.H.; Leem, C.H.; Jang, Y.J. A novel hypothesis for the binding mode of HERG channel blockers. Biochem. Biophys. Res. Commun., 2006, 344(1), 72-78.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.146] [PMID: 16616004]
[33]
Tran, N.; Van, T.; Nguyen, H.; Le, L. Identification of novel compounds against an R294K substitution of influenza A (H7N9) virus using ensemble based drug virtual screening. Int. J. Med. Sci., 2015, 12(2), 163-176.
[http://dx.doi.org/10.7150/ijms.10826] [PMID: 25589893]
[34]
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A.D. Jr CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem., 2010, 31(4), 671-690. [PMID: 19575467
[35]
Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell, A.D., Jr Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J. Comput. Chem., 2012, 33(31), 2451-2468.
[http://dx.doi.org/10.1002/jcc.23067] [PMID: 22821581]
[36]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[37]
Allen, Michael P.; Dominic, J. Tildesley Computer Simulation of Liquids, 2nd edn (Oxford, 2017; online edn, Oxford Academic, 23 Nov. 2017), https://doi.org/10.1093/oso/9780198803195.001.0001, accessed 30 Apr. 2023.
[http://dx.doi.org/10.1093/oso/9780198803195.001.00017]
[38]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593.
[http://dx.doi.org/10.1063/1.470117]
[39]
Steinbach, P.J.; Brooks, B.R. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem., 1994, 15(7), 667-683.
[http://dx.doi.org/10.1002/jcc.540150702]
[40]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[41]
DeLano, W.L.; Bromberg, S. PyMOL user’s guide; DeLano Scientific LLC, 2004, p. 629.
[42]
Lee, H.K.; Zhang, L.; Smith, M.D.; Walewska, A.; Vellore, N.A.; Baron, R.; McIntosh, J.M.; White, H.S.; Olivera, B.M.; Bulaj, G. A marine analgesic peptide, Contulakin-G, and neurotensin are distinct agonists for neurotensin receptors: uncovering structural determinants of desensitization properties. Front. Pharmacol., 2015, 6, 11.
[http://dx.doi.org/10.3389/fphar.2015.00011] [PMID: 25713532]
[43]
Alamri, A.S.; Alhomrani, M.; Alsanie, W.F.; Alyami, H.; Shakya, S.; Habeeballah, H.; Abdulaziz, O.; Alamri, A.; Alkhatabi, H.A.; Felimban, R.I.; Alhabeeb, A.A.; Refat, M.S.; Gaber, A. Spectroscopic and Molecular Docking Analysis of π-Acceptor Complexes with the Drug Barbital. Appl. Sci., 2022, 12(19), 10130.
[http://dx.doi.org/10.3390/app121910130]
[44]
Marzaro, G.; Guiotto, A.; Borgatti, M.; Finotti, A.; Gambari, R.; Breveglieri, G.; Chilin, A. Psoralen derivatives as inhibitors of NF-κB/DNA interaction: synthesis, molecular modeling, 3D-QSAR, and biological evaluation. J. Med. Chem., 2013, 56(5), 1830-1842.
[http://dx.doi.org/10.1021/jm3009647] [PMID: 23414143]
[45]
Ho, Y.W.; Suen, M.C. Thioxopyrimidine in Heterocyclic Synthesis I: Synthesis of Some Novel 6-(Heteroatom-substituted)-(thio)pyrimidine Derivatives. J. Chem., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/765243]
[46]
Kim, J.; Kwon, J.; Lee, D.; Jo, S.; Park, D.S.; Choi, J.; Park, E.; Hwang, J.Y.; Ko, Y.; Choi, I.; Ju, M.K.; Ahn, J.; Kim, J.; Han, S.J.; Kim, T.H.; Cechetto, J.; Nam, J.; Ahn, S.; Sommer, P.; Liuzzi, M.; No, Z.; Lee, J. Synthesis and biological evaluation of triazolothienopyrimidine derivatives as novel HIV-1 replication inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(1), 153-157.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.134] [PMID: 23206860]
[47]
Soliman, R.; Habib, N.S.; El-tombary, A.A.; El-hawash, S.A.M.; Shaaban, O.G. Synthesis of Tetrahydrobenzothieno[2,3-d]pyrimidine and Tetrahydrobenzothieno[3,2-e]- [1,2,4]triazolo[4,3-c]pyrimidine derivatives as potential antimicrobial agents. Sci. Pharm., 2009, 77(4), 755-774.
[http://dx.doi.org/10.3797/scipharm.0904-17]
[48]
Wang, Q.; Liu, G.; Shao, R.; Huang, R. Synthesis and antivirus activity of 1,3,5-triazine derivatives. Heteroatom Chem., 2003, 14(6), 542-545.
[http://dx.doi.org/10.1002/hc.10189]
[49]
Pavia, D. Introduction to Spectroscopy, 4th ed; Brooks/Cole: Belmont, CA, 2010, p. 655.
[50]
Filali, I.; Bouajila, J.; Znati, M.; Bousejra-El Garah, F.; Ben Jannet, H. Synthesis of new isoxazoline derivatives from harmine and evaluation of their anti-Alzheimer, anti-cancer and anti-inflammatory activities. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 371-376.
[http://dx.doi.org/10.3109/14756366.2014.940932] [PMID: 25068731]
[51]
Singla, S.; Piplani, P. Coumarin derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies. Bioorg. Med. Chem., 2016, 24(19), 4587-4599.
[http://dx.doi.org/10.1016/j.bmc.2016.07.061] [PMID: 27519464]
[52]
Sugimoto, K.; Kuroda-Sowa, T.; Goto, T.; Maekawa, M.; Munakata, M. Syntheses, Structures, and Magnetic Properties of Di-μ3 -Chloride-Bridged Tripalladium Compounds, [Pd 3 (μ3 -Cl) 2 (HqnS) 6]Cl 2 (HqnS = Quinoline–2(1H)–thione) and [Pd 3 (μ3 -Cl) 2 (Et 2 dtc) 2 (PPh 3) 2]•C 6 H 6 (Et 2 dtc =N,N′ –Diethyldithiocarbamate). Bull. Chem. Soc. Jpn., 2000, 73(3), 651-655.
[http://dx.doi.org/10.1246/bcsj.73.651]
[53]
Kufareva, I.; Abagyan, R. Methods of protein structure comparison. Methods Mol. Biol., 2011, 857, 231-257.
[http://dx.doi.org/10.1007/978-1-61779-588-6_10] [PMID: 22323224]
[54]
Alhomrani, M.; Alsanie, W.F.; Alamri, A.S.; Alyami, H.; Habeeballah, H.; Alkhatabi, H.A.; Felimban, R.I.; Haynes, J.M.; Shakya, S.; Raafat, B.M.; Refat, M.S.; Gaber, A. Enhancing the antipsychotic effect of risperidone by increasing its binding affinity to serotonin receptor via picric acid: A molecular dynamics simulation. Pharmaceuticals, 2022, 15(3), 285.
[http://dx.doi.org/10.3390/ph15030285] [PMID: 35337083]
[55]
Hasan, A.H.; Hussen, N.H.; Shakya, S.; Jamalis, J.; Pratama, M.R.F.; Chander, S.; Kharkwal, H.; Murugesan, S. In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Struct. Chem., 2022, 33(5), 1645-1665.
[http://dx.doi.org/10.1007/s11224-022-01996-y]
[56]
Khan, M.D.; Shakya, S.; Thi Vu, H.H.; Habte, L.; Ahn, J.W. Low concentrated phosphorus sorption in aqueous medium on aragonite synthesized by carbonation of seashells: Optimization, kinetics, and mechanism study. J. Environ. Manage., 2021, 280, 111652.
[http://dx.doi.org/10.1016/j.jenvman.2020.111652] [PMID: 33229112]
[57]
Wu, S.; Zhang, Y. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics, 2008, 24(7), 924-931.
[http://dx.doi.org/10.1093/bioinformatics/btn069] [PMID: 18296462]
[58]
Akram, M.; Lal, H.; Shakya, S.; Varshney, R. Kabir-ud-Din, Molecular engineering of complexation between RNA and biodegradable cationic gemini surfactants: Role of the hydrophobic chain length. Mol. Syst. Des. Eng., 2022, 7(5), 487-506.
[http://dx.doi.org/10.1039/D1ME00147G]
[59]
Hasan, A.H.; Shakya, S.; Hussain, F.H.S.; Murugesan, S.; Chander, S.; Pratama, M.R.F.; Jamil, S.; Das, B.; Biswas, S.; Jamalis, J. Design, synthesis, anti-acetylcholinesterase evaluation and molecular modelling studies of novel coumarin-chalcone hybrids. J. Biomol. Struct. Dyn., 2023, •••, 1-13.
[http://dx.doi.org/10.1080/07391102.2022.2162583] [PMID: 36591704]
[60]
Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Mighri, Z.; Mahjoub, A.; Verschaeve, L. Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules, 2012, 17(6), 7284-7293.
[http://dx.doi.org/10.3390/molecules17067284] [PMID: 22695233]
[61]
Sohn, H.Y.; Kwon, C.S.; Son, K.H. Fungicidal effect of prenylated flavonol, papyriflavonol A, isolated from Broussonetia papyrifera (L.) vent. against Candida albicans. J. Microbiol. Biotechnol., 2010, 20(10), 1397-1402.
[http://dx.doi.org/10.4014/jmb.1007.07026] [PMID: 21030824]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy