Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Drugs Targeting NLRP3 Inflammasome in the Treatment of Diabetic Bone Disorders

Author(s): Yuyang Chen, Munire Aili, Fan Chen, Yu Gong, Xiaoju Chen and Lan Zhang*

Volume 23, Issue 10, 2023

Published on: 23 May, 2023

Page: [1265 - 1277] Pages: 13

DOI: 10.2174/1871530323666230320164235

Price: $65

Abstract

Background: Growing pieces of evidence demonstrate a close relationship between bone regeneration disorders of diabetic patients and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). Drugs targeting NLRP3 in the treatment of diabetic bone disorders have been heatedly discussed in recent years, and new R&D ideas should be explored.

Objective: This review analyzes molecular mechanisms of how hyperglycemia activates NLRP3 and leads to bone disorders in diabetic patients. Also, this review focuses on the research of drugs targeting NLRP3 inflammasome in the treatment of diabetic bone disorders, and eventually points out the ideas for new drug development.

Results: In diabetic patients, hyperglycemia ultimately increases the expression of NLRP3 inflammasome which cleaves pro-IL-1β into mature IL-1β by caspase-1, leading to impaired bone formation. Drugs targeting NLRP3 inflammasome are divided into two categories. Indirect-acting drugs for NLRP3 inflammasomes include dipeptidyl peptidase-4 inhibitors, lipoxygen A4, epigallocatechin gallate, and vitamin D3. Direct-acting drugs include Glyburide, Dioscin, and Pristimerin.

Conclusion: The presented studies indicate that hyperglycemia is the initiating factor for NLRP3-induced bone disorders in diabetic patients. The main drug targets are the molecules relevant to the assembly and activation of NLRP3 inflammasome. These data may provide a theoretical basis for the further development of drugs targeting NLRP3 inflammasome in the treatment of diabetic bone disorders.

Graphical Abstract

[1]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[2]
Rehling, T.; Bjorkman, A.S.D.; Andersen, M.B.; Ekholm, O.; Molsted, S. Diabetes is associated with musculoskeletal pain, osteoarthritis, osteoporosis, and rheumatoid arthritis. J. Diabetes Res., 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/6324348] [PMID: 31886282]
[3]
Schwartz, A.V. Diabetes mellitus: Does it affect bone? Calcif. Tissue Int., 2003, 73(6), 515-519.
[http://dx.doi.org/10.1007/s00223-003-0023-7] [PMID: 14517715]
[4]
Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: A review. Front. Pharmacol., 2015, 6, 262.
[http://dx.doi.org/10.3389/fphar.2015.00262] [PMID: 26594174]
[5]
Ebe, Y.; Nakamura, T.; Hasegawa-Nakamura, K.; Noguchi, K. Effect of interleukin‐1β on bone morphogenetic protein‐9‐induced osteoblastic differentiation of human periodontal ligament fibroblasts. Eur. J. Oral Sci., 2021, 129(4), e12792.
[http://dx.doi.org/10.1111/eos.12792] [PMID: 33945653]
[6]
Chen, X.; Zhang, D.; Li, Y.; Wang, W.; Bei, W.; Guo, J. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: Friend or foe? Pharmacol. Res., 2021, 173, 105885.
[http://dx.doi.org/10.1016/j.phrs.2021.105885] [PMID: 34536551]
[7]
Zahid, A.; Li, B.; Kombe, A.J.K.; Jin, T.; Tao, J. Pharmacological inhibitors of the NLRP3 inflammasome. Front. Immunol., 2019, 10, 2538.
[http://dx.doi.org/10.3389/fimmu.2019.02538] [PMID: 31749805]
[8]
Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci., 2019, 20(13), 3328.
[http://dx.doi.org/10.3390/ijms20133328] [PMID: 31284572]
[9]
Sharma, B.R.; Kanneganti, T.D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol., 2021, 22(5), 550-559.
[http://dx.doi.org/10.1038/s41590-021-00886-5] [PMID: 33707781]
[10]
Hu, J.; Ye, M.; Zhou, Z. Aptamers: novel diagnostic and therapeutic tools for diabetes mellitus and metabolic diseases. J. Mol. Med., 2017, 95(3), 249-256.
[http://dx.doi.org/10.1007/s00109-016-1485-1] [PMID: 27847965]
[11]
Böni-Schnetzler, M.; Meier, D.T. Islet inflammation in type 2 diabetes. Semin. Immunopathol., 2019, 41(4), 501-513.
[http://dx.doi.org/10.1007/s00281-019-00745-4] [PMID: 30989320]
[12]
Eguchi, K.; Nagai, R. Islet inflammation in type 2 diabetes and physiology. J. Clin. Invest., 2017, 127(1), 14-23.
[http://dx.doi.org/10.1172/JCI88877] [PMID: 28045399]
[13]
Scheithauer, T.P.M.; Rampanelli, E.; Nieuwdorp, M.; Vallance, B.A.; Verchere, C.B.; van Raalte, D.H.; Herrema, H. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front. Immunol., 2020, 11, 571731.
[http://dx.doi.org/10.3389/fimmu.2020.571731] [PMID: 33178196]
[14]
Bilgin, S.; Kurtkulagi, O.; Atak Tel, B.M.; Duman, T.T.; Kahveci, G.; Khalid, A.; Aktas, G. Does C-reactive protein to serum Albumin Ratio correlate with diabEtic nephropathy in patients with Type 2 diabetes mellitus? The care time study. Prim. Care Diabetes, 2021, 15(6), 1071-1074.
[http://dx.doi.org/10.1016/j.pcd.2021.08.015] [PMID: 34497035]
[15]
Aktas, G.; Alcelik, A.; Ozlu, T.; Tosun, M.; Tekce, B.; Savli, H.; Tekce, H.; Dikbas, O. Association between omentin levels and insulin resistance in pregnancy. Exp. Clin. Endocrinol. Diabetes, 2014, 122(3), 163-166.
[http://dx.doi.org/10.1055/s-0034-1370917] [PMID: 24643693]
[16]
Chen, T.C.; Yen, C.K.; Lu, Y.C.; Shi, C.S.; Hsieh, R.Z.; Chang, S.F.; Chen, C.N. The antagonism of 6-shogaol in high-glucose-activated NLRP3 inflammasome and consequent calcification of human artery smooth muscle cells. Cell Biosci., 2020, 10(1), 5.
[http://dx.doi.org/10.1186/s13578-019-0372-1] [PMID: 31938471]
[17]
Jiao, H.; Xiao, E.; Graves, D.T. Diabetes and its effect on bone and fracture healing. Curr. Osteoporos. Rep., 2015, 13(5), 327-335.
[http://dx.doi.org/10.1007/s11914-015-0286-8] [PMID: 26254939]
[18]
Pitocco, D.; Tesauro, M.; Alessandro, R.; Ghirlanda, G.; Cardillo, C. Oxidative stress in diabetes: Implications for vascular and other complications. Int. J. Mol. Sci., 2013, 14(11), 21525-21550.
[http://dx.doi.org/10.3390/ijms141121525] [PMID: 24177571]
[19]
Rendra, E.; Riabov, V.; Mossel, D.M.; Sevastyanova, T.; Harmsen, M.C.; Kzhyshkowska, J. Reactive Oxygen Species (ROS) in macrophage activation and function in diabetes. Immunobiology, 2019, 224(2), 242-253.
[http://dx.doi.org/10.1016/j.imbio.2018.11.010] [PMID: 30739804]
[20]
Han, J.H.; Shin, H.; Rho, J.G.; Kim, J.E.; Son, D.H.; Yoon, J.; Lee, Y.J.; Park, J.H.; Song, B.J.; Choi, C.S.; Yoon, S.G.; Kim, I.Y.; Lee, E.K.; Seong, J.K.; Kim, K.W.; Kim, W. Peripheral cannabinoid 1 receptor blockade mitigates adipose tissue inflammation via NLRP3 inflammasome in mouse models of obesity. Diabetes Obes. Metab., 2018, 20(9), 2179-2189.
[http://dx.doi.org/10.1111/dom.13350] [PMID: 29740969]
[21]
Liang, S.; Nian, Z.; Shi, K. Inhibition of RIPK1/RIPK3 ameliorates osteoclastogenesis through regulating NLRP3-dependent NF-κB and MAPKs signaling pathways. Biochem. Biophys. Res. Commun., 2020, 526(4), 1028-1035.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.177] [PMID: 32321638]
[22]
Li, Y.; Xia, Y.; Yin, S.; Wan, F.; Hu, J.; Kou, L.; Sun, Y.; Wu, J.; Zhou, Q.; Huang, J.; Xiong, N.; Wang, T. Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson’s Disease. Front. Immunol., 2021, 12, 719807.
[http://dx.doi.org/10.3389/fimmu.2021.719807] [PMID: 34691027]
[23]
Afonina, I.S.; Zhong, Z.; Karin, M.; Beyaert, R. Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome. Nat. Immunol., 2017, 18(8), 861-869.
[http://dx.doi.org/10.1038/ni.3772] [PMID: 28722711]
[24]
Rehling, T.; Bjørkman, A.D.; Andersen, M.B.; Ekholm, O.; Molsted, S. Diabetes is associated with musculoskeletal pain, osteoarthritis, osteoporosis, and rheumatoid arthritis. J. Diabetes Res., 2019, 2019, 6324348.
[http://dx.doi.org/10.1155/2019/6324348] [PMCID: PMC6925775]
[25]
Dai, X.; Heng, B.C.; Bai, Y.; You, F.; Sun, X.; Li, Y.; Tang, Z.; Xu, M.; Zhang, X.; Deng, X. Restoration of electrical microenvironment enhances bone regeneration under diabetic conditions by modulating macrophage polarization. Bioact. Mater., 2021, 6(7), 2029-2038.
[http://dx.doi.org/10.1016/j.bioactmat.2020.12.020] [PMID: 33474514]
[26]
Jin, X.; Yao, T.; Zhou, Z.; Zhu, J.; Zhang, S.; Hu, W.; Shen, C. Advanced glycation end products enhance macrophages polarization into m1 phenotype through activating RAGE/NF- κ B Pathway. BioMed Res. Int., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/732450] [PMID: 26114112]
[27]
Wang, F.; Kong, L.; Wang, W.; Shi, L.; Wang, M.; Chai, Y.; Xu, J.; Kang, Q. Adrenomedullin 2 improves bone regeneration in type 1 diabetic rats by restoring imbalanced macrophage polarization and impaired osteogenesis. Stem Cell Res. Ther., 2021, 12(1), 288.
[http://dx.doi.org/10.1186/s13287-021-02368-9] [PMID: 33985585]
[28]
Vandanmagsar, B.; Youm, Y.H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynatt, R.L.; Ravussin, E.; Stephens, J.M.; Dixit, V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med., 2011, 17(2), 179-188.
[http://dx.doi.org/10.1038/nm.2279] [PMID: 21217695]
[29]
Mae, M.; Alam, M.I.; Yamashita, Y.; Ozaki, Y.; Higuchi, K.; Ziauddin, S.M.; Montenegro Raudales, J.L.; Sakai, E.; Tsukuba, T.; Yoshimura, A. The role of cytokines produced via the NLRP3 inflammasome in mouse macrophages stimulated with dental calculus in osteoclastogenesis. Int. J. Mol. Sci., 2021, 22(22), 12434.
[http://dx.doi.org/10.3390/ijms222212434] [PMID: 34830316]
[30]
Nakamura, I.; Jimi, E. Regulation of osteoclast differentiation and function by interleukin-1. Vitam. Horm., 2006, 74, 357-370.
[http://dx.doi.org/10.1016/S0083-6729(06)74015-8] [PMID: 17027523]
[31]
Ruscitti, P.; Cipriani, P.; Carubbi, F.; Liakouli, V.; Zazzeroni, F.; Di Benedetto, P.; Berardicurti, O.; Alesse, E.; Giacomelli, R. The role of IL-1β in the bone loss during rheumatic diseases. Mediators Inflamm., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/782382] [PMID: 25954061]
[32]
Mao, C.; Wang, Y.; Zhang, X.; Zheng, X.; Tang, T.; Lu, E. Double-edged-sword effect of IL-1β on the osteogenesis of periodontal ligament stem cells via crosstalk between the NF-κB, MAPK and BMP/Smad signaling pathways. Cell Death Dis., 2016, 7(7), e2296.
[http://dx.doi.org/10.1038/cddis.2016.204] [PMID: 27415426]
[33]
Li, H.; Zhong, X.; Chen, Z.; Li, W. Suppression of NLRP3 inflammasome improves alveolar bone defect healing in diabetic rats. J. Orthop. Surg. Res., 2019, 14(1), 167.
[http://dx.doi.org/10.1186/s13018-019-1215-9] [PMID: 31146750]
[34]
Li, N.; Wang, L.J.; Jiang, B.; Li, X.; Guo, C.; Guo, S.; Shi, D.Y. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. Eur. J. Med. Chem., 2018, 151, 145-157.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.041] [PMID: 29609120]
[35]
Lalitha, N.; Sadashivaiah, B.; Ramaprasad, T.R.; Singh, S.A. Anti-hyperglycemic activity of myricetin, through inhibition of DPP-4 and enhanced GLP-1 levels, is attenuated by co-ingestion with lectin-rich protein. PLoS One, 2020, 15(4), e0231543.
[http://dx.doi.org/10.1371/journal.pone.0231543] [PMID: 32282828]
[36]
Dai, Y.; Dai, D.; Wang, X.; Ding, Z.; Mehta, J.L. DPP-4 inhibitors repress NLRP3 inflammasome and interleukin-1beta via GLP-1 receptor in macrophages through protein kinase C pathway. Cardiovasc. Drugs Ther., 2014, 28(5), 425-432.
[http://dx.doi.org/10.1007/s10557-014-6539-4] [PMID: 25022544]
[37]
Qi, Y.; Du, X.; Yao, X.; Zhao, Y. Vildagliptin inhibits high free fatty acid (FFA)-induced NLRP3 inflammasome activation in endothelial cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1067-1074.
[http://dx.doi.org/10.1080/21691401.2019.1578783] [PMID: 30945564]
[38]
Zhang, L.; Li, P.; Tang, Z.; Dou, Q.; Feng, B. Effects of GLP-1 receptor analogue liraglutide and DPP-4 inhibitor vildagliptin on the bone metabolism in ApoE−/− mice. Ann. Transl. Med., 2019, 7(16), 369.
[http://dx.doi.org/10.21037/atm.2019.06.74] [PMID: 31555683]
[39]
Bathina, S.; Das, U.N. PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo. Lipids Health Dis., 2019, 18(1), 214.
[http://dx.doi.org/10.1186/s12944-019-1164-7] [PMID: 31823816]
[40]
Han, M.; Lai, S.; Ge, Y.; Zhou, X.; Zhao, J. Changes of lipoxin A4 and the anti-inflammatory role during parturition. Reprod. Sci., 2022, 29(4), 1332-1342.
[http://dx.doi.org/10.1007/s43032-021-00800-2] [PMID: 34786659]
[41]
An, Y.; Zhang, H.; Wang, C.; Jiao, F.; Xu, H.; Wang, X.; Luan, W.; Ma, F.; Ni, L.; Tang, X.; Liu, M.; Guo, W.; Yu, L. Activation of ROS/MAPK S/NF‐ κ B/NLRP3 and inhibition of efferocytosis in osteoclast‐mediated diabetic osteoporosis. FASEB J., 2019, 33(11), 12515-12527.
[http://dx.doi.org/10.1096/fj.201802805RR] [PMID: 31461386]
[42]
Jiang, H.; Gong, T.; Zhou, R. The strategies of targeting the NLRP3 inflammasome to treat inflammatory diseases. Adv. Immunol., 2020, 145, 55-93.
[http://dx.doi.org/10.1016/bs.ai.2019.11.003] [PMID: 32081200]
[43]
Jin, J.; Xie, Y.; Shi, C.; Ma, J.; Wang, Y.; Qiao, L.; Li, K.; Sun, T. Lipoxin A4 Inhibits NLRP3 inflammasome activation in rats with non-compressive disc herniation through the JNK1/Beclin-1/PI3KC3 Pathway. Front. Neurosci., 2020, 14, 799.
[http://dx.doi.org/10.3389/fnins.2020.00799] [PMID: 33071721]
[44]
Potenza, M.; Iacobazzi, D.; Sgarra, L.; Montagnani, M. Extremely good cell guardianthe intrinsic virtues of EGCG, an, on prevention and treatment of diabesity complications. Molecules, 2020, 25(13), 3061.
[http://dx.doi.org/10.3390/molecules25133061] [PMID: 32635492]
[45]
Zhang, C.; Li, X.; Hu, X.; Xu, Q.; Zhang, Y.; Liu, H.; Diao, Y.; Zhang, X.; Li, L.; Yu, J.; Yin, H.; Peng, J. Epigallocatechin-3-gallate prevents inflammation and diabetes -induced glucose tolerance through inhibition of NLRP3 inflammasome activation. Int. Immunopharmacol., 2021, 93, 107412.
[http://dx.doi.org/10.1016/j.intimp.2021.107412] [PMID: 33524801]
[46]
Reddy, A.T.; Lakshmi, S.P.; Maruthi Prasad, E.; Varadacharyulu, N.C.; Kodidhela, L.D. Epigallocatechin gallate suppresses inflammation in human coronary artery endothelial cells by inhibiting NF-κB. Life Sci., 2020, 258, 118136.
[http://dx.doi.org/10.1016/j.lfs.2020.118136] [PMID: 32726662]
[47]
Zhang, C.; Li, X.; Hu, X.; Xu, Q.; Zhang, Y.; Liu, H.; Diao, Y.; Zhang, X.; Li, L.; Yu, J.; Yin, H.; Peng, J. Epigallocatechin-3-gallate prevents inflammation and diabetes -Induced glucose tolerance through inhibition of NLRP3 inflammasome activation. Int. Immunopharmacol., 2021, 93, 107412.
[http://dx.doi.org/10.1016/j.intimp.2021.107412] [PMID: 33524801]
[48]
Kashefiolasl, S.; Leisegang, M.S.; Helfinger, V.; Schürmann, C.; Pflüger-Müller, B.; Randriamboavonjy, V.; Vasconez, A.E.; Carmeliet, G.; Badenhoop, K.; Hintereder, G.; Seifert, V.; Schröder, K.; Konczalla, J.; Brandes, R.P. Vitamin D-A new perspective in treatment of cerebral vasospasm. Neurosurgery, 2021, 88(3), 674-685.
[http://dx.doi.org/10.1093/neuros/nyaa484] [PMID: 33269399]
[49]
Zhang, C.; Li, X.; Hu, X.; Xu, Q.; Zhang, Y.; Liu, H.; Diao, Y.; Zhang, X.; Li, L.; Yu, J.; Yin, H.; Peng, J. Epigallocatechin-3-gallate prevents inflammation and diabetes -Induced glucose tolerance through inhibition of NLRP3 inflammasome activation. Int. Immunopharmacol., 2021, 93, 107412.
[http://dx.doi.org/10.1016/j.intimp.2021.107412] [PMID: 33524801]
[50]
Telikani, Z.; Sheikh, V.; Zamani, A.; Borzouei, S.; Salehi, I.; Amirzargar, M.A.; Alahgholi-Hajibehzad, M. Effects of sitagliptin and vitamin D3 on T helper cell transcription factors and cytokine production in clinical subgroups of type 2 diabetes mellitus: Highlights upregulation of FOXP3 and IL-37. Immunopharmacol. Immunotoxicol., 2019, 41(2), 299-311.
[http://dx.doi.org/10.1080/08923973.2019.1593447] [PMID: 30907193]
[51]
Xin, L.; Che, B.; Zhai, B.; Luo, Q.; Zhang, C.; Wang, J.; Wang, S.; Fan, G.; Liu, Z.; Feng, J.; Zhang, Z. 1,25-Dihydroxy Vitamin D3 attenuates the oxidative stress-mediated inflammation induced by PM2.5via the p38/NF-κB/NLRP3 Pathway. Inflammation, 2019, 42(2), 702-713.
[http://dx.doi.org/10.1007/s10753-018-0928-y] [PMID: 30430362]
[52]
Li, H.; Zhong, X.; Li, W.; Wang, Q. Effects of 1,25-dihydroxyvitamin D3 on experimental periodontitis and AhR/NF-κB/NLRP3 inflammasome pathway in a mouse model. J. Appl. Oral Sci., 2019, 27, e20180713.
[http://dx.doi.org/10.1590/1678-7757-2018-0713] [PMID: 31691738]
[53]
Jiang, S.; Zhang, H.; Li, X.; Yi, B.; Huang, L.; Hu, Z.; Li, A.; Du, J.; Li, Y.; Zhang, W. Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/Caspase-1/GSDMD pyroptosis pathway. J. Steroid Biochem. Mol. Biol., 2021, 206, 105789.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105789] [PMID: 33259938]
[54]
Kelder, C.; Kleverlaan, C.J.; Gilijamse, M.; Bakker, A.D.; de Vries, T.J. Cells derived from human long bone appear more differentiated and more actively stimulate osteoclastogenesis compared to alveolar bone-derived cells. Int. J. Mol. Sci., 2020, 21(14), 5072.
[http://dx.doi.org/10.3390/ijms21145072] [PMID: 32709153]
[55]
Su, M.; Wang, W.; Liu, F.; Li, H. Recent progress on the discovery of NLRP3 inhibitors and their therapeutic potential. Curr. Med. Chem., 2021, 28(3), 569-582.
[http://dx.doi.org/10.2174/1875533XMTAzfODQe1] [PMID: 31971103]
[56]
Malek, R.; Davis, S.N. Pharmacokinetics, efficacy and safety of glyburide for treatment of gestational diabetes mellitus. Expert Opin. Drug Metab. Toxicol., 2016, 12(6), 691-699.
[http://dx.doi.org/10.1080/17425255.2016.1187131] [PMID: 27163280]
[57]
Carey, M.; Lontchi-Yimagou, E.; Mitchell, W.; Reda, S.; Zhang, K.; Kehlenbrink, S.; Koppaka, S.; Maginley, S.R.; Aleksic, S.; Bhansali, S.; Huffman, D.M.; Hawkins, M.; Central, K. Central KATP channels modulate glucose effectiveness in humans and rodents. Diabetes, 2020, 69(6), 1140-1148.
[http://dx.doi.org/10.2337/db19-1256] [PMID: 32217610]
[58]
Kerur, N.; Hirano, Y.; Tarallo, V.; Fowler, B.J.; Bastos-Carvalho, A.; Yasuma, T.; Yasuma, R.; Kim, Y.; Hinton, D.R.; Kirschning, C.J.; Gelfand, B.D.; Ambati, J. TLR-independent and P2X7-dependent signaling mediate Alu RNA-induced NLRP3 inflammasome activation in geographic atrophy. Invest. Ophthalmol. Vis. Sci., 2013, 54(12), 7395-7401.
[http://dx.doi.org/10.1167/iovs.13-12500] [PMID: 24114535]
[59]
Lamkanfi, M.; Mueller, J.L.; Vitari, A.C.; Misaghi, S.; Fedorova, A.; Deshayes, K.; Lee, W.P.; Hoffman, H.M.; Dixit, V.M. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol., 2009, 187(1), 61-70.
[http://dx.doi.org/10.1083/jcb.200903124] [PMID: 19805629]
[60]
Yang, X.; Qu, C.; Jia, J.; Zhan, Y. NLRP3 inflammasome inhibitor glyburide expedites diabetic-induced impaired fracture healing. Immunobiology, 2019, 224(6), 786-791.
[http://dx.doi.org/10.1016/j.imbio.2019.08.008] [PMID: 31477246]
[61]
Zhang, T.; Zhao, J.; Liu, T.; Cheng, W.; Wang, Y.; Ding, S.; Wang, R. A novel mechanism for NLRP3 inflammasome activation. Metabolism Open, 2022, 13, 100166.
[http://dx.doi.org/10.1016/j.metop.2022.100166] [PMID: 35198946]
[62]
Xu, L.N.; Yin, L.H.; Jin, Y.; Qi, Y.; Han, X.; Xu, Y.W.; Liu, K.X.; Zhao, Y.Y.; Peng, J.Y. Effect and possible mechanisms of dioscin on ameliorating metabolic glycolipid metabolic disorder in type-2-diabetes. Phytomedicine, 2020, 67, 153139.
[http://dx.doi.org/10.1016/j.phymed.2019.153139] [PMID: 31881477]
[63]
Lu, Z.; Yao, Y.; Wang, J.; Peng, J.Y. Dioscin ameliorates diabetes cognitive dysfunction via adjusting P2X7R/NLRP3 signal. Int. Immunopharmacol., 2021, 101(Pt B), 108314.
[http://dx.doi.org/10.1016/j.intimp.2021.108314] [PMID: 34785142]
[64]
Han, J.; Shi, G.; Li, W.; Xie, Y.; Li, F.; Jiang, D. Preventive effect of dioscin against monosodium urate-mediated gouty arthritis through inhibiting inflammasome NLRP3 and TLR4/NF-κB signaling pathway activation: An in vivo and in vitro study. J. Nat. Med., 2021, 75(1), 37-47.
[http://dx.doi.org/10.1007/s11418-020-01440-7] [PMID: 32761488]
[65]
You, M.; Jing, J.; Tian, D.; Qian, J.; Yu, G. Dioscin stimulates differentiation of mesenchymal stem cells towards hypertrophic chondrocytes in vitro and endochondral ossification in vivo. Am. J. Transl. Res., 2016, 8(9), 3930-3938.
[PMID: 27725872]
[66]
Yin, W.; Liu, S.; Dong, M.; Liu, Q.; Shi, C.; Bai, H.; Wang, Q.; Yang, X.; Niu, W.; Wang, L. A New NLRP3 inflammasome inhibitor, dioscin, promotes osteogenesis. Small, 2020, 16(1), 1905977.
[http://dx.doi.org/10.1002/smll.201905977] [PMID: 31814281]
[67]
Zhang, X.S.; Lu, Y.; Li, W.; Tao, T.; Wang, W.H.; Gao, S.; Zhou, Y.; Guo, Y.T.; Liu, C.; Zhuang, Z.; Hang, C.H.; Li, W. Cerebroprotection by dioscin after experimental subarachnoid haemorrhage via inhibiting NLRP3 inflammasome through SIRT1‐dependent pathway. Br. J. Pharmacol., 2021, 178(18), 3648-3666.
[http://dx.doi.org/10.1111/bph.15507] [PMID: 33904167]
[68]
Xie, X.; Xie, S.; Xie, C.; Fang, Y.; Li, Z.; Wang, R.; Jiang, W. Pristimerin attenuates cell proliferation of uveal melanoma cells by inhibiting insulin‐like growth factor‐1 receptor and its downstream pathways. J. Cell. Mol. Med., 2019, 23(11), 7545-7553.
[http://dx.doi.org/10.1111/jcmm.14623] [PMID: 31508890]
[69]
Sun, W.; Yue, M.; Xi, G.; Wang, K.; Sai, J. Knockdown of NEK7 alleviates anterior cruciate ligament transection osteoarthritis (ACLT)-induced knee osteoarthritis in mice via inhibiting NLRP3 activation. Autoimmunity, 2022, 55(6), 398-407.
[http://dx.doi.org/10.1080/08916934.2022.2093861] [PMID: 35798413]
[70]
Zhao, Q.; Bi, Y.; Guo, J.; Liu, Y.; Zhong, J.; Pan, L.; Tan, Y.; Yu, X. Pristimerin protects against inflammation and metabolic disorder in mice through inhibition of NLRP3 inflammasome activation. Acta Pharmacol. Sin., 2021, 42(6), 975-986.
[http://dx.doi.org/10.1038/s41401-020-00527-x] [PMID: 32989235]
[71]
Qi, D.; Liu, H.; Sun, X.; Luo, D.; Zhu, M.; Tao, T.; Gao, C.; Zhou, C.; Zhou, W.; Xiao, J. Pristimerin suppresses RANKL-Induced osteoclastogenesis and ameliorates ovariectomy-induced bone loss. Front. Pharmacol., 2021, 11, 621110.
[http://dx.doi.org/10.3389/fphar.2020.621110] [PMID: 33628184]
[72]
Lipinski, M.J.; Frias, J.C. Molecule 16673-34-0: A new tool in our arsenal against inflammation. J. Cardiovasc. Pharmacol., 2014, 63(4), 314-315.
[http://dx.doi.org/10.1097/FJC.0000000000000070] [PMID: 24662491]
[73]
Carbone, S.; Mauro, A.G.; Prestamburgo, A.; Halquist, M.S.; Narayan, P.; Potere, N.; Mezzaroma, E.; Van Tassell, B.W.; Abbate, A.; Toldo, S. An orally available NLRP3 inflammasome inhibitor prevents western diet–induced cardiac dysfunction in mice. J. Cardiovasc. Pharmacol., 2018, 72(6), 303-307.
[http://dx.doi.org/10.1097/FJC.0000000000000628] [PMID: 30422890]
[74]
Fulp, J.; He, L.; Toldo, S.; Jiang, Y.; Boice, A.; Guo, C.; Li, X.; Rolfe, A.; Sun, D.; Abbate, A.; Wang, X.Y.; Zhang, S. Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: Design, synthesis, and biological characterization. J. Med. Chem., 2018, 61(12), 5412-5423.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00733] [PMID: 29877709]
[75]
Li, Q.; Yang, X.T.; Wei, W.; Hu, X.P.; Li, X.X.; Xu, M. Favorable effect of rivaroxaban against vascular dysfunction in diabetic mice by inhibiting NLRP3 inflammasome activation. J. Cell. Physiol., 2022, 237(8), 3369-3380.
[http://dx.doi.org/10.1002/jcp.30807] [PMID: 35675485]
[76]
Chinta, P.K.; Tambe, S.; Umrani, D.; Pal, A.K.; Nandave, M. Effect of parthenolide, an NLRP3 inflammasome inhibitor, on insulin resistance in high-fat diet-obese mice. Can. J. Physiol. Pharmacol., 2022, 100(3), 272-281.
[http://dx.doi.org/10.1139/cjpp-2021-0116] [PMID: 35119950]
[77]
Cao, D.; Zhang, Z.; Li, R.; Shi, X.; Xi, R.; Zhang, G.; Li, F.; Wang, F. A small molecule inhibitor of caspase-1 inhibits NLRP3 inflammasome activation and pyroptosis to alleviate gouty inflammation. Immunol. Lett., 2022, 244, 28-39.
[http://dx.doi.org/10.1016/j.imlet.2022.03.003] [PMID: 35288207]
[78]
Youm, Y.H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; Kang, S.; Horvath, T.L.; Fahmy, T.M.; Crawford, P.A.; Biragyn, A.; Alnemri, E.; Dixit, V.D. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat. Med., 2015, 21(3), 263-269.
[http://dx.doi.org/10.1038/nm.3804] [PMID: 25686106]
[79]
Hong, F.; Zhao, M.; Xue, L.L.; Ma, X.; Liu, L.; Cai, X.Y.; Zhang, R.J.; Li, N.; Wang, L.; Ni, H.F.; Wu, W.S.; Ye, H.Y.; Chen, L.J. The ethanolic extract of Artemisia anomala exerts anti-inflammatory effects via inhibition of NLRP3 inflammasome. Phytomedicine, 2022, 102, 154163.
[http://dx.doi.org/10.1016/j.phymed.2022.154163] [PMID: 35597027]
[80]
Liang, Q.; Cai, W.; Zhao, Y.; Xu, H.; Tang, H.; Chen, D.; Qian, F.; Sun, L. Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis. Pharmacol. Res., 2020, 158, 104884.
[http://dx.doi.org/10.1016/j.phrs.2020.104884] [PMID: 32428667]
[81]
Kim, S.R.; Lee, S.G.; Kim, S.H.; Kim, J.H.; Choi, E.; Cho, W.; Rim, J.H.; Hwang, I.; Lee, C.J.; Lee, M.; Oh, C.M.; Jeon, J.Y.; Gee, H.Y.; Kim, J.H.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Lee, M.S.; Yu, J.W.; Cho, J.W.; Kim, J.S.; Lee, Y. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun., 2020, 11(1), 2127.
[http://dx.doi.org/10.1038/s41467-020-15983-6] [PMID: 32358544]
[82]
Lopaschuk, G.D.; Verma, S. Mechanisms of cardiovascular benefits of sodium glucose Co-Transporter 2 (SGLT2) inhibitors. JACC Basic Transl. Sci., 2020, 5(6), 632-644.
[http://dx.doi.org/10.1016/j.jacbts.2020.02.004] [PMID: 32613148]
[83]
Bai, B.; Yang, Y.; Wang, Q.; Li, M.; Tian, C.; Liu, Y.; Aung, L.H.H.; Li, P.; Yu, T.; Chu, X. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis., 2020, 11(9), 776.
[http://dx.doi.org/10.1038/s41419-020-02985-x] [PMID: 32948742]
[84]
Ward, R.; Li, W.; Abdul, Y.; Jackson, L.; Dong, G.; Jamil, S.; Filosa, J.; Fagan, S.C.; Ergul, A. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol. Res., 2019, 142, 237-250.
[http://dx.doi.org/10.1016/j.phrs.2019.01.035] [PMID: 30818045]
[85]
Qiu, Z.; He, Y.; Ming, H.; Lei, S.; Leng, Y.; Xia, Z. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J. Diabetes Res., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/8151836] [PMID: 30911553]
[86]
Liu, Y.; Lian, K.; Zhang, L.; Wang, R.; Yi, F.; Gao, C.; Xin, C.; Zhu, D.; Li, Y.; Yan, W.; Xiong, L.; Gao, E.; Wang, H.; Tao, L. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res. Cardiol., 2014, 109(5), 415.
[http://dx.doi.org/10.1007/s00395-014-0415-z] [PMID: 25015733]
[87]
Juliana, C.; Fernandes-Alnemri, T.; Wu, J.; Datta, P.; Solorzano, L.; Yu, J.W.; Meng, R.; Quong, A.A.; Latz, E.; Scott, C.P.; Alnemri, E.S. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J. Biol. Chem., 2010, 285(13), 9792-9802.
[http://dx.doi.org/10.1074/jbc.M109.082305] [PMID: 20093358]
[88]
He, Y.; Varadarajan, S.; Muñoz-Planillo, R.; Burberry, A.; Nakamura, Y.; Núñez, G. 3,4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J. Biol. Chem., 2014, 289(2), 1142-1150.
[http://dx.doi.org/10.1074/jbc.M113.515080] [PMID: 24265316]
[89]
Yang, F.; Qin, Y.; Wang, Y.; Meng, S.; Xian, H.; Che, H.; Lv, J.; Li, Y.; Yu, Y.; Bai, Y.; Wang, L. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int. J. Biol. Sci., 2019, 15(5), 1010-1019.
[http://dx.doi.org/10.7150/ijbs.29680] [PMID: 31182921]
[90]
Ala, M.; Ala, M. Metformin for cardiovascular protection, inflammatory bowel disease, osteoporosis, periodontitis, polycystic ovarian syndrome, neurodegeneration, cancer, inflammation and senescence: What is next? ACS Pharmacol. Transl. Sci., 2021, 4(6), 1747-1770.
[http://dx.doi.org/10.1021/acsptsci.1c00167] [PMID: 34927008]
[91]
Li, N.; Zhou, H.; Wu, H.; Wu, Q.; Duan, M.; Deng, W.; Tang, Q. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol., 2019, 24, 101215.
[http://dx.doi.org/10.1016/j.redox.2019.101215] [PMID: 31121492]
[92]
Toldo, S.; Mauro, A.G.; Cutter, Z.; Van Tassell, B.W.; Mezzaroma, E.; Del Buono, M.G.; Prestamburgo, A.; Potere, N.; Abbate, A. The NLRP3 Inflammasome Inhibitor, OLT1177 (Dapansutrile), reduces infarct size and preserves contractile function after ischemia reperfusion injury in the mouse. J. Cardiovasc. Pharmacol., 2019, 73(4), 215-222.
[http://dx.doi.org/10.1097/FJC.0000000000000658] [PMID: 30747785]
[93]
Mastrocola, R.; Penna, C.; Tullio, F.; Femminò, S.; Nigro, D.; Chiazza, F.; Serpe, L.; Collotta, D.; Alloatti, G.; Cocco, M.; Bertinaria, M.; Pagliaro, P.; Aragno, M.; Collino, M. Pharmacological inhibition of nlrp3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid. Med. Cell. Longev., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/5271251] [PMID: 28053692]
[94]
Kanak, M.A.; Shahbazov, R.; Yoshimatsu, G.; Levy, M.F.; Lawrence, M.C.; Naziruddin, B. A small molecule inhibitor of NFκB blocks ER stress and the NLRP3 inflammasome and prevents progression of pancreatitis. J. Gastroenterol., 2017, 52(3), 352-365.
[http://dx.doi.org/10.1007/s00535-016-1238-5] [PMID: 27418337]
[95]
Han, X.; Sun, S.; Sun, Y.; Song, Q.; Zhu, J.; Song, N.; Chen, M.; Sun, T.; Xia, M.; Ding, J.; Lu, M.; Yao, H.; Hu, G. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: Implications for Parkinson disease. Autophagy, 2019, 15(11), 1860-1881.
[http://dx.doi.org/10.1080/15548627.2019.1596481] [PMID: 30966861]
[96]
Audia, J.P.; Yang, X.M.; Crockett, E.S.; Housley, N.; Haq, E.U.; O’Donnell, K.; Cohen, M.V.; Downey, J.M.; Alvarez, D.F. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res. Cardiol., 2018, 113(5), 32.
[http://dx.doi.org/10.1007/s00395-018-0692-z] [PMID: 29992382]
[97]
Kang, L.L.; Zhang, D.M.; Ma, C.H.; Zhang, J.H.; Jia, K.K.; Liu, J.H.; Wang, R.; Kong, L.D. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Sci. Rep., 2016, 6(1), 27460.
[http://dx.doi.org/10.1038/srep27460] [PMID: 27270216]
[98]
Xue, M.; Li, T.; Wang, Y.; Chang, Y.; Cheng, Y.; Lu, Y.; Liu, X.; Xu, L.; Li, X.; Yu, X.; Sun, B.; Chen, L. Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice. Clin. Sci., 2019, 133(15), 1705-1720.
[http://dx.doi.org/10.1042/CS20190585] [PMID: 31337673]
[99]
Wang, Y.; Wu, Y.; Chen, J.; Zhao, S.; Li, H. Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation. Cardiology, 2013, 126(1), 1-11.
[http://dx.doi.org/10.1159/000351179] [PMID: 23839341]
[100]
Cocco, M.; Miglio, G.; Giorgis, M.; Garella, D.; Marini, E.; Costale, A.; Regazzoni, L.; Vistoli, G.; Orioli, M.; Massulaha-Ahmed, R.; Détraz-Durieux, I.; Groslambert, M.; Py, B.F.; Bertinaria, M. Design, synthesis, and evaluation of acrylamide derivatives as direct NLRP3 inflammasome inhibitors. ChemMedChem, 2016, 11(16), 1790-1803.
[http://dx.doi.org/10.1002/cmdc.201600055] [PMID: 26990578]
[101]
Zhang, X.; Du, Q.; Yang, Y.; Wang, J.; Dou, S.; Liu, C.; Duan, J. The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed. Pharmacother., 2017, 91, 1042-1052.
[http://dx.doi.org/10.1016/j.biopha.2017.05.033] [PMID: 28525945]
[102]
Wang, X.; Li, Q.; Sui, B.; Xu, M.; Pu, Z.; Qiu, T. Schisandrin A from schisandra chinensis attenuates ferroptosis and NLRP3 inflammasome-mediated pyroptosis in diabetic nephropathy through mitochondrial damage by AdipoR1 ubiquitination. Oxid. Med. Cell. Longev., 2022, 2022, 1-23.
[http://dx.doi.org/10.1155/2022/5411462] [PMID: 35996380]
[103]
Ma, R.; He, Y.; Fang, Q.; Xie, G.; Qi, M. Ferulic acid ameliorates renal injury via improving autophagy to inhibit inflammation in diabetic nephropathy mice. Biomed. Pharmacother., 2022, 153, 113424.
[http://dx.doi.org/10.1016/j.biopha.2022.113424] [PMID: 36076545]
[104]
Ren, C.; Bao, X.; Lu, X.; Du, W.; Wang, X.; Wei, J.; Li, L.; Li, X.; Lin, X.; Zhang, Q.; Ma, B. Complanatoside A targeting NOX4 blocks renal fibrosis in diabetic mice by suppressing NLRP3 inflammasome activation and autophagy. Phytomedicine, 2022, 104, 154310.
[http://dx.doi.org/10.1016/j.phymed.2022.154310] [PMID: 35843189]
[105]
Hou, Q.; Kan, S.; Wang, Z.; Shi, J.; Zeng, C.; Yang, D.; Jiang, S.; Liu, Z. Inhibition of HDAC6 with CAY10603 ameliorates diabetic kidney disease by suppressing NLRP3 inflammasome. Front. Pharmacol., 2022, 13, 938391.
[http://dx.doi.org/10.3389/fphar.2022.938391] [PMID: 35910382]
[106]
Ma, Z.; Zhu, L.; Wang, S.; Guo, X.; Sun, B.; Wang, Q.; Chen, L. Berberine protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition involving the inactivation of the NLRP3 inflammasome. Ren. Fail., 2022, 44(1), 923-932.
[http://dx.doi.org/10.1080/0886022X.2022.2079525] [PMID: 35618411]
[107]
Qu, X.; Zhai, B.; Liu, Y.; Chen, Y.; Xie, Z.; Wang, Q.; Wu, Y.; Liu, Z.; Chen, J.; Mei, S.; Wu, J.; You, Z.; Yu, Y.; Wang, Y. Pyrroloquinoline quinone ameliorates renal fibrosis in diabetic nephropathy by inhibiting the pyroptosis pathway in C57BL/6 mice and human kidney 2 cells. Biomed. Pharmacother., 2022, 150, 112998.
[http://dx.doi.org/10.1016/j.biopha.2022.112998] [PMID: 35489281]
[108]
Gao, Y.; Ma, Y.; Xie, D.; Jiang, H. ManNAc protects against podocyte pyroptosis via inhibiting mitochondrial damage and ROS/NLRP3 signaling pathway in diabetic kidney injury model. Int. Immunopharmacol., 2022, 107, 108711.
[http://dx.doi.org/10.1016/j.intimp.2022.108711] [PMID: 35338958]
[109]
Ding, X.; Zhao, H.; Qiao, C. Icariin protects podocytes from NLRP3 activation by Sesn2-induced mitophagy through the Keap1-Nrf2/HO-1 axis in diabetic nephropathy. Phytomedicine, 2022, 99, 154005.
[http://dx.doi.org/10.1016/j.phymed.2022.154005] [PMID: 35247669]
[110]
Zhang, Y.; Lv, X.; Hu, Z.; Ye, X.; Zheng, X.; Ding, Y.; Xie, P.; Liu, Q. Protection of Mcc950 against high-glucose-induced human retinal endothelial cell dysfunction. Cell Death Dis., 2017, 8(7), e2941.
[http://dx.doi.org/10.1038/cddis.2017.308] [PMID: 28726778]
[111]
Shi, Q.; Wang, J.; Cheng, Y.; Dong, X.; Zhang, M.; Pei, C. Palbinone alleviates diabetic retinopathy in STZ‐induced rats by inhibiting NLRP3 inflammatory activity. J. Biochem. Mol. Toxicol., 2020, 34(7), e22489.
[http://dx.doi.org/10.1002/jbt.22489] [PMID: 32202043]
[112]
Hao, J.; Zhang, H.; Yu, J.; Chen, X.; Yang, L. Methylene blue attenuates diabetic retinopathy by inhibiting nlrp3 inflammasome activation in STZ-induced diabetic rats. Ocul. Immunol. Inflamm., 2019, 27(5), 836-843.
[http://dx.doi.org/10.1080/09273948.2018.1450516] [PMID: 29608341]
[113]
Valle, M.S.; Russo, C.; Malaguarnera, L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab. Res. Rev., 2021, 37(8), e3447.
[http://dx.doi.org/10.1002/dmrr.3447] [PMID: 33760363]
[114]
Louie, H.H.; Shome, A.; Kuo, C.Y.J.; Rupenthal, I.D.; Green, C.R.; Mugisho, O.O. Connexin43 hemichannel block inhibits NLRP3 inflammasome activation in a human retinal explant model of diabetic retinopathy. Exp. Eye Res., 2021, 202, 108384.
[http://dx.doi.org/10.1016/j.exer.2020.108384] [PMID: 33285185]
[115]
Lei, X.W.; Li, Q.; Zhang, J.Z.; Zhang, Y.M.; Liu, Y.; Yang, K.H. The protective roles of folic acid in preventing diabetic retinopathy are potentially associated with suppressions on angiogenesis, inflammation, and oxidative stress. Ophthalmic Res., 2019, 62(2), 80-92.
[http://dx.doi.org/10.1159/000499020] [PMID: 31018207]
[116]
Chen, W.; Zhao, M.; Zhao, S.; Lu, Q.; Ni, L.; Zou, C.; Lu, L.; Xu, X.; Guan, H.; Zheng, Z.; Qiu, Q. Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline. Inflamm. Res., 2017, 66(2), 157-166.
[http://dx.doi.org/10.1007/s00011-016-1002-6] [PMID: 27785530]
[117]
Li, H.; Li, R.; Wang, L.; Liao, D.; Zhang, W.; Wang, J. Proanthocyanidins attenuate the high glucose‐induced damage of retinal pigment epithelial cells by attenuating oxidative stress and inhibiting activation of the NLRP3 inflammasome. J. Biochem. Mol. Toxicol., 2021, 35(9), e22845.
[http://dx.doi.org/10.1002/jbt.22845] [PMID: 34338401]
[118]
Du, J.; Wang, Y.; Tu, Y.; Guo, Y.; Sun, X.; Xu, X.; Liu, X.; Wang, L.; Qin, X.; Zhu, M.; Song, E. A prodrug of epigallocatechin-3-gallate alleviates high glucose-induced pro-angiogenic factor production by inhibiting the ROS/TXNIP/NLRP3 inflammasome axis in retinal Müller cells. Exp. Eye Res., 2020, 196, 108065.
[http://dx.doi.org/10.1016/j.exer.2020.108065] [PMID: 32407725]
[119]
Zhang, J.; Chen, C.; Wu, L.; Wang, Q.; Chen, J.; Zhang, S.; Chen, Z. Synoviolin inhibits the inflammatory cytokine secretion of Müller cells by reducing NLRP3. J. Mol. Endocrinol., 2022, 68(2), 125-136.
[http://dx.doi.org/10.1530/JME-21-0123] [PMID: 34874278]
[120]
Hu, T.; Lu, X.Y.; Shi, J.J.; Liu, X.Q.; Chen, Q.B.; Wang, Q.; Chen, Y.B.; Zhang, S.J. Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J. Cell. Mol. Med., 2020, 24(6), 3449-3459.
[http://dx.doi.org/10.1111/jcmm.15026] [PMID: 32000299]
[121]
Zheng, T.; Yang, X.; Li, W.; Wang, Q.; Chen, L.; Wu, D.; Bian, F.; Xing, S.; Jin, S. Salidroside attenuates high-fat diet-induced nonalcoholic fatty liver disease via AMPK-dependent TXNIP/NLRP3 pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1-17.
[http://dx.doi.org/10.1155/2018/8597897] [PMID: 30140371]
[122]
Hong, P.; Gu, R.N.; Li, F.X.; Xiong, X.X.; Liang, W.B.; You, Z.J.; Zhang, H.F. NLRP3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J. Neuroinflammation, 2019, 16(1), 121.
[http://dx.doi.org/10.1186/s12974-019-1498-0] [PMID: 31174550]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy