Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Physicochemical Characterization of Silver Sulfadiazine in Polymeric Wound Dressings

Author(s): Demis Ferreira de Melo, Gabryella Garcia Guedes, Lívia Maria Coelho de Carvalho Moreira, João Augusto Oshiro-Júnior and Bolívar Ponciano Goulart de Lima Damasceno*

Volume 29, Issue 11, 2023

Published on: 07 April, 2023

Page: [865 - 882] Pages: 18

DOI: 10.2174/1381612829666230324122925

Price: $65

Abstract

The insertion of topical antimicrobials in wound treatment represented an important role in patient management. Among these agents, silver sulfadiazine (AgSD), introduced in the therapy of wounds and burns in the 1960s, is considered the gold standard in treatment due to its mechanism of action, in addition to its proven efficacy and safety. The association of AgSD with polymers for the development of curative formulations has been reported. The evaluation of the physical-chemical properties of these systems with the aid of analytical techniques of characterization is essential for the determination of their activities, besides allowing the detection of possible incompatibilities between AgSD and polymers. Thus, this review presents the main techniques of physicochemical characterization used in the evaluation of systems containing AgSD with curative purposes in order to provide parameters to ensure the efficacy and safety of these new therapeutic options. Microscopic, thermoanalytical, and spectroscopic techniques, for example, provide information on system properties such as surface chemical composition, crystallinity, morphology, and thermal stability of curative formulations containing AgSD. These techniques are important in the selection of the most appropriate techniques during the development of a polymeric curative system containing AgSD, in addition to providing information for cost reduction of a possible scale-up and the establishment of methodologies for quality control of these systems to ensure their efficacy and safety.

[1]
World Health Organization (WHO) Global Health Estimates 2020.
[2]
Waqas A, Turk M, Naveed S, et al. Perceived social support among patients with burn injuries: A perspective from the developing world. Burns 2018; 44(1): 168-74.
[http://dx.doi.org/10.1016/j.burns.2017.06.014] [PMID: 28803723]
[3]
Martinengo L, Olsson M, Bajpai R, et al. Prevalence of chronic wounds in the general population: Systematic review and meta-analysis of observational studies. Ann Epidemiol 2019; 29: 8-15.
[http://dx.doi.org/10.1016/j.annepidem.2018.10.005] [PMID: 30497932]
[4]
Jeschke MG, van Baar ME, Choudhry MA, et al. Burn injury. Nat Rev Dis Primers 2020; 6(11): 1-25.
[http://dx.doi.org/10.1038/s41572-020-0145-5]
[5]
Zampar EF, Anami EHT, Kerbauy G, et al. Infectious complications in adult burn patients and antimicrobial resistance pattern of microorganisms isolated. Ann Burns Fire Disasters 2017; 30(4): 281-5.
[PMID: 29983683]
[6]
Lachiewicz AM, Hauck CG, Weber DJ, Cairns BA, van Duin D. Bacterial infections after burn injuries: Impact of multidrug resistance. Clin Infect Dis 2017; 65(12): 2130-6.
[http://dx.doi.org/10.1093/cid/cix682] [PMID: 29194526]
[7]
Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022; 399(10325): 629-55.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[8]
Razavi H, Darvishi MH, Janfaza S. Silver sulfadiazine encapsulated in lipid-based nanocarriers for burn treatment. J Burn Care Res 2018; 39(3): 319-25.
[PMID: 28661974]
[9]
Klasen HJ. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 2000; 26(2): 117-30.
[http://dx.doi.org/10.1016/S0305-4179(99)00108-4] [PMID: 10716354]
[10]
Fox CL Jr, Modak SM. Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother 1974; 5(6): 582-8.
[http://dx.doi.org/10.1128/AAC.5.6.582] [PMID: 15825409]
[11]
Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 2013; 113(7): 4708-54.
[http://dx.doi.org/10.1021/cr300288v] [PMID: 23488929]
[12]
Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine 2010; 6(1): 103-9.
[http://dx.doi.org/10.1016/j.nano.2009.04.006] [PMID: 19447203]
[13]
Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 2011; 162(5): 542-9.
[http://dx.doi.org/10.1016/j.resmic.2011.04.009] [PMID: 21530652]
[14]
Heyneman A, Hoeksema H, Vandekerckhove D, Pirayesh A, Monstrey S. The role of silver sulphadiazine in the conservative treatment of partial thickness burn wounds: A systematic review. Burns 2016; 42(7): 1377-86.
[http://dx.doi.org/10.1016/j.burns.2016.03.029] [PMID: 27126813]
[15]
Sheckter CC, Van Vliet MM, Krishnan NM, Garner WL. Cost-effectiveness comparison between topical silver sulfadiazine and enclosed silver dressing for partial-thickness burn treatment. J Burn Care Res 2014; 35(4): 284-90.
[http://dx.doi.org/10.1097/BCR.0b013e3182a36916] [PMID: 24121806]
[16]
Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: Review of the literature. Burns 2007; 33(2): 139-48.
[http://dx.doi.org/10.1016/j.burns.2006.06.010] [PMID: 17137719]
[17]
Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 2000; 26(2): 131-8.
[http://dx.doi.org/10.1016/S0305-4179(99)00116-3] [PMID: 10716355]
[18]
United States Pharmacopoeia, Silver sulfadiazine cream. United States Pharmacopoeia 35 - National Formulary 30. Rockville: USP-NF 2012; pp. 4708-9.
[19]
De Silva CC, Israni N, Zanwar A, et al. “Smart” polymer enhances the efficacy of topical antimicrobial agents. Burns 2019; 45(6): 1418-29.
[http://dx.doi.org/10.1016/j.burns.2019.04.013] [PMID: 31230802]
[20]
Oramadike CE, Ogunbanwo ST. Antagonistic activity of Thymus vulgaris extracts against Vibrio species isolated from seafoods. J Food Sci Technol 2017; 54(5): 1199-205.
[http://dx.doi.org/10.1007/s13197-017-2543-6] [PMID: 28416870]
[21]
Cazzola M, Ferraris S, Banche G, et al. Innovative coatings based on peppermint essential oil on titanium and steel substrates: Chemical and mechanical protection ability. Materials 2020; 13(3): 516.
[http://dx.doi.org/10.3390/ma13030516] [PMID: 31978976]
[22]
Rizzo V, Lombardo S, Pandino G, et al. Active packaging-releasing system with foeniculum vulgare essential oil for the quality preservation of ready-to-cook (Rtc) globe artichoke slices. Foods 2021; 10(3): 517.
[http://dx.doi.org/10.3390/foods10030517] [PMID: 33801354]
[23]
Mármol I, Sánchez-de-Diego C, Jiménez-Moreno N, Ancín-Azpilicueta C, Rodríguez-Yoldi M. Therapeutic applications of rose hips from different Rosa species. Int J Mol Sci 2017; 18(6): 1137.
[http://dx.doi.org/10.3390/ijms18061137] [PMID: 28587101]
[24]
Lemjallad L, Chabir R, Kandri Rodi Y, El Ghadraoui L, Ouazzani Chahdi F, Errachidi F. Improvement of heliciculture by three medicinal plants belonging to the Lamiaceae family. Sci World J 2019; 2019: 2630537.
[http://dx.doi.org/10.1155/2019/2630537]
[25]
Singh R, Roopmani P, Chauhan M, Basu SM, Deeksha W, Kazem MD. Silver sulfadiazine loaded core-shell airbrushed nanofibers for burn wound healing application. Int J Pharm 2022; 613: 121358.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121358]
[26]
Ding C, Zhou C, Fan Y, Liu Q, Zhang H, Wu Z. Electrospun polylactic acid/sulfadiazine sodium/proteinase nanofibers and their applications in treating frostbite. J Appl Polym Sci 2022; 139(9): 51716.
[http://dx.doi.org/10.1002/app.51716]
[27]
Santos WM, Nóbrega FP, Andrade JC, et al. Pharmaceutical compatibility of dexamethasone with excipients commonly used in solid oral dosage forms. J Therm Anal Calorim 2021; 145: 361-78.
[http://dx.doi.org/10.1007/s10973-020-09753-1]
[28]
Wanderley DMS, Melo DF, Silva LM, et al. Physical-chemical characterization of N-acylhydrazone derivative chitosan films using spectroscopic and thermoanalytical techniques. J Therm Anal Calorim 2019; 138(5): 3789-96.
[http://dx.doi.org/10.1007/s10973-019-08906-1]
[29]
Martins GAG, Murakami FS, Sangoi MS, Todeschini V. Characterization, purity determination and decomposition kinetics of ezetimibe under non-isothermal conditions. Curr Pharm Anal 2018; 15(4): 327-32.
[http://dx.doi.org/10.2174/1573412914666180213131010]
[30]
Barros RM, de Oliveira MS, Costa KMN, et al. Physicochemical characterization of bioactive compounds in nanocarriers. Curr Pharm Des 2020; 26(33): 4163-73.
[http://dx.doi.org/10.2174/1381612826666200310144533] [PMID: 32156229]
[31]
Komesu A, Martins Martinez PF, Lunelli BH, Oliveira J, Wolf MacIel MR, MacIel Filho R. Study of lactic acid thermal behavior using thermoanalytical techniques. J Chem 2017; 2017: 1-7.
[http://dx.doi.org/10.1155/2017/4149592]
[32]
Leyva-Porras C, Cruz-Alcantar P, Espinosa-Sol V, Saavedra-Leos MZ. Application of differential scanning calorimetry (DSC) and modulated differential scanning. Polymers 2019; 12(5): 1-21.
[33]
Patel KK, Surekha DB, Tripathi M, et al. Antibiofilm potential of silver sulfadiazine-loaded nanoparticle formulations: A study on the effect of DNase-I on microbial biofilm and wound healing activity. Mol Pharm 2019; 16(9): 3916-25.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00527] [PMID: 31318574]
[34]
Amiri S, Nalbandi B. Improve solubility and bioavailability of silver sulfadiazine via formation of inclusion complex by cyclodextrin. J Inorg Organomet Polym Mater 2018; 28(5): 1764-74.
[http://dx.doi.org/10.1007/s10904-018-0809-8]
[35]
Oprea S, Oprea V. Comparative evaluation of different methods of inclusion of silver into sulfadiazine-based polyurethane urea composites. Polym Compos 2017; 38(10): 2156-65.
[http://dx.doi.org/10.1002/pc.23793]
[36]
Rojek B, Wesolowski M. Compatibility studies of hydrocortisone with excipients using thermogravimetric analysis supported by multivariate statistical analysis. J Therm Anal Calorim 2017; 127(1): 543-53.
[http://dx.doi.org/10.1007/s10973-016-5441-7]
[37]
Chatterjee K, Hazra A, Dollimore D, Alexander KS. Estimating vapor pressure curves by thermogravimetry: A rapid and convenient method for characterization of pharmaceuticals. Eur J Pharm Biopharm 2002; 54(2): 171-80.
[http://dx.doi.org/10.1016/S0939-6411(02)00079-6] [PMID: 12191689]
[38]
Dai L, Wang LY, Yuan TQ, He J. Study on thermal degradation kinetics of cellulose-graft-poly(l-lactic acid) by thermogravimetric analysis. Polym Degrad Stabil 2014; 99(1): 233-9.
[http://dx.doi.org/10.1016/j.polymdegradstab.2013.10.024]
[39]
Shao W, Liu H, Liu X, et al. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr Polym 2015; 132: 351-8.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.057] [PMID: 26256359]
[40]
Shao W, Liu H, Wu J, et al. Preparation, antibacterial activity and pH-responsive release behavior of silver sulfadiazine loaded bacterial cellulose for wound dressing applications. J Taiwan Inst Chem Eng 2016; 63: 404-10.
[http://dx.doi.org/10.1016/j.jtice.2016.02.019]
[41]
Aguzzi C, Sandri G, Bonferoni C, et al. Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids Surf B Biointerfaces 2014; 113: 152-7.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.043] [PMID: 24077113]
[42]
Alipour R, Khorshidi A, Shojaei AF, Mashayekhi F, Moghaddam MJM. Silver sulfadiazine-loaded PVA/CMC nanofibers for the treatment of wounds caused by excision. Fibers Polym 2019; 20(12): 2461-9.
[http://dx.doi.org/10.1007/s12221-019-9314-0]
[43]
Blaker JJ, Nazhat SN, Boccaccini AR. Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials 2004; 25(7-8): 1319-29.
[http://dx.doi.org/10.1016/j.biomaterials.2003.08.007] [PMID: 14643606]
[44]
Menard KP, Menard N. Dynamic mechanical analysis. In: Meyers RA, Ed. Encyclopedia of Analytical Chemistry. Hoboken: John Wiley & Sons 2017; pp. 1-25.
[http://dx.doi.org/10.1002/9780470027318.a2007.pub3]
[45]
Jacob M, Francis B, Thomas S, Varughese KT. Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym Compos 2006; 27(6): 671-80.
[http://dx.doi.org/10.1002/pc.20250]
[46]
Zepon KM, Vieira LF, Soldi V, Salmoria GV, Kanis LA. Influence of process parameters on microstructure and mechanical properties of starch-cellulose acetate/silver sulfadiazine matrices prepared by melt extrusion. Polym Test 2013; 32(6): 1123-7.
[http://dx.doi.org/10.1016/j.polymertesting.2013.06.012]
[47]
Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv Colloid Interface Sci 2020; 280: 102166.
[http://dx.doi.org/10.1016/j.cis.2020.102166] [PMID: 32387755]
[48]
Venkateshaiah A, Padil VVT, Nagalakshmaiah M, Waclawek S, Černík M, Varma RS. Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers 2020; 12(3): 512.
[http://dx.doi.org/10.3390/polym12030512] [PMID: 32120773]
[49]
Titze B, Genoud C. Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell 2016; 108(11): 307-23.
[http://dx.doi.org/10.1111/boc.201600024] [PMID: 27432264]
[50]
Khan MQ, Kharaghani D. Fabrication of antibacterial electrospun cellulose acetate/silver-sulfadiazine nanofibers composites for wound dressings applications. Polym Test 2018; 2019(74): 39-44.
[51]
Sandri G, Bonferoni MC, D’Autilia F, et al. Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. Eur J Pharm Biopharm 2013; 84(1): 84-90.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.022] [PMID: 23207329]
[52]
El-Feky GS, Sharaf SS, El Shafei A, Hegazy AA. Using chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressing. Carbohydr Polym 2017; 158: 11-9.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.054] [PMID: 28024533]
[53]
Melo CO, Rodrigues MSS, da Silva MVS, et al. Preparation and characterization of spiro-acridine derivative and 2-hydroxypropyl-β-cyclodextrin inclusion complex. J Mol Struct 2020; 1222: 128945.
[http://dx.doi.org/10.1016/j.molstruc.2020.128945]
[54]
Gil J, Natesan S, Li J, et al. A PEGylated fibrin hydrogel-based antimicrobial wound dressing controls infection without impeding wound healing. Int Wound J 2017; 14(6): 1248-57.
[http://dx.doi.org/10.1111/iwj.12791] [PMID: 28771993]
[55]
Mohseni M, Shamloo A, Aghababaie Z, et al. A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation. Int J Pharm 2019; 564: 350-8.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.068] [PMID: 31028800]
[56]
Babaie E, Mirzadeh H, Keshvari H, Solouk A, Doulabi AH. Chitosan and silver sulfadiazine immobilization onto silicone membrane for wound dressing applications. Trends Biomater Artif Organs 2016; 30(1): 32-40.
[57]
Krieg M, Fläschner G, Alsteens D, et al. Atomic force microscopy-based mechanobiology. Nat Rev Phys 2018; 1(1): 41-57.
[http://dx.doi.org/10.1038/s42254-018-0001-7]
[58]
Ito K, Saito A, Fujie T, et al. Sustainable antimicrobial effect of silver sulfadiazine-loaded nanosheets on infection in a mouse model of partial-thickness burn injury. Acta Biomater 2015; 24: 87-95.
[http://dx.doi.org/10.1016/j.actbio.2015.05.035] [PMID: 26079191]
[59]
Wanderley DMS, Melo DF, Silva LM, et al. Biocompatibility and mechanical properties evaluation of chitosan films containing an N-acylhydrazonic derivative. Eur J Pharm Sci 2020; 155: 105547.
[http://dx.doi.org/10.1016/j.ejps.2020.105547] [PMID: 32927070]
[60]
Coceancigh H, Higgins DA, Ito T. Optical microscopic techniques for synthetic polymer characterization. Anal Chem 2019; 91(1): 405-24.
[http://dx.doi.org/10.1021/acs.analchem.8b04694] [PMID: 30350610]
[61]
Luan J, Wu J, Zheng Y, et al. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed Mater 2012; 7(6): 065006.
[http://dx.doi.org/10.1088/1748-6041/7/6/065006] [PMID: 23182757]
[62]
Sharma G, Pandey S, Ghatak S, Watal G, Rai PK. Potential of spectroscopic techniques in the characterization of “Green Nanomaterials” In: Tripathi KD, Ahmad P, Sharma S, Chauhan DK, Dubey NK, Eds. Nanomaterials in Plants, Algae, and Microorganisms. London, an imprint of Elsevier: Academic Press 2018; pp. 59-77.
[http://dx.doi.org/10.1016/b978-0-12-811487-2.00003-7]
[63]
Mohamed MA, Jaafar J, Ismail AF, Othman MHD, Rahman MA. Fourier Transform Infrared (FTIR) spectroscopy. In: Hilal N, Ismail AF, Matsuura T, Oatley-Radcliffe D, Eds. Membrane Characterization. Amsterdam: Elsevier 2017; pp. 3-29.
[http://dx.doi.org/10.1016/B978-0-444-63776-5.00001-2]
[64]
Beć KB, Grabska J, Huck CW. Physical principles of infrared spectroscopy In: Cozzolino D, Ed. Comprehensive Analytical Chemistry. Elsevier, Amsterdam 2022; 98: pp. 1-43.
[http://dx.doi.org/10.1016/bs.coac.2020.08.001]
[65]
Jaleh B, Fakhri P. Infrared and fourier transform infrared spectroscopy for nanofillers and their nanocomposites. In: Thomas S, Rouxel D, Ponnamma D, Eds. Spectroscopy of Polymer Nanocomposites. Oxford: William Andrew, an imprint of Elsevier 2016; pp. 12-129.
[http://dx.doi.org/10.1016/B978-0-323-40183-8.00005-7]
[66]
Dendisová M, Jeništová A. Parchaňská-Kokaislová A, Matějka P, Prokopec V, Švecová M. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal Chim Acta 2018; 1031: 1-14.
[http://dx.doi.org/10.1016/j.aca.2018.05.046] [PMID: 30119727]
[67]
Hissae Yassue-Cordeiro P, Zandonai CH, Pereira Genesi B, et al. Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics 2019; 11(10): 535.
[http://dx.doi.org/10.3390/pharmaceutics11100535] [PMID: 31615120]
[68]
Meng X, Tian F, Yang J, He CN, Xing N, Li F. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Mater Sci Mater Med 2010; 21(5): 1751-9.
[http://dx.doi.org/10.1007/s10856-010-3996-6] [PMID: 20101440]
[69]
Shao W, Wu J, Wang S, Huang M, Liu X, Zhang R. Construction of silver sulfadiazine loaded chitosan composite sponges as potential wound dressings. Carbohydr Polym 2017; 157: 1963-70.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.087] [PMID: 27987918]
[70]
Boateng J, Burgos-Amador R, Okeke O, Pawar H. Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. Int J Biol Macromol 2015; 79: 63-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.048] [PMID: 25936500]
[71]
Karunakaran C, Rajkumar R, Balamurugan M. Principles of nuclear magnetic resonance and pulsed nuclear magnetic resonance. In: Karunakaran C, Ed. Spin Resonance Spectroscopy: Principles and applications. Amsterdam: Elsevier 2018; pp. 1-47.
[http://dx.doi.org/10.1016/B978-0-12-813608-9.00001-0]
[72]
LeBlanc RM, Mesleh MF. A drug discovery toolbox for Nuclear Magnetic Resonance (NMR) characterization of ligands and their targets. Drug Discov Today Technol 2020; 37: 51-60.
[http://dx.doi.org/10.1016/j.ddtec.2020.11.008] [PMID: 34895655]
[73]
Liu S, Zhong C, Wang W, Jia Y, Wang L, Ren L. α-cyclodextrins polyrotaxane loading silver sulfadiazine Polymers 2018; 10(2): 190.
[http://dx.doi.org/10.3390/polym10020190] [PMID: 30966226]
[74]
Evangelista TFS, Andrade GRS, Nascimento KNS, et al. Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release. Carbohydr Polym 2020; 245: 116592.
[http://dx.doi.org/10.1016/j.carbpol.2020.116592] [PMID: 32718656]
[75]
Passos M, Saraiva ML. Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Meas J Int Meas Confed 2019; 135: 896-904.
[76]
Haser A, Haight B, Berghaus A, Machado A, Martin C, Zhang F. Scale-Up and in-line monitoring during continuous melt extrusion of an amorphous solid dispersion. AAPS PharmSciTech 2018; 19(7): 2818-27.
[http://dx.doi.org/10.1208/s12249-018-1162-5] [PMID: 30255473]
[77]
Bakhsheshi-Rad HR, Chen X, Ismail AF, Aziz M, Abdolahi E, Mahmoodiyan F. Improved antibacterial properties of an Mg‐Zn‐Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants. Polym Adv Technol 2019; 30(5): 1333-9.
[http://dx.doi.org/10.1002/pat.4563]
[78]
Rasool A, Ata S, Islam A. Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohydr Polym 2019; 203(203): 423-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.083] [PMID: 30318231]
[79]
McMahon S, Kennedy R, Duffy P, et al. Poly(ethylene glycol)-based hyperbranched polymer from RAFT and its application as a silver-sulfadiazine-loaded antibacterial hydrogel in wound care. ACS Appl Mater Interfaces 2016; 8(40): 26648-56.
[http://dx.doi.org/10.1021/acsami.6b11371] [PMID: 27636330]
[80]
Du S, Chen X, Chen X, et al. Covalent chitosan‐cellulose hydrogels via schiff‐base reaction containing macromolecular microgels for pH‐Sensitive drug delivery and wound dressing. Macromol Chem Phys 2019; 220(23): 1900399.
[http://dx.doi.org/10.1002/macp.201900399]
[81]
Yesilkir-Baydar S, Oztel ON, Cakir-Koc R, Candayan A. Evaluation techniques. In: Razavi M, Thakor A, Eds. Nanobiomaterials Science, Development and Evaluation. Kent: Elsevier Science 2017; pp. 211-32.
[http://dx.doi.org/10.1016/B978-0-08-100963-5.00011-2]
[82]
Holbrook RD, Galyean AA, Gorham JM, Herzing A, Pettibone J. Overview of nanomaterial characterization and metrology. In: Baalousha M, Lead JR, Eds. Frontiers of nanoscience. Elsevier, Amsterdam 2015; 8: pp. 47-87.
[http://dx.doi.org/10.1016/B978-0-08-099948-7.00002-6]
[83]
Nejaddehbashi F, Hashemitabar M, Bayati V, Abbaspour M, Moghimipour E, Orazizadeh M. Application of polycaprolactone, chitosan, and collagen composite as a nanofibrous mat loaded with silver sulfadiazine and growth factors for wound dressing. Artif Organs 2019; 43(4): 413-23.
[http://dx.doi.org/10.1111/aor.13369] [PMID: 30311249]
[84]
Ullah S, Hashmi M, Kharaghani D, et al. Antibacterial properties of in situ and surface functionalized impregnation of silver sulfadiazine in polyacrylonitrile nanofiber mats. Int J Nanomedicine 2019; 14: 2693-703.
[http://dx.doi.org/10.2147/IJN.S197665] [PMID: 31354260]
[85]
Tunma S, Limsopatham K, Chutsirimongkol C, Boonyawan D. Ammonia-acetylene PECVD coating on wound dressing to control delivery of silver sulfadiazine. Walailak J Sci Technol 2016; 15(7): 503-14.
[http://dx.doi.org/10.48048/wjst.2018.2446]
[86]
Welker RW. Chapter 4 - Size Analysis and identification of particles In: Kohli R, Mittal KL, Eds. Developments in Surface Contamination and Cleaning Detection, Characterization, and Analysis of Contaminants. William Andrew, Norwich: an imprint of Elsevier 2012; pp. 179-213.
[http://dx.doi.org/10.1016/B978-1-4377-7883-0.00004-3]
[87]
Baer DR, Thevuthasan S. Characterization of thin films and coatings. In: Martin PM, Ed. Handbook of Deposition Technologies for Films and Coatings. Amsterdam: Elsevier 2010; pp. 749-864.
[http://dx.doi.org/10.1016/B978-0-8155-2031-3.00016-8]
[88]
Engelhard MH, Droubay TC, Du Y. X-ray photoelectron spectroscopy applications. In: Lindon J, Tranter GE, Koppenaal D, Eds. Encyclopedia of Spectroscopy and Spectrometry. Oxford: Academic Press, an imprint of Elsevier 2016; pp. 716-24.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12102-X]
[89]
Ullah S, Hashmi M, Khan MQ, et al. Silver sulfadiazine loaded zein nanofiber mats as a novel wound dressing. RSC Advances 2019; 9(1): 268-77.
[http://dx.doi.org/10.1039/C8RA09082C] [PMID: 35521573]
[90]
Mangindaan D, Chen CT, Wang MJ. Integrating sol-gel with cold plasmas modified porous polycaprolactone membranes for the drug-release of silver-sulfadiazine and ketoprofen. Appl Surf Sci 2012; 262: 114-9.
[http://dx.doi.org/10.1016/j.apsusc.2012.03.003]
[91]
Cao Z, Sun X, Yao J, Sun Y. Silver sulfadiazine-immobilized celluloses as biocompatible polymeric biocides. J Bioact Compat Polym 2013; 28(4): 398-410.
[http://dx.doi.org/10.1177/0883911513490340]
[92]
Sima F, Ristoscu C, Duta L, Gallet O, Anselme K, Mihailescu IN. Laser thin films deposition and characterization for biomedical applications In: Vilar R, Ed. Laser Surface Modification of Biomaterials: Techniques and Applications. Woodhead Publishing, an imprint of Elsevier, Duxford 2016; pp. 77-125.
[http://dx.doi.org/10.1016/B978-0-08-100883-6.00003-4]
[93]
Berbel Manaia E, Paiva Abuçafy M, Chiari-Andréo BG, Lallo Silva B, Oshiro-Júnior JA, Chiavacci L. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 2017; 12: 4991-5011.
[http://dx.doi.org/10.2147/IJN.S133832] [PMID: 28761340]
[94]
Patel JP, Parsania PH. Characterization, testing, and reinforcing materials of biodegradable composites. In: Shimpi NG, Ed. Biodegradable and Biocompatible Polymer Composites: Processing, Properties and Applications. Woodhead Publishing, an imprint of Elsevier, Duxford 2018; pp. 55-79.
[http://dx.doi.org/10.1016/B978-0-08-100970-3.00003-1]
[95]
Krstić M, Ražić S. Analytical approaches to the characterization of solid drug delivery systems with porous adsorbent carriers. Curr Med Chem 2018; 25(33): 3956-72.
[http://dx.doi.org/10.2174/0929867325666180212120908] [PMID: 29436989]
[96]
Wen X, Zheng Y, Wu J, et al. In vitro and in vivo investigation of bacterial cellulose dressing containing uniform silver sulfadiazine nanoparticles for burn wound healing. Prog Nat Sci 2015; 25(3): 197-203.
[http://dx.doi.org/10.1016/j.pnsc.2015.05.004]
[97]
Munhoz DR, Bernardo MP, Malafatti JOD, Moreira FKV, Mattoso LHC. Alginate films functionalized with silver sulfadiazine-loaded [Mg-Al] layered double hydroxide as antimicrobial wound dressing. Int J Biol Macromol 2019; 141: 504-10.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.019] [PMID: 31493450]
[98]
Barbak Z, Karakas H, Esenturk I, Erdal MS, Sarac AS. Silver sulfadiazine loaded poly (ε-Caprolactone)/poly (Ethylene Oxide) composite nanofibers for topical drug delivery. NANO Br Reports Rev 2020; 15(6): 1-17.
[http://dx.doi.org/10.1142/S1793292020500733]
[99]
Gebhart TMJ, Jehnichen D, Koschichow R, et al. Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams. Int J Eng Sci 2019; 145: 103168.
[http://dx.doi.org/10.1016/j.ijengsci.2019.103168]
[100]
Harunsyah YM. Mechanical properties of bioplastics cassava starch film with zinc oxide nanofiller as reinforcement. IOP Conf Ser Mater Sci Eng 2017; 210: 1-8.
[http://dx.doi.org/10.1088/1757-899X/210/1/012015.]
[101]
Mohseni M, Shamloo A, Aghababaei Z, Vossoughi M, Moravvej H. Antimicrobial wound dressing containing silver sulfadiazine with high biocompatibility: In vitro study. Artif Organs 2016; 40(8): 765-73.
[http://dx.doi.org/10.1111/aor.12682] [PMID: 27094090]
[102]
Semnani D, Poursharifi N, Banitaba N, Fakhrali A. Electrospun polyvinylidene pyrolidone/gelatin membrane impregnated with silver sulfadiazine as wound dressing for burn treatment. Bull Mater Sci 2018; 41(3): 72.
[http://dx.doi.org/10.1007/s12034-018-1601-7]
[103]
Fajardo AR, Lopes LC, Caleare AO, et al. Silver sulfadiazine loaded chitosan/chondroitin sulfate films for a potential wound dressing application. Mater Sci Eng C 2013; 33(2): 588-95.
[http://dx.doi.org/10.1016/j.msec.2012.09.025] [PMID: 25427460]
[104]
Aris FAF, Fauzi FNAM, Tong WY, Abdullah SSS. Interaction of silver sulfadiazine wıth bacterial cellulose via ex-situ modification method as an alternative diabetic wound healing. Biocatal Agric Biotechnol 2019; 21: 4-10.
[105]
Assis ACL, Moreira LMCC, Rocha BP, et al. N-acylhydrazone derivative-loaded cellulose acetate films: Thermoanalytical, spectroscopic, mechanical and morphological characterization. Polymers 2021; 13(14): 2345.
[http://dx.doi.org/10.3390/polym13142345] [PMID: 34301102]
[106]
Dunderdale GJ, Davidson SJ, Ryan AJ, Mykhaylyk OO. Flow-induced crystallisation of polymers from aqueous solution. Nat Commun 2020; 11(1): 3372.
[http://dx.doi.org/10.1038/s41467-020-17167-8] [PMID: 32632091]
[107]
Monteiro MLG, Mársico ET, Lázaro CA, Conte-Júnior CA. Thin-layer chromatography applied to foods of animal origin: A tutorial review. J Anal Chem 2016; 71(5): 459-70.
[http://dx.doi.org/10.1134/S1061934816050075]
[108]
Juszczak AM. Zovko-Končić M, Tomczyk M. Recent trends in the application of chromatographic techniques in the analysis of luteolin and its derivatives. Biomolecules 2019; 9(11): 731.
[http://dx.doi.org/10.3390/biom9110731] [PMID: 31726801]
[109]
D’Atri V, Fekete S, Clarke A, Veuthey JL, Guillarme D. Recent advances in chromatography for pharmaceutical analysis. Anal Chem 2019; 91(1): 210-39.
[http://dx.doi.org/10.1021/acs.analchem.8b05026] [PMID: 30406984]
[110]
Li J, Li G, Zhao L, Wang H, Sun C. Simultaneous analysis of ipratropium bromide and its related substances using HPLC. Curr Pharm Anal 2021; 17(2): 293-300.
[http://dx.doi.org/10.2174/1573412917666201001115322]
[111]
Coskun O. Separation techniques: Chromatography. North Clin Istanb 2016; 3(2): 156-60.
[PMID: 28058406]
[112]
Sahu PK, Ramisetti NR, Cecchi T, Swain S, Patro CS, Panda J. An overview of experimental designs in HPLC method development and validation. J Pharm Biomed Anal 2018; 147: 590-611.
[http://dx.doi.org/10.1016/j.jpba.2017.05.006] [PMID: 28579052]
[113]
Sadiq NW, Beauchemin D. Liquid chromatography. In: Beauchemin D, Ed. Sample Introduction Systems in ICPMS and ICPOES. Amsterdam: Elsevier 2020; pp. 213-54.
[http://dx.doi.org/10.1016/B978-0-444-59482-2.00004-X]
[114]
Wong A, Xiang X, Ong P, et al. A review on liquid chromatography-tandem mass spectrometry methods for rapid quantification of oncology drugs. Pharmaceutics 2018; 10(4): 221.
[http://dx.doi.org/10.3390/pharmaceutics10040221] [PMID: 30413076]
[115]
Gao L, Gan H, Meng Z, et al. Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals. Colloids Surf B Biointerfaces 2016; 148: 343-53.
[http://dx.doi.org/10.1016/j.colsurfb.2016.06.016] [PMID: 27619186]
[116]
Heo DN, Yang DH, Lee JB, et al. Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine. J Biomed Nanotechnol 2013; 9(3): 511-5.
[http://dx.doi.org/10.1166/jbn.2013.1509] [PMID: 23621008]
[117]
Dellera E, Bonferoni MC, Sandri G, et al. Development of chitosan oleate ionic micelles loaded with silver sulfadiazine to be associated with platelet lysate for application in wound healing. Eur J Pharm Biopharm 2014; 88(3): 643-50.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.015] [PMID: 25128852]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy