Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Neuroprotective Cognitive Effects of Nose-to-brain Delivered Linagliptin Loaded Polymeric Nanosuspension in Animal Model

Author(s): Deepika Joshi*, Bhavna Kumar, Manmohan Singhal, Samir Bhargava and Kaul Ankur

Volume 21, Issue 1, 2024

Published on: 18 April, 2023

Page: [152 - 165] Pages: 14

DOI: 10.2174/1570180820666230321121939

Price: $65

Abstract

Objective: Insulin resistance is a common link between diabetes mellitus (DM) and dementia. The current work emphasizes the effect of linagliptin on dementia with its neuroprotective effects, which occur directly at the neuronal level, as GLP-1 receptors are exclusively expressed in neurons.

Methods: The objective of the study was to formulate linagliptin-loaded polymeric nanosuspension (LS) by nanoprecipitation method and further study their pharmaceutical, pharmacodynamics, scintigraphic, and neuroprotective effects following nose-to-brain delivery in the rat model of dementia.

Results: Developed LS were spherical with z-average (250.7 nm), charge (-16.3 mV), % entrapment efficiency (95.8 ± 1.45%), and % drug loading (35.78 ± 0.19%). In vitro dissolution rate (88.56 ± 1.24%) and ex vivo permeation (81.59 ± 1.06%) of LS showed a better-sustained release profile than pure linagliptin. The spatial learning/memory in the treated group of Sprague-Dawley rats were significantly improved compared with those in the control group.

Conclusion: Histopathological study of LS produced no toxicity or structural damage to the nasal mucosa. Optimum pharmaceutical characterization results improved pharmacodynamic studies/ histopathological data, and gamma-scintigraphic images proved that polymeric nanosuspensions stand out as wellappreciated approaches to deliver linagliptin more efficiently to the brain via intranasal route, thereby enhancing the neuroprotective efficacy in dementia.

Graphical Abstract

[1]
Husband, A.; Worsley, A. Different types of dementia. Pharm. J., 2006, 277, 579-582.
[2]
Gale, S.A.; Acar, D.; Daffner, K.R. Dementia. Am. J. Med., 2018, 131(10), 1161-1169.
[http://dx.doi.org/10.1016/j.amjmed.2018.01.022] [PMID: 29425707]
[3]
Shaji, K.S.; Jithu, V.P.; Jyothi, K.S. Indian research on aging and dementia. Indian J. Psychiatry, 2010, 52(7), 148.
[http://dx.doi.org/10.4103/0019-5545.69227] [PMID: 21836672]
[4]
Nisbet, R.M.; Polanco, J.C.; Ittner, L.M.; Götz, J. Tau aggregation and its interplay with amyloid-β. Acta Neuropathol., 2015, 129(2), 207-220.
[http://dx.doi.org/10.1007/s00401-014-1371-2] [PMID: 25492702]
[5]
de la Monte, S.M. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr. Alzheimer Res., 2012, 9(1), 35-66.
[http://dx.doi.org/10.2174/156720512799015037] [PMID: 22329651]
[6]
Lavielle, P.; Talavera, J.O.; Reynoso, N.; González, M.; Gómez-Díaz, R.A.; Cruz, M.; Vázquez, F.; Wacher, N.H. Prevalence of cognitive impairment in recently diagnosed type 2 diabetes patients: Are chronic inflammatory diseases responsible for cognitive decline? PLoS One, 2015, 10(10), e0141325.
[http://dx.doi.org/10.1371/journal.pone.0141325] [PMID: 26517541]
[7]
Biessels, G.J.; Strachan, M.W.J.; Visseren, F.L.J.; Kappelle, L.J.; Whitmer, R.A. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: Towards targeted interventions. Lancet Diabetes Endocrinol., 2014, 2(3), 246-255.
[http://dx.doi.org/10.1016/S2213-8587(13)70088-3] [PMID: 24622755]
[8]
Gudala, K.; Bansal, D.; Schifano, F.; Bhansali, A. Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies. J. Diabetes Investig., 2013, 4(6), 640-650.
[http://dx.doi.org/10.1111/jdi.12087] [PMID: 24843720]
[9]
Bassil, F.; Fernagut, P.O.; Bezard, E.; Meissner, W.G. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: Targets for disease modification? Prog. Neurobiol., 2014, 118, 1-18.
[http://dx.doi.org/10.1016/j.pneurobio.2014.02.005] [PMID: 24582776]
[10]
Huang, C-N.; Lin, C-L. The neuroprotective effects of the anti-diabetic drug linagliptin against Aß-induced neurotoxicity. Neural Regen. Res., 2016, 11(2), 236-237.
[http://dx.doi.org/10.4103/1673-5374.177724] [PMID: 27073371]
[11]
Hanyu, H. Diabetes-related dementia. Adv. Exp. Med. Biol., 2019, 1128, 147-160.
[http://dx.doi.org/10.1007/978-981-13-3540-2_8] [PMID: 31062329]
[12]
Ninomiya, T. Diabetes mellitus and dementia. Curr. Diab. Rep., 2014, 14(5), 487.
[http://dx.doi.org/10.1007/s11892-014-0487-z] [PMID: 24623199]
[13]
Haan, M.N. Therapy Insight: Type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nat. Clin. Pract. Neurol., 2006, 2(3), 159-166.
[http://dx.doi.org/10.1038/ncpneuro0124] [PMID: 16932542]
[14]
Chalichem, N.S.S.; Gonugunta, C.; Krishnamurthy, P.T.; Duraiswamy, B. DPP4 inhibitors can be a drug of choice for type 3 diabetes: A mini review. Am. J. Alzheimers Dis. Other Demen., 2017, 32(7), 444-451.
[http://dx.doi.org/10.1177/1533317517722005] [PMID: 28747063]
[15]
Kosaraju, J.; Madhunapantula, S.V.; Chinni, S.; Khatwal, R.B.; Dubala, A.; Muthureddy Nataraj, S.K.; Basavan, D. Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimer’s disease. Behav. Brain Res., 2014, 267, 55-65.
[http://dx.doi.org/10.1016/j.bbr.2014.03.026] [PMID: 24667360]
[16]
Perry, T.; Greig, N.H. The glucagon-like peptides: A new genre in therapeutic targets for intervention in Alzheimer’s disease. J. Alzheimers Dis., 2002, 4(6), 487-496.
[http://dx.doi.org/10.3233/JAD-2002-4605] [PMID: 12515900]
[17]
Green, B.D.; Irwin, N.; Flatt, P.R. Pituitary adenylate cyclase-activating peptide (PACAP): Assessment of dipeptidyl peptidase IV degradation, insulin-releasing activity and antidiabetic potential. Peptides, 2006, 27(6), 1349-1358.
[http://dx.doi.org/10.1016/j.peptides.2005.11.010] [PMID: 16406202]
[18]
Matteucci, E.; Giampietro, O. Dipeptidyl peptidase-4 (CD26): Knowing the function before inhibiting the enzyme. Curr. Med. Chem., 2009, 16(23), 2943-2951.
[http://dx.doi.org/10.2174/092986709788803114] [PMID: 19689275]
[19]
Zhu, L.; Tamvakopoulos, C.; Xie, D.; Dragovic, J.; Shen, X.; Fenyk-Melody, J.E.; Schmidt, K.; Bagchi, A.; Griffin, P.R.; Thornberry, N.A.; Roy, R.S. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: In vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38). J. Biol. Chem., 2003, 278(25), 22418-22423.
[http://dx.doi.org/10.1074/jbc.M212355200] [PMID: 12690116]
[20]
Holst, J.J.; Burcelin, R.; Nathanson, E. Neuroprotective properties of GLP-1: Theoretical and practical applications. Curr. Med. Res. Opin., 2011, 27(3), 547-558.
[http://dx.doi.org/10.1185/03007995.2010.549466] [PMID: 21222567]
[21]
Salcedo, I.; Tweedie, D.; Li, Y.; Greig, N.H. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: An emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br. J. Pharmacol., 2012, 166(5), 1586-1599.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01971.x] [PMID: 22519295]
[22]
Hyun Lee, C.; Yan, B.; Yoo, K.Y.; Choi, J.H.; Kwon, S.H.; Her, S.; Sohn, Y.; Hwang, I.K.; Cho, J.H.; Kim, Y.M.; Won, M.H. Ischemia-induced changes in glucagon-like peptide-1 receptor and neuroprotective effect of its agonist, exendin-4, in experimental transient cerebral ischemia. J. Neurosci. Res., 2011, 89(7), 1103-1113.
[http://dx.doi.org/10.1002/jnr.22596] [PMID: 21472764]
[23]
Castorina, A.; Al-Badri, G.; Leggio, G.M.; Musumeci, G.; Marzagalli, R.; Drago, F. Tackling dipeptidyl peptidase IV in neurological disorders. Neural Regen. Res., 2018, 13(1), 26-34.
[http://dx.doi.org/10.4103/1673-5374.224365] [PMID: 29451201]
[24]
Darsalia, V.; Ortsäter, H.; Olverling, A.; Darlöf, E.; Wolbert, P.; Nyström, T.; Klein, T.; Sjöholm, Å.; Patrone, C. The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: A comparison with glimepiride. Diabetes, 2013, 62(4), 1289-1296.
[http://dx.doi.org/10.2337/db12-0988] [PMID: 23209191]
[25]
Zong, T.; Mei, L.; Gao, H.; Shi, K.; Chen, J.; Wang, Y.; Zhang, Q.; Yang, Y.; He, Q. Enhanced glioma targeting and penetration by dual-targeting liposome co-modified with T7 and TAT. J. Pharm. Sci., 2014, 103(12), 3891-3901.
[http://dx.doi.org/10.1002/jps.24186] [PMID: 25339554]
[26]
Ali, J.; Ali, M.; Baboota, S.; Kaur Sahni, J.; Ramassamy, C.; Dao, L. Bhavna, Potential of nanoparticulate drug delivery systems by intranasal administration. Curr. Pharm. Des., 2010, 16(14), 1644-1653.
[http://dx.doi.org/10.2174/138161210791164108] [PMID: 20210751]
[27]
Lalani, J.; Baradia, D.; Lalani, R.; Misra, A. Brain targeted intranasal delivery of tramadol: Comparative study of microemulsion and nanoemulsion. Pharm. Dev. Technol., 2015, 20(8), 992-1001.
[http://dx.doi.org/10.3109/10837450.2014.959177] [PMID: 25228122]
[28]
Mittal, D.; Md, S.; Hasan, Q.; Fazil, M.; Ali, A.; Baboota, S.; Ali, J. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv., 2016, 23(1), 130-139.
[http://dx.doi.org/10.3109/10717544.2014.907372] [PMID: 24786489]
[29]
Haque, S.; Md, S.; Sahni, J.K.; Ali, J.; Baboota, S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J. Psychiatr. Res., 2014, 48(1), 1-12.
[http://dx.doi.org/10.1016/j.jpsychires.2013.10.011] [PMID: 24231512]
[30]
Muntimadugu, E.; Dhommati, R.; Jain, A.; Challa, V.G.S.; Shaheen, M.; Khan, W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci., 2016, 92, 224-234.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[31]
Elnaggar, Y.S.R.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal piperine-loaded Chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efecacy, and potential toxicity. J. Pharm. Sci., 2015, 104(10), 3544-3556.
[http://dx.doi.org/10.1002/jps.24557]
[32]
Sahu, B.P.; Das, K.M. optimization of felodipine nanosuspensions using full factorial design. Int. J. Pharm. Tech. Res., 2013, 5(2), 553-561.
[33]
Sharma, D. Formulation and evaluation of polymeric nanomicelles of gliptin for controlled drug delivery. Drug Deliv. Lett., 2019, 9(4), 1-11.
[34]
Maji, R.; Dey, N.S.; Satapathy, B.S.; Mukherjee, B.; Mondal, S. Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int. J. Nanomedicine, 2014, 9(1), 3107-3118.
[PMID: 25028549]
[35]
Bhavna, S.; Md, S.; Ali, M.; Ali, R.; Bhatnagar, A.; Baboota, S.; Ali, J. Donepezil nanosuspension intended for nose to brain targeting: In vitro and in vivo safety evaluation. Int. J. Biol. Macromol., 2014, 67, 418-425.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.022] [PMID: 24705169]
[36]
Muller, R.H. Colloidal Carriers for Controlled Drug Delivery and Targeting; CRC Press: Boca Raton, FL, 1991.
[37]
Sharma, D.; Bhargava, S. Development and optimization of nanomicelles of dpp-4 inhibitor using response surface methodology. Drug Dev. Ind. Pharm., 2019, 46(1), 70-79.
[http://dx.doi.org/10.1080/03639045.2019.1701003] [PMID: 31795778]
[38]
Varshosaz, J.; Hassanzadeh, F.; Sadeghi Aliabadi, H.; Nayebsadrian, M.; Banitalebi, M.; Rostami, M. Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia. BioMed Res. Int., 2014, 2014, 525684.
[http://dx.doi.org/10.1155/2014/525684] [PMID: 24719872]
[39]
S, S.; S, V.; Kumars, S. Sterility testing procedure of ophthalmic ocusert aciclovir used for treating herpes simplex virus. Asian J. Pharm. Clin. Res., 2017, 10(10), 344-346.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i10.19216]
[40]
Basu, S.; Maity, S. Preparation and characterisation of mucoadhesive nasal gel of venlafaxine hydrochloride for treatment of anxiety disorders. Indian J. Pharm. Sci., 2012, 74(5), 428-433.
[http://dx.doi.org/10.4103/0250-474X.108418] [PMID: 23716871]
[41]
Mudgil, M.; Pawar, P.K. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application. Sci. Pharm., 2013, 81(2), 591-606.
[http://dx.doi.org/10.3797/scipharm.1204-16] [PMID: 23833723]
[42]
Barnhart, C.D.; Yang, D.; Lein, P.J. Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS One, 2015, 10(4), e0124521.
[http://dx.doi.org/10.1371/journal.pone.0124521] [PMID: 25886563]
[43]
Jiwa, S.N.; Garrard, P.; Hainsworth, A.H. Vascular cognitive impairment: In vivo models. J. Neurochem., 2010, 115, 814-828.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06958.x] [PMID: 20731763]
[44]
Tagalpallewar, A.; Samad, G.S.; Gaikwad, R. Formulation and gamma scintigraphic evaluation of brimonidine tartarate in situ gel. J. Pharm. Res., 2012, 5(2), 769-772.
[45]
Ali, J.; Ali, M.; Baboota, S.; Ali, R.; Mittal, G.; Bhatnagar, A. Bhavna. Reflection on existence of neural and non-neural pathway for nose- to- brain using a novel formulation of an anticholinesterase piperidine derivative. Curr. Nanosci., 2010, 6(3), 320-323.
[http://dx.doi.org/10.2174/157341310791171135]
[46]
B, M.; N, A.; S, T. Investigation of formulation variables affecting the properties of lamotrigine nanosuspension using fractional factorial design. Daru, 2010, 18(1), 1-8.
[PMID: 22615586]
[47]
Kreuter, J.; Shamenkov, D.; Petrov, V.; Ramge, P.; Cychutek, K.; Koch-Brandt, C.; Alyautdin, R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target., 2002, 10(4), 317-325.
[http://dx.doi.org/10.1080/10611860290031877] [PMID: 12164380]
[48]
Agarwal, V.; Bajpai, M. Preparation and optimization of esomeprazole nanosuspension using evaporative precipitation- ultrasonication. Trop. J. Pharm. Res., 2014, 13(4), 497-503.
[http://dx.doi.org/10.4314/tjpr.v13i4.2]

© 2024 Bentham Science Publishers | Privacy Policy