Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Genotoxicity and Anticancer Effects of the Aminothiophene Derivatives SB-44, SB- 83, and SB-200 in Cancer Cells

Author(s): Eduardo Davi Lima da Silva, Flaviana Alves dos Santos, Júlia Teixeira de Oliveira, Fabio Vieira dos Santos, Francisco Jaime Bezerra Mendonça Junior, Maria do Carmo Alves de Lima, Maira Galdino da Rocha Pitta, Moacyr Barreto de Jesus de Melo Rego and Michelly Cristiny Pereira*

Volume 23, Issue 12, 2023

Published on: 18 April, 2023

Page: [1447 - 1456] Pages: 10

DOI: 10.2174/1871520623666230321123950

Price: $65

Abstract

Introduction: Thiophene derivatives have been widely studied as promising options for the treatment of solid tumors. Previous studies have shown that thiophene derivatives have antileishmanial activity and cytotoxic activity against breast, colon, and ovarian cancer cells.

Methods: In our study, we evaluated the anticancer activities of three aminothiophene derivatives: SB-44, SB-83, and SB-200, in prostate and cervical adenocarcinoma cells. Several in vitro methods were performed, including cytotoxicity, clonogenic migration, mutagenic, and cleaved Poly (ADP-ribose) polymerase (PARP) assays and annexin V staining.

Results: Significant cytotoxicity was observed in cell lines with IC50 values less than 35 μM (15.38-34.04 μM). All aminothiophene derivatives significantly reduced clone formation but had no effect on cell motility. SB-83 and SB-44 induced a significant increase in the percentage of cells in the sub-G1 phase, while SB-200 derivatives significantly decreased the percentage of S/G2/M as well as induced apoptosis, with an increase of cleaved PARP. SBs compounds also showed significant mutagenic potential. Beyond that, in silico analyses revealed that all three thiophene derivatives fulfilled the criteria for oral druggability, which underscores the potential of using them in anticancer therapies.

Conclusion: Our findings show that the thiophene nucleus may be used to treat solid tumors, including prostate cancer and cervical adenocarcinoma.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Senapati, S.; Kumar, M.A.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Nature., 2018, 3(7), 01-19.
[http://dx.doi.org/10.1038/s41392-017-0004-3]
[3]
Cagan, R.; Meyer, P. Rethinking cancer: Current challenges and opportunities in cancer research. Dis. Model. Mech., 2017, 10(4), 349-352.
[http://dx.doi.org/10.1242/dmm.030007]
[4]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer creatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[5]
Swift, L.H.; Golsteyn, R.M. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int. J. Mol. Sci., 2014, 15(3), 3403-3431.
[http://dx.doi.org/10.3390/ijms15033403]
[6]
Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2021, 23(1), 74-88.
[http://dx.doi.org/10.1038/s41580-021-00404-3] [PMID: 34508254]
[7]
Abedinifar, F.; Babazadeh, R.E.; Biglar, M.; Larijani, B.; Hamedifar, H.; Ansari, S.; Mahdavi, M. Recent strategies in the synthesis of thiophene derivatives: Highlights from the 2012-2020 literature. Mol. Divers., 2021, 25(4), 2571-2604.
[http://dx.doi.org/10.1007/s11030-020-10128-9] [PMID: 32734589]
[8]
El-Sayed, N.N.E.; Abdelaziz, M.A.; Wardakhan, W.W.; Mohareb, R.M. The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno[2,3-d]pyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities. Steroids, 2016, 107, 98-111.
[http://dx.doi.org/10.1016/j.steroids.2015.12.023] [PMID: 26772772]
[9]
Rodrigues, K.A.F.; Dias, C.N.S.; Néris, P.L.N.; Rocha, J.C.; Scotti, M.T.; Scotti, L.; Mascarenhas, S.R.; Veras, R.C.; Medeiros, I.A.; Keesen, T.S.L.; Oliveira, T.B.; Lima, M.C.A.; Balliano, T.L.; Aquino, T.M.; Moura, R.O.; Mendonça Junior, F.J.B.; Oliveira, M.R. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro. Eur. J. Med. Chem., 2015, 106, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.011] [PMID: 26513640]
[10]
Bregoli, L.; Movia, D.; Gavigan-Imedio, J.D.; Lysaght, J.; Reynolds, J.; Prina-Mello, A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine, 2016, 12(1), 81-103.
[http://dx.doi.org/10.1016/j.nano.2015.08.006] [PMID: 26370707]
[11]
Mabkhot, Y.N.; Alatibi, F.; El-Sayed, N. Molecules antimicrobial activity of some novel armed thiophene derivatives and Petra/Osiris/Molinspiration (POM) analyses. Molecules., 2016, 21(2), 01-16.
[http://dx.doi.org/10.3390/molecules21020222] [PMID: 26901173]
[12]
Mohareb, R.M.; Megally, A.N.Y.; Abdo, M. Synthesis and cytotoxic evaluation of pyran, dihydropyridine and thiophene derivatives of 3-Acetylcoumarin. Chem. Pharm. Bull., 2015, 63(9), 678-687.
[http://dx.doi.org/10.1248/cpb.c15-00115] [PMID: 26329861]
[13]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K. Synthesis and biological evaluation of 2-(alkoxycarbonyl)-3-anilinobenzo[b]thiophenes and thieno[2,3-b]pyridines as ew potent anticancer agents NIH public access. J. Med. Chem., 2013, 56(6), 2606-2618.
[http://dx.doi.org/10.1021/jm400043d] [PMID: 23445496]
[14]
Ghorab, M.M.; Bashandy, M.S.; Alsaid, M.S. Novel thiophene derivatives with sulfonamide, isoxazole, benzothiazole, quinoline and anthracene moieties as potential anticancer agents. Acta Pharm., 2014, 64(4), 419-431.
[http://dx.doi.org/10.2478/acph-2014-0035] [PMID: 25531783]
[15]
Dos Santos, F.A.; Pereira, M.C.; de Oliveira, T.B.; Mendonça Junior, F.J.B.; de Lima, M.C.A.; Pitta, M.G.R.; Pitta, I.R.; de Melo Rêgo, M.J.B.; da Rocha Pitta, M.G. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs, 2018, 29(2), 157-166.
[http://dx.doi.org/10.1097/CAD.0000000000000581] [PMID: 29256900]
[16]
Daina, A; Michielin, O; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep., 2017, Mar 3. 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516] [PMCID: 5335600]
[17]
Valster, A.; Tran, N.L.; Nakada, M.; Berens, M.E.; Chan, A.Y.; Symons, M. Cell migration and invasion assays. Methods, 2005, 37(2), 208-215.
[http://dx.doi.org/10.1016/j.ymeth.2005.08.001] [PMID: 16288884]
[18]
Fenech, M. Cytokinesis-block micronucleus cytome assay. Nature, 2016, 02(5), 1084-1104.
[19]
de Oliveira, J.T.; Barbosa, M.C.S.; de Camargos, L.F.; da Silva, I.V.G.; Varotti, F.P.; da Silva, L.M.; Moreira, L.M.; Lyon, J.P.; dos Santos, V.J.S.V.; dos Santos, F.V. Digoxin reduces the mutagenic effects of Mitomycin C in human and rodent cell lines. Cytotechnology, 2017, 69(4), 699-710.
[http://dx.doi.org/10.1007/s10616-017-0078-3] [PMID: 28321777]
[20]
Barbosa, M.C.S.; de Souza, B.C.; de Oliveira, J.T.; Moreira, N.C.S.; de Miranda, M.N.R.; Alves, G.G.K.; Caldeira, C.A.; Alves e Costa, M.L.; Martins, G.D.S.; Guimarães, L.; Nascimento, C.S., Jr; de Pilla Varotti, F.; Ribeiro, V.G.H.; Santos, F.V. Synthesis and evaluation of the mutagenicity of 3-alkylpyridine marine alkaloid analogues with anticancer potential. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2018, 825, 31-39.
[http://dx.doi.org/10.1016/j.mrgentox.2017.11.006] [PMID: 29307373]
[21]
Titenko-Holland, N.; Windham, G.; Kolachana, P.; Reinisch, F.; Parvatham, S.; Osorio, A.M.; Smith, M.T. Genotoxicity of malathion in human lymphocytes assessed using the micronucleus assay in vitro and in vivo: A study of malathion-exposed workers. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1997, 388(1), 85-95.
[http://dx.doi.org/10.1016/S1383-5718(96)00140-4] [PMID: 9025795]
[22]
Eastmond, D.A.; Tucker, J.D. Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an antikinetochore antibody. Environ. Mol. Mutagen., 1989, 13(1), 34-43.
[http://dx.doi.org/10.1002/em.2850130104] [PMID: 2783409]
[23]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[24]
Tao, Y.X.; Yuan, Z.H.; Xie, J. G protein-coupled receptors as regulators of energy homeostasis. Prog. Mol. Biol. Transl. Sci., 2013, 114, 1-43.
[http://dx.doi.org/10.1016/B978-0-12-386933-3.00001-7] [PMID: 23317781]
[25]
Wang, W.; Chen, Z.X.; Guo, D.Y.; Tao, Y.X. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors. Pharmacol. Ther., 2018, 191, 135-147.
[http://dx.doi.org/10.1016/j.pharmthera.2018.06.005] [PMID: 29909235]
[26]
Mudududdla, R.; Guru, S.K.; Wani, A.; Sharma, S.; Joshi, P.; Vishwakarma, R.A.; Kumar, A.; Bhushan, S.; Bharate, S.B. 3-(Benzo[d][1,3]dioxol-5-ylamino)-N-(4-fluorophenyl)thiophene-2-carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P-glycoprotein efflux pump activity. Org. Biomol. Chem., 2015, 13(14), 4296-4309.
[http://dx.doi.org/10.1039/C5OB00233H] [PMID: 25758415]
[27]
Gill, R.K.; Kaur, R.; Kumar, V.; Gupta, V.; Singh, G.; Bariwal, J. Design and microwave assisted synthesis of novel 2-phenyl/2-phenylethynyl-3-aroyl thiophenes as potent antiproliferative agents. MedChemComm, 2016, 7(10), 1966-1972.
[http://dx.doi.org/10.1039/C6MD00256K]
[28]
Romagnoli, R.; Baraldi, P.G.; Lopez-Cara, C.; Salvador, M.K.; Preti, D.; Tabrizi, M.A.; Balzarini, J.; Nussbaumer, P.; Bassetto, M.; Brancale, A.; Fu, X.H.; Yang-Gao; Li, J.; Zhang, S.Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents. Bioorg. Med. Chem., 2014, 22(18), 5097-5109.
[http://dx.doi.org/10.1016/j.bmc.2013.12.030] [PMID: 24398384]
[29]
Liao, X.; Huang, J.; Lin, W.; Long, Z.; Xie, Y.; Ma, W. APTM, a thiophene heterocyclic compound, inhibits human colon cancer HCT116 cell proliferation through p53-dependent induction of apoptosis. DNA Cell Biol., 2018, 37(2), 70-77.
[http://dx.doi.org/10.1089/dna.2017.3962] [PMID: 29215922]
[30]
Curtin, N.J.; Szabo, C. Poly(ADP-ribose) polymerase inhibition: Past, present and future. Nat. Rev. Drug Discov., 2020, 19(10), 711-736.
[http://dx.doi.org/10.1038/s41573-020-0076-6] [PMID: 32884152]
[31]
Hwang, J; Qiu, X; Borgelt, L; Haacke, N; Kanis, L; Petroulia, S Synthesis and evaluation of RNase L-binding 2-aminothiophenes as anticancer agents. Bioorg. Med. Chem., 2022, 58, 01-15.
[http://dx.doi.org/10.1016/j.bmc.2022.116653] [PMID: 35152173]
[32]
Romagnoli, R; Preti, D; Hamel, E Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzo[b]thiophene derivatives as potent apoptosis-inducing agents. Bioorg. Chem., 2021, 112, 01-15.
[http://dx.doi.org/10.1016/j.bioorg.2021.104919] [PMID: 33957538]
[33]
Amawi, H.; Hussein, N.; Boddu, S.H.S.; Karthikeyan, C.; Williams, F.E.; Ashby, C.R., Jr; Raman, D.; Trivedi, P.; Tiwari, A.K. Novel thienopyrimidine derivative, RP-010, inducesβ-catenin fragmentation and is Efficacious against prostate cancer cells. Cancers, 2019, 11(5), 711-729.
[http://dx.doi.org/10.3390/cancers11050711] [PMID: 31126091]
[34]
Schmitt, A.C.; Ravazzolo, A.P.; von Poser, G.L. Investigation of some Hypericum species native to Southern of Brazil for antiviral activity. J. Ethnopharmacol., 2001, 77(2-3), 239-245.
[http://dx.doi.org/10.1016/S0378-8741(01)00314-2] [PMID: 11535370]
[35]
Brambilla, G.; Mattioli, F.; Robbiano, L.; Martelli, A. Genotoxicity and carcinogenicity studies of bronchodilators and antiasthma drugs. Basic Clin. Pharmacol. Toxicol., 2013, 112(5), 302-313.
[http://dx.doi.org/10.1111/bcpt.12054] [PMID: 23374861]
[36]
Nath, J.; Krishna, G.; Nath, J. Safety screening of drugs in cancer therapy. Acta Haematol., 1998, 99(3), 138-147.
[http://dx.doi.org/10.1159/000040828] [PMID: 9587395]
[37]
He, L.; Jurs, P.C.; Custer, L.L.; Durham, S.K.; Pearl, G.M. Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers. Chem. Res. Toxicol., 2003, 16(12), 1567-1580.
[http://dx.doi.org/10.1021/tx030032a] [PMID: 14680371]
[38]
Snyder, R.D. Possible structural and functional determinants contributing to the clastogenicity of pharmaceuticals. Environ. Mol. Mutagen., 2010, 51(8-9), 800-814.
[http://dx.doi.org/10.1002/em.20626] [PMID: 20872827]
[39]
Czajkowski, D.; Szmyd, R.; Gee, H.E. Impact of DNA damage response defects in cancer cells on response to immunotherapy and radiotherapy. J. Med. Imaging Radiat. Oncol., 2022, 66(4), 546-559.
[http://dx.doi.org/10.1111/1754-9485.13413] [PMID: 35460184]
[40]
Shah, R; Verma, PK Therapeutic importance of synthetic thiophene. Chem. Cent. J., 2018, 12(1), 01-22.
[http://dx.doi.org/10.1186/s13065-018-0511-5]
[41]
Bolzán, A.D.; Bianchi, M.S. Genotoxicity of Streptozotocin. Mutat. Res. Rev. Mutat. Res., 2002, 512(2-3), 121-134.
[http://dx.doi.org/10.1016/S1383-5742(02)00044-3] [PMID: 12464347]
[42]
Arbillaga, L.; Azqueta, A.; van Delft, J.H.M.; López de Cerain, A. In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A. Toxicol. Appl. Pharmacol., 2007, 220(2), 216-224.
[http://dx.doi.org/10.1016/j.taap.2007.01.008] [PMID: 17316727]
[43]
Kaur, B.; Singh, G.; Sharma, V.; Singh, I. Sulphur containing heterocyclic compounds as anticancer agents. Anticancer. Agents Med. Chem., 2022, 23(8), 869-881. Epub ahead of print.Epub ahead of print.
[http://dx.doi.org/10.2174/1871520623666221221143918] [PMID: 36545721]
[44]
Mohareb, R.M.; Elmetwally, A.M.; Mohamed, A.A. Multi-component reactions of cyclohexan-1,3-dione: Synthesis of fused pyran, pyridine, thiophene and pyrazole derivatives with c-Met, Anti-proliferative activities. Anticancer. Agents Med. Chem., 2021, 21(17), 2443-2463.
[http://dx.doi.org/10.2174/1871520621666210112115128] [PMID: 33438568]
[45]
Wardakhan, W.W.; Elmetwally, A.M.; Mohamed, A.A.; Mohareb, R.M. The uses of dimedone for the synthesis of thiophene, thiazole and annulated derivatives with antitumor, pim-1 kinase inhibitions, pains evaluations and molecular docking. Anticancer. Agents Med. Chem., 2021, 21(16), 2258-2277.
[http://dx.doi.org/10.2174/1871520621666210119092325] [PMID: 33463476]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy