Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

The Co-catalyst Effects of Mn(II), Zn(II), and Cr(III) Chlorides on Acidic Ionic Liquid Catalyzed Synthesis of Value-added Products from Cellulose in Aqueous Ethanol

Author(s): Ananda Sarath Amarasekara*, Bernard Wiredu and Moriam Animashaun

Volume 12, Issue 1, 2023

Published on: 07 April, 2023

Page: [26 - 33] Pages: 8

DOI: 10.2174/2211544712666230322092202

Price: $65

Abstract

Background: Catalytic depolymerization and processing of cellulose can be used to produce value-added renewable feedstock chemicals.

Objective: This study aimed to develop an acidic ionic liquid-metal ion chloride catalyst system-based single-reactor method for processing cellulose into value-added products.

Methods: The effect of metal chlorides as co-catalysts on 1-(1-propylsulfonic)-3-methylimidazolium chloride acidic ionic liquid catalyzed degradation of cellulose in 40% (v/v) aq. ethanol was studied by measuring levulinic acid, ethyl levulinate, and 5-hydroxymethylfurfural yields.

Results: In experiments with Mn(II) and Zn(II) chloride co-catalysts at 160 and 170°C for 12 h, the initial yields of ethyl levulinate and 5-hydroxymethylfurfural improved from ~ 7% to ~ 12-15% due to co-catalytic effects. The highest enhancements in ethyl levulinate yields were observed with CrCl3, where the yield increased from 6 to 27% with the addition of a 10 mol% co-catalyst.

Conclusion: All three transition metal chlorides studied caused improvements in yields of secondary products, ethyl levulinate and 5-hydroxymethylfurfural, in acidic ionic liquid catalyzed degradation of cellulose in aqueous ethanol. The most significant enhancements in ethyl levulinate yields were observed with CrCl3 as a co-catalyst.

Graphical Abstract

[1]
Badgujar, K.C.; Badgujar, V.C.; Bhanage, B.M. A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid. Fuel Process. Technol., 2020, 197, 106213.
[http://dx.doi.org/10.1016/j.fuproc.2019.106213]
[2]
Zhao, Y.; Lu, K.; Xu, H.; Zhu, L.; Wang, S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renew. Sustain. Energy Rev., 2021, 139, 110706.
[http://dx.doi.org/10.1016/j.rser.2021.110706]
[3]
Amarasekara, A.S.; Wiredu, B. Aryl sulfonic acid catalyzed hydrolysis of cellulose in water. Appl. Catal. A Gen., 2012, 417-418, 259-262.
[http://dx.doi.org/10.1016/j.apcata.2011.12.048]
[4]
Mosier, N.S.; Sarikaya, A.; Ladisch, C.M.; Ladisch, M.R. Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol. Prog., 2001, 17(3), 474-480.
[http://dx.doi.org/10.1021/bp010028u] [PMID: 11386868]
[5]
Jin, S.; Gong, J.; Yang, C.; Cheng, Y.; Lu, J.; Yang, Q.; Wang, H. A recyclable and regenerable solid acid for efficient hydrolysis of cellulose to glucose. Biomass Bioenergy, 2020, 138, 105611.
[http://dx.doi.org/10.1016/j.biombioe.2020.105611]
[6]
Wiredu, B.; Amarasekara, A.S. Synthesis of a silica-immobilized Brönsted acidic ionic liquid catalyst and hydrolysis of cellulose in water under mild conditions. Catal. Commun., 2014, 48, 41-44.
[http://dx.doi.org/10.1016/j.catcom.2014.01.021]
[7]
Zhang, Y.; Li, Q.; Su, J.; Lin, Y.; Huang, Z.; Lu, Y.; Sun, G.; Yang, M.; Huang, A.; Hu, H.; Zhu, Y. A green and efficient technology for the degradation of cellulosic materials: Structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt. Bioresour. Technol., 2015, 177(0), 176-181.
[http://dx.doi.org/10.1016/j.biortech.2014.11.085] [PMID: 25490099]
[8]
Liu, L.; Sun, J.; Cai, C.; Wang, S.; Pei, H.; Zhang, J. Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation. Bioresour. Technol., 2009, 100(23), 5865-5871.
[http://dx.doi.org/10.1016/j.biortech.2009.06.048] [PMID: 19589672]
[9]
Peng, L.; Lin, L.; Zhang, J.; Zhuang, J.; Zhang, B.; Gong, Y. Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules, 2010, 15(8), 5258-5272.
[http://dx.doi.org/10.3390/molecules15085258] [PMID: 20714297]
[10]
Kamireddy, S.R.; Li, J.; Tucker, M.; Degenstein, J.; Ji, Y. Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Ind. Eng. Chem. Res., 2013, 52(5), 1775-1782.
[http://dx.doi.org/10.1021/ie3019609]
[11]
Li, J.; Xiu, H.; Zhang, M.; Wang, H.; Ren, Y.; Ji, Y. Enhancement of cellulose acid hydrolysis selectivity using metal ion catalysts. Curr. Org. Chem., 2013, 17(15), 1617-1623.
[http://dx.doi.org/10.2174/13852728113179990071]
[12]
Shrotri, A.; Kobayashi, H.; Fukuoka, A. Cellulose depolymerization over heterogeneous catalysts. Acc. Chem. Res., 2018, 51(3), 761-768.
[http://dx.doi.org/10.1021/acs.accounts.7b00614] [PMID: 29443505]
[13]
Chiappe, C.; Rodriguez Douton, M.J.; Mezzetta, A.; Guazzelli, L.; Pomelli, C.S.; Assanelli, G.; de Angelis, A.R. Exploring and exploiting different catalytic systems for the direct conversion of cellulose into levulinic acid. New J. Chem., 2018, 42(3), 1845-1852.
[http://dx.doi.org/10.1039/C7NJ04707J]
[14]
Liu, C.; Lu, X.; Yu, Z.; Xiong, J.; Bai, H.; Zhang, R. Production of levulinic acid from cellulose and cellulosic biomass in different catalytic systems. Catalysts, 2020, 10(9), 1006.
[http://dx.doi.org/10.3390/catal10091006]
[15]
Kang, S.; Fu, J.; Zhang, G. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev., 2018, 94, 340-362.
[http://dx.doi.org/10.1016/j.rser.2018.06.016]
[16]
Leal Silva, J.F.; Grekin, R.; Mariano, A.P.; Maciel Filho, R. Making levulinic acid and ethyl levulinate economically viable: A worldwide technoeconomic and environmental assessment of possible routes. Energy Technol., 2018, 6(4), 613-639.
[http://dx.doi.org/10.1002/ente.201700594]
[17]
Chaffey, D.R.; Bere, T.; Davies, T.E.; Apperley, D.C.; Taylor, S.H.; Graham, A.E. Conversion of levulinic acid to levulinate ester biofuels by heterogeneous catalysts in the presence of acetals and ketals. Appl. Catal. B, 2021, 293, 120219.
[http://dx.doi.org/10.1016/j.apcatb.2021.120219]
[18]
Li, N.; Zhang, X.L.; Zheng, X.C.; Wang, G.H.; Wang, X.Y.; Zheng, G.P. Efficient synthesis of ethyl levulinate fuel additives from levulinic acid catalyzed by sulfonated pine needle-derived carbon. Catal. Surv. Asia, 2019, 23(3), 171-180.
[http://dx.doi.org/10.1007/s10563-019-09270-8]
[19]
Amarasekara, A.S.; Wiredu, B.; Grady, T.L.; Obregon, R.G.; Margetić, D. Solid acid catalyzed aldol dimerization of levulinic acid for the preparation of C10 renewable fuel and chemical feedstocks. Catal. Commun., 2019, 124, 6-11.
[http://dx.doi.org/10.1016/j.catcom.2019.02.022]
[20]
Amarasekara, A.S.; Lawrence, Y.M. Raney-Ni catalyzed conversion of levulinic acid to 5-methyl-2-pyrrolidone using ammonium formate as the H and N source. Tetrahedron Lett., 2018, 59(19), 1832-1835.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.087]
[21]
Lomba, L.; Giner, B.; Bandrés, I.; Lafuente, C.; Pino, M.R. Physicochemical properties of green solvents derived from biomass. Green Chem., 2011, 13(8), 2062-2070.
[http://dx.doi.org/10.1039/c0gc00853b]
[22]
Allaoua, I.; Goi, B.E.; Obadia, M.M.; Debuigne, A.; Detrembleur, C.; Drockenmuller, E. (Co)Polymerization of vinyl levulinate by cobalt-mediated radical polymerization and functionalization by ketoxime click chemistry. Polym. Chem., 2014, 5(8), 2973-2979.
[http://dx.doi.org/10.1039/C3PY01505J]
[23]
Amarasekara, A.S.; Ha, U.; Okorie, N.C. Renewable polymers: Synthesis and characterization of poly(levulinic acid–pentaerythritol). J. Polym. Sci. A Polym. Chem., 2018, 56(9), 955-958.
[http://dx.doi.org/10.1002/pola.28980]
[24]
Hayes, G.C.; Becer, C.R. Levulinic acid: A sustainable platform chemical for novel polymer architectures. Polym. Chem., 2020, 11(25), 4068-4077.
[http://dx.doi.org/10.1039/D0PY00705F]
[25]
Xuan, W.; Hakkarainen, M.; Odelius, K. Levulinic acid as a versatile building block for plasticizer design. ACS Sustain. Chem. & Eng., 2019, 7(14), 9b02439.
[http://dx.doi.org/10.1021/acssuschemeng.9b02439]
[26]
Kumar, A.; Shende, D.Z.; Wasewar, K.L. Production of levulinic acid: A promising building block material for pharmaceutical and food industry. Mater. Today Proc., 2020, 29, 790-793.
[http://dx.doi.org/10.1016/j.matpr.2020.04.749]
[27]
Christensen, E.; Williams, A.; Paul, S.; Burton, S.; McCormick, R.L. Properties and performance of levulinate esters as diesel blend components. Energy Fuels, 2011, 25(11), 5422-5428.
[http://dx.doi.org/10.1021/ef201229j]
[28]
Christensen, E.; Yanowitz, J.; Ratcliff, M.; McCormick, R.L. Renewable oxygenate blending effects on gasoline properties. Energy Fuels, 2011, 25(10), 4723-4733.
[http://dx.doi.org/10.1021/ef2010089]
[29]
Amarasekara, A.S. Handbook of cellulosic ethanol; John Wiley & Sons: NewYork, 2013.
[http://dx.doi.org/10.1002/9781118878750]
[30]
Ghosh, M.K.; Howard, M.S.; Zhang, Y.; Djebbi, K.; Capriolo, G.; Farooq, A.; Curran, H.J.; Dooley, S. The combustion kinetics of the lignocellulosic biofuel, ethyl levulinate. Combust. Flame, 2018, 193, 157-169.
[http://dx.doi.org/10.1016/j.combustflame.2018.02.028]
[31]
Amarasekara, A.S.; Owereh, O.S. Hydrolysis and decomposition of cellulose in bron̈sted acidic ionic liquids under mild conditions. Ind. Eng. Chem. Res., 2009, 48(22), 10152-10155.
[http://dx.doi.org/10.1021/ie901047u]
[32]
Amarasekara, A.S.; Wiredu, B. Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride, and p-toluenesulfonic acid at moderate temperatures and pressures. Ind. Eng. Chem. Res., 2011, 50(21), 12276-12280.
[http://dx.doi.org/10.1021/ie200938h]
[33]
Amarasekara, A.S.; Shanbhag, P. Degradation of untreated switchgrass biomass into reducing sugars in 1-(Alkylsulfonic)-3-Methylimidazolium brönsted acidic ionic liquid medium under mild conditions. BioEnergy Res., 2013, 6(2), 719-724.
[http://dx.doi.org/10.1007/s12155-012-9291-2]
[34]
Amarasekara, A.S.; Wiredu, B. Acidic ionic liquid catalyzed onepot conversion of cellulose to ethyl levulinate and levulinic acid in ethanol-water solvent system. BioEnergy Res., 2014, 7(4), 1237-1243.
[http://dx.doi.org/10.1007/s12155-014-9459-z]
[35]
Wiredu, B.; Dominguez, J.N.; Amarasekara, A.S. The co-catalyst effect of zeolites on acidic ionic liquid catalyzed one-pot conversion of cellulose to ethyl levulinate and levulinic acid in aqueous ethanol. Curr. Catal., 2015, 4, 143-151.
[http://dx.doi.org/10.2174/2211544704666150727215943]
[36]
Gui, J.; Cong, X.; Liu, D.; Zhang, X.; Hu, Z.; Sun, Z. Novel Brønsted acidic ionic liquid as efficient and reusable catalyst system for esterification. Catal. Commun., 2004, 5(9), 473-477.
[http://dx.doi.org/10.1016/j.catcom.2004.06.004]
[37]
Yang, Q.; Wei, Z.; Xing, H.; Ren, Q. Brönsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catal. Commun., 2008, 9(6), 1307-1311.
[http://dx.doi.org/10.1016/j.catcom.2007.11.023]
[38]
Wiredu, B.; Amarasekara, A.S. 1-(1-Propylsulfonic)-3-methylimidazolium chloride acidic ionic liquid catalyzed hydrolysis of cellulose in water: Effect of metal ion cocatalysts. Catal. Commun., 2015, 70, 82-85.
[http://dx.doi.org/10.1016/j.catcom.2015.08.004]
[39]
Wiredu, B.; Amarasekara, A.S. The effect of metal ions as co-catalysts on acidic ionic liquid catalyzed single-step saccharification of corn stover in water. Bioresour. Technol., 2015, 189, 405-408.
[http://dx.doi.org/10.1016/j.biortech.2015.04.030] [PMID: 25911191]
[40]
Amarasekara, A.S.; Wiredu, B. The effect of Manganese (II) chloride as a co-catalyst on cellobiose hydrolysis in dilute aqueous sulfuric acid and acidic ionic liquid mediums. Catal. Commun., 2016, 81, 41-44.
[http://dx.doi.org/10.1016/j.catcom.2016.04.005]
[41]
Meier, S. Mechanism and malleability of glucose dehydration to HMF: Entry points and water-induced diversions. Catal. Sci. Technol., 2020, 10(6), 1724-1730.
[http://dx.doi.org/10.1039/C9CY02567G]
[42]
Qian, X. Mechanisms and energetics for acid catalyzed β-Dglucose conversion to 5-hydroxymethylfurfurl. J. Phys. Chem. A, 2011, 115(42), 11740-11748.
[http://dx.doi.org/10.1021/jp2041982] [PMID: 21916465]
[43]
Jia, S.; Liu, K.; Xu, Z.; Yan, P.; Xu, W.; Liu, X.; Zhang, Z.C. Reaction media dominated product selectivity in the isomerization of glucose by chromium trichloride: From aqueous to non-aqueous systems. Catal. Today, 2014, 234, 83-90.
[http://dx.doi.org/10.1016/j.cattod.2014.02.038]
[44]
Otomo, R.; Yokoi, T.; Kondo, J.N.; Tatsumi, T. Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural. Appl. Catal. A Gen., 2014, 470(0), 318-326.
[http://dx.doi.org/10.1016/j.apcata.2013.11.012]
[45]
Qi, X.; Watanabe, M.; Aida, T.M.; Smith, R.L., Jr Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal. Commun., 2008, 9(13), 2244-2249.
[http://dx.doi.org/10.1016/j.catcom.2008.04.025]
[46]
Bali, S.; Tofanelli, M.A.; Ernst, R.D.; Eyring, E.M. Chromium(III) catalysts in ionic liquids for the conversion of glucose to 5-(hydroxymethyl)furfural (HMF): Insight into metal catalyst:Ionic liquid mediated conversion of cellulosic biomass to biofuels and chemicals. Biomass Bioenergy, 2012, 42, 224-227.
[http://dx.doi.org/10.1016/j.biombioe.2012.03.016]
[47]
Wang, S.; Du, Y.; Zhang, W.; Cheng, X.; Wang, J. Catalytic conversion of cellulose into 5-hydroxymethylfurfural over chromium trichloride in ionic liquid. Korean J. Chem. Eng., 2014, 31(10), 1786-1791.
[http://dx.doi.org/10.1007/s11814-014-0138-8]
[48]
Stohs, S.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 1995, 18(2), 321-336.
[http://dx.doi.org/10.1016/0891-5849(94)00159-H] [PMID: 7744317]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy