Abstract
Background: Catalytic depolymerization and processing of cellulose can be used to produce value-added renewable feedstock chemicals.
Objective: This study aimed to develop an acidic ionic liquid-metal ion chloride catalyst system-based single-reactor method for processing cellulose into value-added products.
Methods: The effect of metal chlorides as co-catalysts on 1-(1-propylsulfonic)-3-methylimidazolium chloride acidic ionic liquid catalyzed degradation of cellulose in 40% (v/v) aq. ethanol was studied by measuring levulinic acid, ethyl levulinate, and 5-hydroxymethylfurfural yields.
Results: In experiments with Mn(II) and Zn(II) chloride co-catalysts at 160 and 170°C for 12 h, the initial yields of ethyl levulinate and 5-hydroxymethylfurfural improved from ~ 7% to ~ 12-15% due to co-catalytic effects. The highest enhancements in ethyl levulinate yields were observed with CrCl3, where the yield increased from 6 to 27% with the addition of a 10 mol% co-catalyst.
Conclusion: All three transition metal chlorides studied caused improvements in yields of secondary products, ethyl levulinate and 5-hydroxymethylfurfural, in acidic ionic liquid catalyzed degradation of cellulose in aqueous ethanol. The most significant enhancements in ethyl levulinate yields were observed with CrCl3 as a co-catalyst.
Graphical Abstract
[http://dx.doi.org/10.1016/j.fuproc.2019.106213]
[http://dx.doi.org/10.1016/j.rser.2021.110706]
[http://dx.doi.org/10.1016/j.apcata.2011.12.048]
[http://dx.doi.org/10.1021/bp010028u] [PMID: 11386868]
[http://dx.doi.org/10.1016/j.biombioe.2020.105611]
[http://dx.doi.org/10.1016/j.catcom.2014.01.021]
[http://dx.doi.org/10.1016/j.biortech.2014.11.085] [PMID: 25490099]
[http://dx.doi.org/10.1016/j.biortech.2009.06.048] [PMID: 19589672]
[http://dx.doi.org/10.3390/molecules15085258] [PMID: 20714297]
[http://dx.doi.org/10.1021/ie3019609]
[http://dx.doi.org/10.2174/13852728113179990071]
[http://dx.doi.org/10.1021/acs.accounts.7b00614] [PMID: 29443505]
[http://dx.doi.org/10.1039/C7NJ04707J]
[http://dx.doi.org/10.3390/catal10091006]
[http://dx.doi.org/10.1016/j.rser.2018.06.016]
[http://dx.doi.org/10.1002/ente.201700594]
[http://dx.doi.org/10.1016/j.apcatb.2021.120219]
[http://dx.doi.org/10.1007/s10563-019-09270-8]
[http://dx.doi.org/10.1016/j.catcom.2019.02.022]
[http://dx.doi.org/10.1016/j.tetlet.2018.03.087]
[http://dx.doi.org/10.1039/c0gc00853b]
[http://dx.doi.org/10.1039/C3PY01505J]
[http://dx.doi.org/10.1002/pola.28980]
[http://dx.doi.org/10.1039/D0PY00705F]
[http://dx.doi.org/10.1021/acssuschemeng.9b02439]
[http://dx.doi.org/10.1016/j.matpr.2020.04.749]
[http://dx.doi.org/10.1021/ef201229j]
[http://dx.doi.org/10.1021/ef2010089]
[http://dx.doi.org/10.1002/9781118878750]
[http://dx.doi.org/10.1016/j.combustflame.2018.02.028]
[http://dx.doi.org/10.1021/ie901047u]
[http://dx.doi.org/10.1021/ie200938h]
[http://dx.doi.org/10.1007/s12155-012-9291-2]
[http://dx.doi.org/10.1007/s12155-014-9459-z]
[http://dx.doi.org/10.2174/2211544704666150727215943]
[http://dx.doi.org/10.1016/j.catcom.2004.06.004]
[http://dx.doi.org/10.1016/j.catcom.2007.11.023]
[http://dx.doi.org/10.1016/j.catcom.2015.08.004]
[http://dx.doi.org/10.1016/j.biortech.2015.04.030] [PMID: 25911191]
[http://dx.doi.org/10.1016/j.catcom.2016.04.005]
[http://dx.doi.org/10.1039/C9CY02567G]
[http://dx.doi.org/10.1021/jp2041982] [PMID: 21916465]
[http://dx.doi.org/10.1016/j.cattod.2014.02.038]
[http://dx.doi.org/10.1016/j.apcata.2013.11.012]
[http://dx.doi.org/10.1016/j.catcom.2008.04.025]
[http://dx.doi.org/10.1016/j.biombioe.2012.03.016]
[http://dx.doi.org/10.1007/s11814-014-0138-8]
[http://dx.doi.org/10.1016/0891-5849(94)00159-H] [PMID: 7744317]