Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Pathological Implications of Mucin Signaling in Metastasis

Author(s): Suresh Sulekha Dhanisha and Chandrasekharan Guruvayoorappan*

Volume 23, Issue 8, 2023

Published on: 11 May, 2023

Page: [585 - 602] Pages: 18

DOI: 10.2174/1568009623666230320121332

Price: $65

Abstract

The dynamic mucosal layer provides a selective protective barrier for the epithelial cells lining the body cavities. Diverse human malignancies exploit their intrinsic role to protect and repair epithelia for promoting growth and survival. Aberrant expression of mucin has been known to be associated with poor prognosis of many cancers. However, the emergence of new paradigms in the study of metastasis recognizes the involvement of MUC1, MUC4, MUC5AC, MUC5B, and MUC16 during metastasis initiation and progression. Hence mucins can be used as an attractive target in future diagnostic and therapeutic strategies. In this review, we discuss in detail about mucin family and its domains and the role of different mucins in regulating cancer progression and metastasis. In addition, we briefly discuss insights into mucins as a therapeutic agent.

Next »
Graphical Abstract

[1]
Bansil, R.; Turner, B.S. The biology of mucus: Composition, synthesis and organization. Adv. Drug Deliv. Rev., 2018, 124, 3-15.
[http://dx.doi.org/10.1016/j.addr.2017.09.023] [PMID: 28970050]
[2]
Ma, J.; Rubin, B.K.; Voynow, J.A. Mucins, mucus, and goblet cells. Chest, 2018, 154(1), 169-176.
[http://dx.doi.org/10.1016/j.chest.2017.11.008] [PMID: 29170036]
[3]
Bansil, R.; Turner, B.S. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci., 2006, 11(2-3), 164-170.
[http://dx.doi.org/10.1016/j.cocis.2005.11.001]
[4]
Kumar, S.; Cruz, E.; Joshi, S.; Patel, A.; Jahan, R.; Batra, S.K.; Jain, M. Genetic variants of mucins: Unexplored conundrum. Carcinogenesis, 2017, 38(7), 671-679.
[PMID: 27838635]
[5]
Dhanisha, S.S.; Guruvayoorappan, C.; Drishya, S.; Abeesh, P. Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit. Rev. Oncol. Hematol., 2018, 122, 98-122.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.006] [PMID: 29458795]
[6]
Batra, S.K.; Metzgar, R.S.; Hollingsworth, M.A. Human Muc 1 mucin gene expression in the fetal pancreas. Pancreas, 1992, 7(3), 391-393.
[http://dx.doi.org/10.1097/00006676-199205000-00018] [PMID: 1594562]
[7]
Batra, S.K.; Hollingsworth, M.A. Expression of the human mucin gene, Muc 1, in normal tissues and metastatic pancreatic tumors. Int. J. Pancreatol., 1991, 10(3-4), 287-292.
[http://dx.doi.org/10.1007/BF02924167] [PMID: 1787340]
[8]
Batra, S.K.; Kern, H.F.; Worlock, A.J.; Metzgar, R.S.; Hollingsworth, M.A. Transfection of the human Muc 1 mucin gene into a poorly differentiated human pancreatic tumor cell line, Panc1: Integration, expression and ultrastructural changes. J. Cell Sci., 1991, 100(4), 841-849.
[http://dx.doi.org/10.1242/jcs.100.4.841] [PMID: 1814933]
[9]
Desseyn, J.L.; Buisine, M.P.; Porchet, N.; Aubert, J.P.; Degand, P.; Laine, A. Evolutionary history of the 11p15 human mucin gene family. J. Mol. Evol., 1998, 46(1), 102-106.
[http://dx.doi.org/10.1007/PL00006276] [PMID: 9419229]
[10]
Griffiths, B.; Matthews, D.J.; West, L.; Attwood, J.; Povey, S.; Swallow, D.M.; Gum, J.R.; Kim, Y.S. Assignment of the polymorphic intestinal mucin gene (MUC2) to chromosome 11p15. Ann. Hum. Genet., 1990, 54(4), 277-285.
[http://dx.doi.org/10.1111/j.1469-1809.1990.tb00383.x] [PMID: 1980995]
[11]
Rousseau, K.; Byrne, C.; Kim, Y.S.; Gum, J.R.; Swallow, D.M.; Toribara, N.W. The complete genomic organization of the human MUC6 and MUC2 mucin genes. Genomics, 2004, 83(5), 936-939.
[http://dx.doi.org/10.1016/j.ygeno.2003.11.003] [PMID: 15081123]
[12]
Fox, M.F.; Lahbib, F.; Pratt, W.; Attwood, J.; Gum, J.; Kim, Y.; Swallow, D.M. Regional localization of the intestinal mucin gene MUC3 to chromosome 7q22. Ann. Hum. Genet., 1992, 56(4), 281-287.
[http://dx.doi.org/10.1111/j.1469-1809.1992.tb01154.x] [PMID: 1362870]
[13]
Gum, J.R., Jr; Ho, J.J.L.; Pratt, W.S.; Hicks, J.W.; Hill, A.S.; Vinall, L.E.; Roberton, A.M.; Swallow, D.M.; Kim, Y.S. MUC3 human intestinal mucin. Analysis of gene structure, the carboxyl terminus, and a novel upstream repetitive region. J. Biol. Chem., 1997, 272(42), 26678-26686.
[http://dx.doi.org/10.1074/jbc.272.42.26678] [PMID: 9334251]
[14]
Gum, J.R.; Hicks, J.W.; Swallow, D.M.; Lagace, R.L.; Byrd, J.C.; Lamport, D.T.A.; Siddiki, B.; Kim, Y.S. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Commun., 1990, 171(1), 407-415.
[http://dx.doi.org/10.1016/0006-291X(90)91408-K] [PMID: 2393399]
[15]
Pratt, W.S.; Crawley, S.; Hicks, J.; Ho, J.; Nash, M.; Kim, Y.S.; Gum, J.R.; Swallow, D.M. Multiple transcripts of MUC3: Evidence for two genes, MUC3A and MUC3B. Biochem. Biophys. Res. Commun., 2000, 275(3), 916-923.
[http://dx.doi.org/10.1006/bbrc.2000.3406] [PMID: 10973822]
[16]
Pigny, P.; Guyonnet-Duperat, V.; Hill, A.S.; Pratt, W.S.; Galiegue-Zouitina, S.; d’Hooge, M.C.; Laine, A.; Van-Seuningen, I.; Degand, P.; Gum, J.R.; Kim, Y.S.; Swallow, D.M.; Aubert, J.P.; Porchet, N. Human mucin genes assigned to 11p15.5: Identification and organization of a cluster of genes. Genomics, 1996, 38(3), 340-352.
[http://dx.doi.org/10.1006/geno.1996.0637] [PMID: 8975711]
[17]
Debailleul, V.; Laine, A.; Huet, G.; Mathon, P.; d’Hooghe, M.C.; Aubert, J.P.; Porchet, N. Human mucin genes MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC6 express stable and extremely large mRNAs and exhibit a variable length polymorphism. An improved method to analyze large mRNAs. J. Biol. Chem., 1998, 273(2), 881-890.
[http://dx.doi.org/10.1074/jbc.273.2.881] [PMID: 9422745]
[18]
Toribara, N.W.; Roberton, A.M.; Ho, S.B.; Kuo, W.L.; Gum, E.; Hicks, J.W.; Gum, J.R., Jr; Byrd, J.C.; Siddiki, B.; Kim, Y.S. Human gastric mucin. Identification of a unique species by expression cloning. J. Biol. Chem., 1993, 268(8), 5879-5885.
[http://dx.doi.org/10.1016/S0021-9258(18)53402-5] [PMID: 7680650]
[19]
Bobek, L.A.; Liu, J.; Sait, S.N.J.; Shows, T.B.; Bobek, Y.A.; Levine, M.J. Structure and chromosomal localization of the human salivary mucin gene, MUC7. Genomics, 1996, 31(3), 277-282.
[http://dx.doi.org/10.1006/geno.1996.0049] [PMID: 8838308]
[20]
Shankar, V.; Pichan, P.; Eddy, R.L., Jr; Tonk, V.; Nowak, N.; Sait, S.N.; Shows, T.B.; Schultz, R.E.; Gotway, G.; Elkins, R.C.; Gilmore, M.S.; Sachdev, G.P. Chromosomal localization of a human mucin gene (MUC8) and cloning of the cDNA corresponding to the carboxy terminus. Am. J. Respir. Cell Mol. Biol., 1997, 16(3), 232-241.
[http://dx.doi.org/10.1165/ajrcmb.16.3.9070607] [PMID: 9070607]
[21]
Lapensée, L.; Paquette, Y.; Bleau, G. Allelic polymorphism and chromosomal localization of the human oviductin gene (MUC9). Fertil. Steril., 1997, 68(4), 702-708.
[http://dx.doi.org/10.1016/S0015-0282(97)00317-8] [PMID: 9341614]
[22]
Pallesen, L.T.; Berglund, L.; Rasmussen, L.K.; Petersen, T.E.; Rasmussen, J.T. Isolation and characterization of MUC15, a novel cell membrane-associated mucin. Eur. J. Biochem., 2002, 269(11), 2755-2763.
[http://dx.doi.org/10.1046/j.1432-1033.2002.02949.x] [PMID: 12047385]
[23]
Chen, Y.; Zhao, Y.H.; Kalaslavadi, T.B.; Hamati, E.; Nehrke, K.; Le, A.D.; Ann, D.K.; Wu, R. Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. Am. J. Respir. Cell Mol. Biol., 2004, 30(2), 155-165.
[http://dx.doi.org/10.1165/rcmb.2003-0103OC] [PMID: 12882755]
[24]
Hijikata, M.; Matsushita, I.; Tanaka, G.; Tsuchiya, T.; Ito, H.; Tokunaga, K.; Ohashi, J.; Homma, S.; Kobashi, Y.; Taguchi, Y.; Azuma, A.; Kudoh, S.; Keicho, N. Molecular cloning of two novel mucin-like genes in the disease-susceptibility locus for diffuse panbronchiolitis. Hum. Genet., 2011, 129(2), 117-128.
[http://dx.doi.org/10.1007/s00439-010-0906-4] [PMID: 20981447]
[25]
Itoh, Y.; Kamata-Sakurai, M.; Denda-Nagai, K.; Nagai, S.; Tsuiji, M.; Ishii-Schrade, K.; Okada, K.; Goto, A.; Fukayama, M.; Irimura, T. Identification and expression of human epiglycanin/MUC21: A novel transmembrane mucin. Glycobiology, 2007, 18(1), 74-83.
[http://dx.doi.org/10.1093/glycob/cwm118] [PMID: 17977904]
[26]
Hatakeyama, M. Helicobacter pylori and gastric carcinogenesis. J. Gastroenterol., 2009, 44(4), 239-248.
[http://dx.doi.org/10.1007/s00535-009-0014-1] [PMID: 19271114]
[27]
Gum, J.R., Jr; Crawley, S.C.; Hicks, J.W.; Szymkowski, D.E.; Kim, Y.S. MUC17, a novel membrane-tethered mucin. Biochem. Biophys. Res. Commun., 2002, 291(3), 466-475.
[http://dx.doi.org/10.1006/bbrc.2002.6475] [PMID: 11855812]
[28]
Yin, B.W.T.; Lloyd, K.O. Molecular cloning of the CA125 ovarian cancer antigen: Identification as a new mucin, MUC16. J. Biol. Chem., 2001, 276(29), 27371-27375.
[http://dx.doi.org/10.1074/jbc.M103554200] [PMID: 11369781]
[29]
Gendler, S.J.; Lancaster, C.A.; Taylor-Papadimitriou, J.; Duhig, T.; Peat, N.; Burchell, J.; Pemberton, L.; Lalani, E.N.; Wilson, D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem., 1990, 265(25), 15286-15293.
[http://dx.doi.org/10.1016/S0021-9258(18)77254-2] [PMID: 1697589]
[30]
Ligtenberg, M.J.; Vos, H.L.; Gennissen, A.M.; Hilkens, J. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J. Biol. Chem., 1990, 265(10), 5573-5578.
[http://dx.doi.org/10.1016/S0021-9258(19)39399-8] [PMID: 2318825]
[31]
Porchet, N.; Pigny, P.; Buisine, M.P.; Debailleul, V.; Degand, P.; Laine, A.; Aubert, J.P. Human mucin genes: Genomic organization and expression of MUC4, MUC5AC and MUC5B. Biochem. Soc. Trans., 1995, 23(4), 800-805.
[http://dx.doi.org/10.1042/bst0230800] [PMID: 8654841]
[32]
Timpte, C.S.; Eckhardt, A.E.; Abernethy, J.L.; Hill, R.L. Porcine submaxillary gland apomucin contains tandemly repeated, identical sequences of 81 residues. J. Biol. Chem., 1988, 263(2), 1081-1088.
[http://dx.doi.org/10.1016/S0021-9258(19)35463-8] [PMID: 2826455]
[33]
Gupta, R.; Jentoft, N. Subunit structure of porcine submaxillary mucin. Biochemistry, 1989, 28(14), 6114-6121.
[http://dx.doi.org/10.1021/bi00440a058] [PMID: 2775758]
[34]
Bork, P.; Patthy, L. The SEA module: A new extracellular domain associated with O -glycosylation. Protein Sci., 1995, 4(7), 1421-1425.
[http://dx.doi.org/10.1002/pro.5560040716] [PMID: 7670383]
[35]
Ciccarelli, F.D.; Doerks, T.; Bork, P. AMOP, a protein module alternatively spliced in cancer cells. Trends Biochem. Sci., 2002, 27(3), 113-115.
[http://dx.doi.org/10.1016/S0968-0004(01)02049-7] [PMID: 11893501]
[36]
Duraisamy, S.; Ramasamy, S.; Kharbanda, S.; Kufe, D. Distinct evolution of the human carcinoma-associated transmembrane mucins, MUC1, MUC4 AND MUC16. Gene, 2006, 373, 28-34.
[http://dx.doi.org/10.1016/j.gene.2005.12.021] [PMID: 16500040]
[37]
Maeda, T.; Inoue, M.; Koshiba, S.; Yabuki, T.; Aoki, M.; Nunokawa, E.; Seki, E.; Matsuda, T.; Motoda, Y.; Kobayashi, A.; Hiroyasu, F.; Shirouzu, M.; Terada, T.; Hayami, N.; Ishizuka, Y.; Shinya, N.; Tatsuguchi, A.; Yoshida, M.; Hirota, H.; Matsuo, Y.; Tani, K.; Arakawa, T.; Carninci, P.; Kawai, J.; Hayashizaki, Y.; Kigawa, T.; Yokoyama, S. Solution structure of the SEA domain from the murine homologue of ovarian cancer antigen CA125 (MUC16). J. Biol. Chem., 2004, 279(13), 13174-13182.
[http://dx.doi.org/10.1074/jbc.M309417200] [PMID: 14764598]
[38]
James, P.D.; Goodeve, A.C. von Willebrand disease. Genet. Med., 2011, 13(5), 365-376.
[http://dx.doi.org/10.1097/GIM.0b013e3182035931] [PMID: 21289515]
[39]
Kimura, N.; Toyoshima, T.; Kojima, T.; Shimane, M. Entactin-2: A new member of basement membrane protein with high homology to entactin/nidogen. Exp. Cell Res., 1998, 241(1), 36-45.
[http://dx.doi.org/10.1006/excr.1998.4016] [PMID: 9633511]
[40]
Sasaki, T.; Costell, M.; Mann, K.; Timpl, R. Inhibition of glycosaminoglycan modification of perlecan domain I by site-directed mutagenesis changes protease sensitivity and laminin-1 binding activity. FEBS Lett., 1998, 435(2-3), 169-172.
[http://dx.doi.org/10.1016/S0014-5793(98)01063-1] [PMID: 9762901]
[41]
Senapati, S.; Gnanapragassam, V.S.; Moniaux, N.; Momi, N.; Batra, S.K. Role of MUC4–NIDO domain in the MUC4-mediated metastasis of pancreatic cancer cells. Oncogene, 2012, 31(28), 3346-3356.
[http://dx.doi.org/10.1038/onc.2011.505] [PMID: 22105367]
[42]
Macao, B.; Johansson, D.G.A.; Hansson, G.C.; Härd, T. Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat. Struct. Mol. Biol., 2006, 13(1), 71-76.
[http://dx.doi.org/10.1038/nsmb1035] [PMID: 16369486]
[43]
Celià-Terrassa, T.; Meca-Cortés, Ó.; Mateo, F.; Martínez de Paz, A.; Rubio, N.; Arnal-Estapé, A.; Ell, B.J.; Bermudo, R.; Díaz, A.; Guerra-Rebollo, M.; Lozano, J.J.; Estarás, C.; Ulloa, C. ρlvarez-Simón, D.; Milà, J.; Vilella, R.; Paciucci, R.; Martínez-Balbás, M.; García de Herreros, A.; Gomis, R.R.; Kang, Y.; Blanco, J.; Fernández, P.L.; Thomson, T.M. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Invest., 2012, 122(5), 1849-1868.
[http://dx.doi.org/10.1172/JCI59218] [PMID: 22505459]
[44]
Chugh, S.; Gnanapragassam, V.S.; Jain, M.; Rachagani, S.; Ponnusamy, M.P.; Batra, S.K. Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochim. Biophys. Acta, 2015, 1856(2), 211-225.
[PMID: 26318196]
[45]
Xue, M.; Tao, W. Upregulation of MUC1 by its novel activator 14-3-3ζ promotes tumor invasion and indicates poor prognosis in lung adenocarcinoma. Oncol. Rep., 2017, 38(5), 2637-2646.
[http://dx.doi.org/10.3892/or.2017.5948] [PMID: 28901525]
[46]
Hinoda, Y.; Ikematsu, Y.; Horinochi, M.; Sato, S.; Yamamoto, K.; Nakano, T.; Fukui, M.; Suehiro, Y.; Hamanaka, Y.; Nishikawa, Y.; Kida, H.; Waki, S.; Oka, M.; Imai, K.; Yonezawa, S. Increased expression of MUC1 in advanced pancreatic cancer. J. Gastroenterol., 2003, 38(12), 1162-1166.
[http://dx.doi.org/10.1007/s00535-003-1224-6] [PMID: 14714254]
[47]
Zhang, Y.; Dong, X.; Bai, L.; Shang, X.; Zeng, Y. MUC1 induced immunosuppression in colon cancer can be reversed by blocking the PD1/PDL1 signaling pathway. Oncol. Lett., 2020, 20(6), 1.
[http://dx.doi.org/10.3892/ol.2020.12180] [PMID: 33133253]
[48]
Jing, X.; Liang, H.; Hao, C.; Yang, X.; Cui, X. Overexpression of MUC1 predicts poor prognosis in patients with breast cancer. Oncol. Rep., 2019, 41(2), 801-810.
[PMID: 30483806]
[49]
Lee, H.S.; Lee, H.K.; Kim, H.S.; Yang, H.K.; Kim, Y.I.; Kim, W.H. MUC1, MUC2, MUC5AC, and MUC6 expressions in gastric carcinomas. Cancer, 2001, 92(6), 1427-1434.
[http://dx.doi.org/10.1002/1097-0142(20010915)92:6<1427:AID-CNCR1466>3.0.CO;2-L] [PMID: 11745219]
[50]
Ma, Q.; Song, J.; Wang, S.; He, N. MUC1 regulates AKT signaling pathway by upregulating EGFR expression in ovarian cancer cells. Pathol. Res. Pract., 2021, 224, 153509.
[http://dx.doi.org/10.1016/j.prp.2021.153509] [PMID: 34118726]
[51]
Su, W.; Feng, B.; Hu, L.; Guo, X.; Yu, M. MUC3A promotes the progression of colorectal cancer through the PI3K/Akt/mTOR pathway. BMC Cancer, 2022, 22(1), 602.
[http://dx.doi.org/10.1186/s12885-022-09709-8] [PMID: 35655161]
[52]
Moniaux, N.; Andrianifahanana, M.; Brand, R.E.; Batra, S.K. Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. Br. J. Cancer, 2004, 91(9), 1633-1638.
[http://dx.doi.org/10.1038/sj.bjc.6602163] [PMID: 15494719]
[53]
Sun, Y.; Sun, X.; You, C.; Ma, S.; Luo, Y.; Peng, S.; Tang, F.; Tian, X.; Wang, F.; Huang, Z.; Yu, H.; Xiao, Y.; Wang, X.; Zhang, J.; Gong, Y.; Xie, C. MUC3A promotes non-small cell lung cancer progression via activating the NFκB pathway and attenuates radiosensitivity. Int. J. Biol. Sci., 2021, 17(10), 2523-2536.
[http://dx.doi.org/10.7150/ijbs.59430] [PMID: 34326691]
[54]
Matsukita, S.; Nomoto, M.; Kitajima, S.; Tanaka, S.; Goto, M.; Irimura, T.; Kim, Y.S.; Sato, E.; Yonezawa, S. Expression of mucins (MUC1, MUC2, MUC5AC and MUC6) in mucinous carcinoma of the breast: Comparison with invasive ductal carcinoma. Histopathology, 2003, 42(1), 26-36.
[http://dx.doi.org/10.1046/j.1365-2559.2003.01530.x] [PMID: 12493022]
[55]
Duncan, T.J.; Watson, N.F.S.; Al-Attar, A.H.; Scholefield, J.H.; Durrant, L.G. The role of MUC1 and MUC3 in the biology and prognosis of colorectal cancer. World J. Surg. Oncol., 2007, 5(1), 31.
[http://dx.doi.org/10.1186/1477-7819-5-31] [PMID: 17349047]
[56]
Majhi, P.D.; Lakshmanan, I.; Ponnusamy, M.P.; Jain, M.; Das, S.; Kaur, S.; Shimizu, S.T.; West, W.W.; Johansson, S.L.; Smith, L.M.; Yu, F.; Rolle, C.E.; Sharma, P.; Carey, G.B.; Batra, S.K.; Ganti, A.K. Pathobiological implications of MUC4 in non-small-cell lung cancer. J. Thorac. Oncol., 2013, 8(4), 398-407.
[http://dx.doi.org/10.1097/JTO.0b013e3182829e06] [PMID: 23370366]
[57]
Gautam, S.K.; Kumar, S.; Cannon, A.; Hall, B.; Bhatia, R.; Nasser, M.W.; Mahapatra, S.; Batra, S.K.; Jain, M. MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opin. Ther. Targets, 2017, 21(7), 657-669.
[http://dx.doi.org/10.1080/14728222.2017.1323880] [PMID: 28460571]
[58]
Ponnusamy, M.P.; Singh, A.P.; Jain, M.; Chakraborty, S.; Moniaux, N.; Batra, S.K. MUC4 activates HER2 signalling and enhances the motility of human ovarian cancer cells. Br. J. Cancer, 2008, 99(3), 520-526.
[http://dx.doi.org/10.1038/sj.bjc.6604517] [PMID: 18665193]
[59]
Williams, S.J.; McGuckin, M.A.; Gotley, D.C.; Eyre, H.J.; Sutherland, G.R.; Antalis, T.M. Two novel mucin genes down-regulated in colorectal cancer identified by differential display. Cancer Res., 1999, 59(16), 4083-4089.
[PMID: 10463611]
[60]
Chauhan, S.C.; Vannatta, K.; Ebeling, M.C.; Vinayek, N.; Watanabe, A.; Pandey, K.K.; Bell, M.C.; Koch, M.D.; Aburatani, H.; Lio, Y.; Jaggi, M. Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res., 2009, 69(3), 765-774.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0587] [PMID: 19176398]
[61]
Gupta, B.K.; Maher, D.M.; Ebeling, M.C.; Stephenson, P.D.; Puumala, S.E.; Koch, M.R.; Aburatani, H.; Jaggi, M.; Chauhan, S.C. Functions and regulation of MUC13 mucin in colon cancer cells. J. Gastroenterol., 2014, 49(10), 1378-1391.
[http://dx.doi.org/10.1007/s00535-013-0885-z] [PMID: 24097071]
[62]
Wang, S.; Jin, J.; Chen, J.; Lou, W. MUC14-related ncRNA-mRNA network in breast cancer. Genes, 2021, 12(11), 1677.
[http://dx.doi.org/10.3390/genes12111677] [PMID: 34828282]
[63]
Choi, C.; Thi Thao Tran, N.; Van Ngu, T.; Park, S.W.; Song, M.S.; Kim, S.H.; Bae, Y.U.; Ayudthaya, P.D.N.; Munir, J.; Kim, E.; Baek, M.J.; Song, S.; Ryu, S.; Nam, K.H. Promotion of tumor progression and cancer stemness by MUC15 in thyroid cancer via the GPCR/ERK and integrin-FAK signaling pathways. Oncogenesis, 2018, 7(11), 85.
[http://dx.doi.org/10.1038/s41389-018-0094-y] [PMID: 30420637]
[64]
Matte, I.; Garde-Granger, P.; Bessette, P.; Piché, A. Ascites from ovarian cancer patients stimulates MUC16 mucin expression and secretion in human peritoneal mesothelial cells through an Akt-dependent pathway. BMC Cancer, 2019, 19(1), 406.
[http://dx.doi.org/10.1186/s12885-019-5611-7] [PMID: 31039761]
[65]
Lakshmanan, I.; Salfity, S.; Seshacharyulu, P.; Rachagani, S.; Thomas, A.; Das, S.; Majhi, P.D.; Nimmakayala, R.K.; Vengoji, R.; Lele, S.M.; Ponnusamy, M.P.; Batra, S.K.; Ganti, A.K. MUC16 regulates TSPYL5 for lung cancer cell growth and chemoresistance by suppressing p53. Clin. Cancer Res., 2017, 23(14), 3906-3917.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2530] [PMID: 28196872]
[66]
Muniyan, S.; Haridas, D.; Chugh, S.; Rachagani, S.; Lakshmanan, I.; Gupta, S.; Seshacharyulu, P.; Smith, L.M.; Ponnusamy, M.P.; Batra, S.K. MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes Cancer, 2016, 7(3-4), 110-124.
[http://dx.doi.org/10.18632/genesandcancer.104] [PMID: 27382435]
[67]
Xiao, X.; Wang, L.; Wei, P.; Chi, Y.; Li, D.; Wang, Q.; Ni, S.; Tan, C.; Sheng, W.; Sun, M.; Zhou, X.; Du, X. Role of MUC20 overexpression as a predictor of recurrence and poor outcome in colorectal cancer. J. Transl. Med., 2013, 11(1), 151.
[http://dx.doi.org/10.1186/1479-5876-11-151] [PMID: 23787019]
[68]
Chen, S.T.; Kuo, T.C.; Liao, Y.Y.; Lin, M.C.; Tien, Y.W.; Huang, M.C. Silencing of MUC20 suppresses the malignant character of pancreatic ductal adenocarcinoma cells through inhibition of the HGF/MET pathway. Oncogene, 2018, 37(46), 6041-6053.
[http://dx.doi.org/10.1038/s41388-018-0403-0] [PMID: 29993037]
[69]
Lin, S.; Tian, C.; Li, J.; Liu, B.; Ma, T.; Chen, K.; Gong, W.; Wang, J.; Huang, J. Differential MUC22 expression by epigenetic alterations in human lung squamous cell carcinoma and adenocarcinoma. Oncol. Rep., 2021, 45(5), 78.
[http://dx.doi.org/10.3892/or.2021.8029] [PMID: 33786615]
[70]
Kasprzak, A.; Siodła, E.; Andrzejewska, M.; Szmeja, J.; Seraszek-Jaros, A.; Cofta, S.; Szaflarski, W. Differential expression of mucin 1 and mucin 2 in colorectal cancer. World J. Gastroenterol., 2018, 24(36), 4164-4177.
[http://dx.doi.org/10.3748/wjg.v24.i36.4164] [PMID: 30271081]
[71]
Astashchanka, A.; Shroka, T.M.; Jacobsen, B.M. Mucin 2 (MUC2) modulates the aggressiveness of breast cancer. Breast Cancer Res. Treat., 2019, 173(2), 289-299.
[http://dx.doi.org/10.1007/s10549-018-4989-2] [PMID: 30317423]
[72]
Zhang, C.T.; He, K.C.; Pan, F.; Li, Y.; Wu, J. Prognostic value of Muc5AC in gastric cancer: A meta-analysis. World J. Gastroenterol., 2015, 21(36), 10453-10460.
[http://dx.doi.org/10.3748/wjg.v21.i36.10453] [PMID: 26420972]
[73]
Wongkham, S.; Sheehan, J.K.; Boonla, C.; Patrakitkomjorn, S.; Howard, M.; Kirkham, S.; Sripa, B.; Wongkham, C.; Bhudhisawasdi, V. Serum MUC5AC mucin as a potential marker for cholangiocarcinoma. Cancer Lett., 2003, 195(1), 93-99.
[http://dx.doi.org/10.1016/S0304-3835(02)00691-2] [PMID: 12767517]
[74]
Valque, H.; Gouyer, V.; Gottrand, F.; Desseyn, J.L. MUC5B leads to aggressive behavior of breast cancer MCF7 cells. PLoS One, 2012, 7(10), e46699.
[http://dx.doi.org/10.1371/journal.pone.0046699] [PMID: 23056409]
[75]
Perrais, M.; Pigny, P.; Buisine, M.P.; Porchet, N.; Aubert, J.P.; Van Seuningen-Lempire, I. Aberrant expression of human mucin gene MUC5B in gastric carcinoma and cancer cells. Identification and regulation of a distal promoter. J. Biol. Chem., 2001, 276(18), 15386-15396.
[http://dx.doi.org/10.1074/jbc.M010534200] [PMID: 11278696]
[76]
Yuan, S.; Liu, Q.; Hu, Z.; Zhou, Z.; Wang, G.; Li, C.; Xie, W.; Meng, G.; Xiang, Y.; Wu, N.; Wu, L.; Yu, Z.; Bai, L.; Li, Y. Long non-coding RNA MUC5B-AS1 promotes metastasis through mutually regulating MUC5B expression in lung adenocarcinoma. Cell Death Dis., 2018, 9(5), 450.
[http://dx.doi.org/10.1038/s41419-018-0472-6] [PMID: 29670111]
[77]
Shi, D.; Xi, X. Regulation of MUC6 methylation correlates with progression of gastric cancer. Yonsei Med. J., 2021, 62(11), 1005-1015.
[http://dx.doi.org/10.3349/ymj.2021.62.11.1005] [PMID: 34672134]
[78]
Yu, D.F.; Chen, Y.; Han, J.M.; Zhang, H.; Chen, X.P.; Zou, W.J.; Liang, L.Y.; Xu, C.C.; Liu, Z.G. MUC19 expression in human ocular surface and lacrimal gland and its alteration in Sjögren syndrome patients. Exp. Eye Res., 2008, 86(2), 403-411.
[http://dx.doi.org/10.1016/j.exer.2007.11.013] [PMID: 18184611]
[79]
Biesbrock, A.R.; Bobek, L.A.; Levine, M.J. MUC7 gene expression and genetic polymorphism. Glycoconj. J., 1997, 14(4), 415-422.
[http://dx.doi.org/10.1023/A:1018587031814] [PMID: 9249138]
[80]
Kim, C.; Kim, H.J.; Song, K.S.; Seong, J.; Kim, K.; Lee, J.; Yoon, J. MUC8 as a ciliated cell marker in human nasal epithelium. Acta Otolaryngol., 2005, 125(1), 76-81.
[http://dx.doi.org/10.1080/00016480410015785] [PMID: 15799579]
[81]
Hendrix, E.; Hewetson, A.; Mansharamani, M.; Chilton, B.S. Oviductin (Muc9) is expressed in rabbit endocervix. Endocrinology, 2001, 142(5), 2151-2154.
[http://dx.doi.org/10.1210/endo.142.5.8285] [PMID: 11316784]
[82]
White, B.; Patterson, M.; Karnwal, S.; Brooks, C.L. Crystal structure of a human MUC16 SEA domain reveals insight into the nature of the CA125 tumor marker. Proteins, 2022, 90(5), 1210-1218.
[http://dx.doi.org/10.1002/prot.26303] [PMID: 35037700]
[83]
Swami, A.; Kaur, V. von willebrand disease: A concise review and update for the practicing physician. Clin. Appl. Thromb. Hemost., 2017, 23(8), 900-910.
[http://dx.doi.org/10.1177/1076029616675969] [PMID: 27920237]
[84]
Kohfeldt, E.; Sasaki, T.; Göhring, W.; Timpl, R. Nidogen-2: A new basement membrane protein with diverse binding properties. J. Mol. Biol., 1998, 282(1), 99-109.
[http://dx.doi.org/10.1006/jmbi.1998.2004] [PMID: 9733643]
[85]
Iozzo, R.V.; Cohen, I.R.; Grässel, S.; Murdoch, A.D. The biology of perlecan: The multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem. J., 1994, 302(3), 625-639.
[http://dx.doi.org/10.1042/bj3020625] [PMID: 7945186]
[86]
Singh, A.P.; Chaturvedi, P.; Batra, S.K. Emerging roles of MUC4 in cancer: A novel target for diagnosis and therapy. Cancer Res., 2007, 67(2), 433-436.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3114] [PMID: 17234748]
[87]
Appella, E.; Weber, I.T.; Blasi, F. Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett., 1988, 231(1), 1-4.
[http://dx.doi.org/10.1016/0014-5793(88)80690-2] [PMID: 3282918]
[88]
Davis, C.G. The many faces of epidermal growth factor repeats. New Biol., 1990, 2(5), 410-419.
[PMID: 2288911]
[89]
Hommel, U.; Harvey, T.S.; Driscoll, P.C.; Campbell, I.D. Human epidermal growth factor. J. Mol. Biol., 1992, 227(1), 271-282.
[http://dx.doi.org/10.1016/0022-2836(92)90697-I] [PMID: 1522591]
[90]
Crawley, S.C.; Gum, J.R., Jr; Hicks, J.W.; Pratt, W.S.; Aubert, J.P.; Swallow, D.M.; Kim, Y.S. Genomic organization and structure of the 3′ region of human MUC3: Alternative splicing predicts membrane-bound and soluble forms of the mucin. Biochem. Biophys. Res. Commun., 1999, 263(3), 728-736.
[http://dx.doi.org/10.1006/bbrc.1999.1466] [PMID: 10512748]
[91]
Maher, D.M.; Gupta, B.K.; Nagata, S.; Jaggi, M.; Chauhan, S.C. Mucin 13: Structure, function, and potential roles in cancer pathogenesis. Mol. Cancer Res., 2011, 9(5), 531-537.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0443] [PMID: 21450906]
[92]
Jepson, S.; Komatsu, M.; Haq, B.; Arango, M.E.; Huang, D.; Carraway, C.A.C.; Carraway, K.L. Muc4/sialomucin complex, the intramembrane ErbB2 ligand, induces specific phosphorylation of ErbB2 and enhances expression of p27kip, but does not activate mitogen-activated kinase or protein kinaseB/Akt pathways. Oncogene, 2002, 21(49), 7524-7532.
[http://dx.doi.org/10.1038/sj.onc.1205970] [PMID: 12386815]
[93]
Hollingsworth, M.A.; Swanson, B.J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer, 2004, 4(1), 45-60.
[http://dx.doi.org/10.1038/nrc1251] [PMID: 14681689]
[94]
Deng, S.S.; Xing, T.Y.; Zhou, H.Y.; Xiong, R.H.; Lu, Y.G.; Wen, B.; Liu, S.Q.; Yang, H.J. Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human. Genom. Proteom. Bioinform., 2006, 4(3), 165-172.
[http://dx.doi.org/10.1016/S1672-0229(06)60029-6] [PMID: 17127214]
[95]
Lacunza, E.; Baudis, M.; Colussi, A.G.; Segal-Eiras, A.; Croce, M.V.; Abba, M.C. MUC1 oncogene amplification correlates with protein overexpression in invasive breast carcinoma cells. Cancer Genet. Cytogenet., 2010, 201(2), 102-110.
[http://dx.doi.org/10.1016/j.cancergencyto.2010.05.015] [PMID: 20682394]
[96]
Hashim, Z.M. The significance of CA15-3 in breast cancer patients and its relationship to HER-2 receptor status. Int. J. Immunopathol. Pharmacol., 2014, 27(1), 45-51.
[http://dx.doi.org/10.1177/039463201402700107] [PMID: 24674678]
[97]
Rakha, E.A.; Boyce, R.W.G.; Abd El-Rehim, D.; Kurien, T.; Green, A.R.; Paish, E.C.; Robertson, J.F.R.; Ellis, I.O. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod. Pathol., 2005, 18(10), 1295-1304.
[http://dx.doi.org/10.1038/modpathol.3800445] [PMID: 15976813]
[98]
Yang, I.V.; Fingerlin, T.E.; Evans, C.M.; Schwarz, M.I.; Schwartz, D.A. MUC5B and idiopathic pulmonary fibrosis. Ann. Am. Thorac. Soc., 2015, 12(S2), S193-S199.
[http://dx.doi.org/10.1513/AnnalsATS.201503-110AW] [PMID: 26595739]
[99]
Utsunomiya, T.; Yonezawa, S.; Sakamoto, H.; Kitamura, H.; Hokita, S.; Aiko, T.; Tanaka, S.; Irimura, T.; Kim, Y.S.; Sato, E. Expression of MUC1 and MUC2 mucins in gastric carcinomas: Its relationship with the prognosis of the patients. Clin. Cancer Res., 1998, 4(11), 2605-2614.
[PMID: 9829723]
[100]
Ferreira, J.A.; Magalhães, A.; Gomes, J.; Peixoto, A.; Gaiteiro, C.; Fernandes, E.; Santos, L.L.; Reis, C.A. Protein glycosylation in gastric and colorectal cancers: Toward cancer detection and targeted therapeutics. Cancer Lett., 2017, 387, 32-45.
[http://dx.doi.org/10.1016/j.canlet.2016.01.044] [PMID: 26828132]
[101]
Shimamura, T.; Ito, H.; Shibahara, J.; Watanabe, A.; Hippo, Y.; Taniguchi, H.; Chen, Y.; Kashima, T.; Ohtomo, T.; Tanioka, F.; Iwanari, H.; Kodama, T.; Kazui, T.; Sugimura, H.; Fukayama, M.; Aburatani, H. Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Sci., 2005, 96(5), 265-273.
[http://dx.doi.org/10.1111/j.1349-7006.2005.00043.x] [PMID: 15904467]
[102]
Zeng, Y.; Zhang, Q.; Zhang, Y.; Lu, M.; Liu, Y.; Zheng, T.; Feng, S.; Hao, M.; Shi, H. MUC1 predicts colorectal cancer metastasis: A systematic review and meta-analysis of case controlled studies. PLoS One, 2015, 10(9), e0138049.
[http://dx.doi.org/10.1371/journal.pone.0138049] [PMID: 26367866]
[103]
Niv, Y.; Rokkas, T. Mucin expression in colorectal cancer (CRC). J. Clin. Gastroenterol., 2019, 53(6), 434-440.
[http://dx.doi.org/10.1097/MCG.0000000000001050] [PMID: 29782466]
[104]
Giamougiannis, P.; Martin-Hirsch, P.L.; Martin, F.L. The evolving role of MUC16 (CA125) in the transformation of ovarian cells and the progression of neoplasia. Carcinogenesis, 2021, 42(3), 327-343.
[http://dx.doi.org/10.1093/carcin/bgab010] [PMID: 33608706]
[105]
Chauhan, S.C.; Kumar, D.; Jaggi, M. Mucins in ovarian cancer diagnosis and therapy. J. Ovarian Res., 2009, 2(1), 21.
[http://dx.doi.org/10.1186/1757-2215-2-21] [PMID: 20034397]
[106]
Ansari, D.; Urey, C.; Gundewar, C.; Bauden, M.P.; Andersson, R. Comparison of MUC4 expression in primary pancreatic cancer and paired lymph node metastases. Scand. J. Gastroenterol., 2013, 48(10), 1183-1187.
[http://dx.doi.org/10.3109/00365521.2013.832368] [PMID: 24047396]
[107]
Li, Y.; Yi, H.; Yao, Y.; Liao, X.; Xie, Y.; Yang, J.; Yan, Z.; Wang, L.; Lu, S.; Kuang, Y.; Gu, M.; Fei, J.; Wang, Z.; Huang, L. The cytoplasmic domain of MUC1 induces hyperplasia in the mammary gland and correlates with nuclear accumulation of β-catenin. PLoS One, 2011, 6(4), e19102.
[http://dx.doi.org/10.1371/journal.pone.0019102] [PMID: 21533058]
[108]
Schroeder, J.A.; Masri, A.A.; Adriance, M.C.; Tessier, J.C.; Kotlarczyk, K.L.; Thompson, M.C.; Gendler, S.J. MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene, 2004, 23(34), 5739-5747.
[http://dx.doi.org/10.1038/sj.onc.1207713] [PMID: 15221004]
[109]
Horn, G.; Gaziel, A.; Wreschner, D.H.; Smorodinsky, N.I.; Ehrlich, M. ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1. Exp. Cell Res., 2009, 315(8), 1490-1504.
[http://dx.doi.org/10.1016/j.yexcr.2009.02.011] [PMID: 19245809]
[110]
Schroeder, J.A.; Thompson, M.C.; Gardner, M.M.; Gendler, S.J. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J. Biol. Chem., 2001, 276(16), 13057-13064.
[http://dx.doi.org/10.1074/jbc.M011248200] [PMID: 11278868]
[111]
Singh, P.K.; Behrens, M.E.; Eggers, J.P.; Cerny, R.L.; Bailey, J.M.; Shanmugam, K.; Gendler, S.J.; Bennett, E.P.; Hollingsworth, M.A. Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J. Biol. Chem., 2008, 283(40), 26985-26995.
[http://dx.doi.org/10.1074/jbc.M805036200] [PMID: 18625714]
[112]
Singh, P.K.; Wen, Y.; Swanson, B.J.; Shanmugam, K.; Kazlauskas, A.; Cerny, R.L.; Gendler, S.J.; Hollingsworth, M.A. Platelet-derived growth factor receptor beta-mediated phosphorylation of MUC1 enhances invasiveness in pancreatic adenocarcinoma cells. Cancer Res., 2007, 67(11), 5201-5210.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4647] [PMID: 17545600]
[113]
Raina, D.; Ahmad, R.; Kumar, S.; Ren, J.; Yoshida, K.; Kharbanda, S.; Kufe, D. MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. EMBO J., 2006, 25(16), 3774-3783.
[http://dx.doi.org/10.1038/sj.emboj.7601263] [PMID: 16888623]
[114]
Srivastava, S.K.; Bhardwaj, A.; Singh, S.; Arora, S.; Wang, B.; Grizzle, W.E.; Singh, A.P. MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis, 2011, 32(12), 1832-1839.
[http://dx.doi.org/10.1093/carcin/bgr223] [PMID: 21983127]
[115]
Shirasaki, H.; Kanaizumi, E.; Watanabe, K.; Konno, N.; Sato, J.; Narita, S.; Himi, T. Tumor necrosis factor increases MUC1 mRNA in cultured human nasal epithelial cells. Acta Otolaryngol., 2003, 123(4), 524-531.
[http://dx.doi.org/10.1080/00016480310001268] [PMID: 12797589]
[116]
Udhayakumar, G.; Jayanthi, V.; Devaraj, N.; Devaraj, H. Interaction of MUC1 with β-catenin modulates the Wnt target Gene cyclinD1 inH.pylori-induced gastric cancer. Mol. Carcinog., 2007, 46(9), 807-817.
[http://dx.doi.org/10.1002/mc.20311] [PMID: 17393422]
[117]
Baldus, S.E.; Mönig, S.P.; Huxel, S.; Landsberg, S.; Hanisch, F.G.; Engelmann, K.; Schneider, P.M.; Thiele, J.; Hölscher, A.H.; Dienes, H.P. MUC1 and nuclear beta-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis. Clin. Cancer Res., 2004, 10(8), 2790-2796.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0163] [PMID: 15102686]
[118]
Mori, Y.; Akita, K.; Tanida, S.; Ishida, A.; Toda, M.; Inoue, M.; Yashiro, M.; Sawada, T.; Hirakawa, K.; Nakada, H. MUC1 protein induces urokinase-type plasminogen activator (uPA) by forming a complex with NF-κB p65 transcription factor and binding to the uPA promoter, leading to enhanced invasiveness of cancer cells. J. Biol. Chem., 2014, 289(51), 35193-35204.
[http://dx.doi.org/10.1074/jbc.M114.586461] [PMID: 25371209]
[119]
Mahanta, S.; Fessler, S.P.; Park, J.; Bamdad, C. A minimal fragment of MUC1 mediates growth of cancer cells. PLoS One, 2008, 3(4), e2054.
[http://dx.doi.org/10.1371/journal.pone.0002054] [PMID: 18446242]
[120]
Roy, L.D.; Sahraei, M.; Subramani, D.B.; Besmer, D.; Nath, S.; Tinder, T.L.; Bajaj, E.; Shanmugam, K.; Lee, Y.Y.; Hwang, S.I.L.; Gendler, S.J.; Mukherjee, P. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 2011, 30(12), 1449-1459.
[http://dx.doi.org/10.1038/onc.2010.526] [PMID: 21102519]
[121]
Rajabi, H.; Ahmad, R.; Jin, C.; Joshi, M.D.; Guha, M.; Alam, M.; Kharbanda, S.; Kufe, D. MUC1-C oncoprotein confers androgen-independent growth of human prostate cancer cells. Prostate, 2012, 72(15), 1659-1668.
[http://dx.doi.org/10.1002/pros.22519] [PMID: 22473899]
[122]
Kam, J.L.; Regimbald, L.H.; Hilgers, J.H.; Hoffman, P.; Krantz, M.J.; Longenecker, B.M.; Hugh, J.C. MUC1 synthetic peptide inhibition of intercellular adhesion molecule-1 and MUC1 binding requires six tandem repeats. Cancer Res., 1998, 58(23), 5577-5581.
[PMID: 9850097]
[123]
von Mensdorff-Pouilly, S.; Snijdewint, F.G.M.; Verstraeten, A.A.; Verheijen, R.H.M.; Kenemans, P. Human MUC1 mucin: A multifaceted glycoprotein. Int. J. Biol. Markers, 2000, 15(4), 343-356.
[http://dx.doi.org/10.1177/172460080001500413] [PMID: 11192832]
[124]
Bhatia, R.; Gautam, S.K.; Cannon, A.; Thompson, C.; Hall, B.R.; Aithal, A.; Banerjee, K.; Jain, M.; Solheim, J.C.; Kumar, S.; Batra, S.K. Cancer-associated mucins: Role in immune modulation and metastasis. Cancer Metastasis Rev., 2019, 38(1-2), 223-236.
[http://dx.doi.org/10.1007/s10555-018-09775-0] [PMID: 30618016]
[125]
Park, J.; Wysocki, R.W.; Amoozgar, Z.; Maiorino, L.; Fein, M.R.; Jorns, J.; Schott, A.F.; Kinugasa-Katayama, Y.; Lee, Y.; Won, N.H.; Nakasone, E.S.; Hearn, S.A.; Küttner, V.; Qiu, J.; Almeida, A.S.; Perurena, N.; Kessenbrock, K.; Goldberg, M.S.; Egeblad, M. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med., 2016, 8(361), 361ra138.
[http://dx.doi.org/10.1126/scitranslmed.aag1711] [PMID: 27798263]
[126]
Chaturvedi, P.; Singh, A.P.; Chakraborty, S.; Chauhan, S.C.; Bafna, S.; Meza, J.L.; Singh, P.K.; Hollingsworth, M.A.; Mehta, P.P.; Batra, S.K. MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res., 2008, 68(7), 2065-2070.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6041] [PMID: 18381409]
[127]
Kozloski, G.A.; Carraway, C.A.C.; Carraway, K.L. Mechanistic and signaling analysis of Muc4-ErbB2 signaling module: New insights into the mechanism of ligand-independent ErbB2 activity. J. Cell. Physiol., 2010, 224(3), 649-657.
[http://dx.doi.org/10.1002/jcp.22163] [PMID: 20432461]
[128]
Ramsauer, V.P.; Pino, V.; Farooq, A.; Carothers Carraway, C.A.; Salas, P.J.I.; Carraway, K.L. Muc4-ErbB2 complex formation and signaling in polarized CACO-2 epithelial cells indicate that Muc4 acts as an unorthodox ligand for ErbB2. Mol. Biol. Cell, 2006, 17(7), 2931-2941.
[http://dx.doi.org/10.1091/mbc.e05-09-0895] [PMID: 16624867]
[129]
Carraway, K.L.; Theodoropoulos, G.; Kozloski, G.A.; Carothers Carraway, C.A. Muc4/MUC4 functions and regulation in cancer. Future Oncol., 2009, 5(10), 1631-1640.
[http://dx.doi.org/10.2217/fon.09.125] [PMID: 20001800]
[130]
Rachagani, S.; Macha, M.A.; Ponnusamy, M.P.; Haridas, D.; Kaur, S.; Jain, M.; Batra, S.K. MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis, 2012, 33(10), 1953-1964.
[http://dx.doi.org/10.1093/carcin/bgs225] [PMID: 22791819]
[131]
Soini, Y.; Tuhkanen, H.; Sironen, R.; Virtanen, I.; Kataja, V.; Auvinen, P.; Mannermaa, A.; Kosma, V.M. Transcription factors zeb1, twist and snai1 in breast carcinoma. BMC Cancer, 2011, 11(1), 73.
[http://dx.doi.org/10.1186/1471-2407-11-73] [PMID: 21324165]
[132]
Rowson-Hodel, A.R.; Wald, J.H.; Hatakeyama, J.; O’Neal, W.K.; Stonebraker, J.R.; VanderVorst, K.; Saldana, M.J.; Borowsky, A.D.; Sweeney, C.; Carraway, K.L. III Membrane Mucin Muc4 promotes blood cell association with tumor cells and mediates efficient metastasis in a mouse model of breast cancer. Oncogene, 2018, 37(2), 197-207.
[http://dx.doi.org/10.1038/onc.2017.327] [PMID: 28892049]
[133]
Mukhopadhyay, P.; Lakshmanan, I.; Ponnusamy, M.P.; Chakraborty, S.; Jain, M.; Pai, P.; Smith, L.M.; Lele, S.M.; Batra, S.K. MUC4 overexpression augments cell migration and metastasis through EGFR family proteins in triple negative breast cancer cells. PLoS One, 2013, 8(2), e54455.
[http://dx.doi.org/10.1371/journal.pone.0054455] [PMID: 23408941]
[134]
Jahan, R.; Macha, M.A.; Rachagani, S.; Das, S.; Smith, L.M.; Kaur, S.; Batra, S.K. Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-β1/FAK/ERK pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(8), 2538-2549.
[http://dx.doi.org/10.1016/j.bbadis.2018.05.008] [PMID: 29777904]
[135]
Kim, G.E.; Bae, H.I.; Park, H.U.; Kuan, S.F.; Crawley, S.C.; Ho, J.J.L.; Kim, Y.S. Aberrant expression of MUC5AC and MUC6 gastric mucins and sialyl Tn antigen in intraepithelial neoplasms of the pancreas. Gastroenterology, 2002, 123(4), 1052-1060.
[http://dx.doi.org/10.1053/gast.2002.36018] [PMID: 12360467]
[136]
Reid, L. Reid, l. An experimental study of hypersecretion of mucus in the bronchial tree. Br. J. Exp. Pathol., 1963, 44(4), 437-445.
[PMID: 14079017]
[137]
Reis, C.A.; David, L.; Nielsen, P.A.; Clausen, H.; Mirgorodskaya, K.; Roepstorff, P.; Sobrinho-Simões, M. Immunohistochemical study of MUC5AC expression in human gastric carcinomas using a novel monoclonal antibody. Int. J. Cancer, 1997, 74(1), 112-121.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970220)74:1<112:AID-IJC19>3.0.CO;2-H] [PMID: 9036879]
[138]
Reis, C.A.; David, L.; Correa, P.; Carneiro, F.; de Bolós, C.; Garcia, E.; Mandel, U.; Clausen, H.; Sobrinho-Simões, M. Intestinal metaplasia of human stomach displays distinct patterns of mucin (MUC1, MUC2, MUC5AC, and MUC6) expression. Cancer Res., 1999, 59(5), 1003-1007.
[PMID: 10070955]
[139]
Ren, J.; Raina, D.; Chen, W.; Li, G.; Huang, L.; Kufe, D. MUC1 oncoprotein functions in activation of fibroblast growth factor receptor signaling. Mol. Cancer Res., 2006, 4(11), 873-883.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0204] [PMID: 17114345]
[140]
Ren, J.; Li, Y.; Kufe, D. Protein kinase C delta regulates function of the DF3/MUC1 carcinoma antigen in beta-catenin signaling. J. Biol. Chem., 2002, 277(20), 17616-17622.
[http://dx.doi.org/10.1074/jbc.M200436200] [PMID: 11877440]
[141]
Haridas, D.; Ponnusamy, M.P.; Chugh, S.; Lakshmanan, I.; Seshacharyulu, P.; Batra, S.K. MUC16: Molecular analysis and its functional implications in benign and malignant conditions. FASEB J., 2014, 28(10), 4183-4199.
[http://dx.doi.org/10.1096/fj.14-257352] [PMID: 25002120]
[142]
Comamala, M.; Pinard, M.; Thériault, C.; Matte, I.; Albert, A.; Boivin, M.; Beaudin, J.; Piché, A.; Rancourt, C. Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. Br. J. Cancer, 2011, 104(6), 989-999.
[http://dx.doi.org/10.1038/bjc.2011.34] [PMID: 21326240]
[143]
Thériault, C.; Pinard, M.; Comamala, M.; Migneault, M.; Beaudin, J.; Matte, I.; Boivin, M.; Piché, A.; Rancourt, C. MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol. Oncol., 2011, 121(3), 434-443.
[http://dx.doi.org/10.1016/j.ygyno.2011.02.020] [PMID: 21421261]
[144]
Shen, H.; Guo, M.; Wang, L.; Cui, X. MUC16 facilitates cervical cancer progression via JAK2/STAT3 phosphorylation-mediated cyclooxygenase-2 expression. Genes Genomics, 2020, 42(2), 127-133.
[http://dx.doi.org/10.1007/s13258-019-00885-9] [PMID: 31736008]
[145]
Patankar, M.; Jing, Y.; Morrison, J.; Belisle, J.; Lattanzio, F.; Deng, Y.; Wong, N.; Morris, H.; Dell, A.; Clark, G. Potent suppression of natural killer cell response mediated by the ovarian tumor marker CA125. Gynecol. Oncol., 2005, 99(3), 704-713.
[http://dx.doi.org/10.1016/j.ygyno.2005.07.030] [PMID: 16126266]
[146]
Hsu, H.P.; Lai, M.D.; Lee, J.C.; Yen, M.C.; Weng, T.Y.; Chen, W.C.; Fang, J.H.; Chen, Y.L. Mucin 2 silencing promotes colon cancer metastasis through interleukin-6 signaling. Sci. Rep., 2017, 7(1), 5823.
[http://dx.doi.org/10.1038/s41598-017-04952-7] [PMID: 28725043]
[147]
Shan, Y.S.; Hsu, H.P.; Lai, M.D.; Yen, M.C.; Fang, J.H.; Weng, T.Y.; Chen, Y.L. Suppression of mucin 2 promotes interleukin-6 secretion and tumor growth in an orthotopic immune-competent colon cancer animal model. Oncol. Rep., 2014, 32(6), 2335-2342.
[http://dx.doi.org/10.3892/or.2014.3544] [PMID: 25322805]
[148]
Erpenbeck, L.; Schön, M.P. Deadly allies: The fatal interplay between platelets and metastasizing cancer cells. Blood, 2010, 115(17), 3427-3436.
[http://dx.doi.org/10.1182/blood-2009-10-247296] [PMID: 20194899]
[149]
Höök, P.; Litvinov, R.I.; Kim, O.V.; Xu, S.; Xu, Z.; Bennett, J.S.; Alber, M.S.; Weisel, J.W. Strong binding of platelet integrin αIIbβ3 to fibrin clots: Potential target to destabilize thrombi. Sci. Rep., 2017, 7(1), 13001.
[http://dx.doi.org/10.1038/s41598-017-12615-w] [PMID: 29021578]
[150]
Bambach, S.K.; Lämmermann, T. Platelets, on your marks, get set, migrate! Cell, 2017, 171(6), 1256-1258.
[http://dx.doi.org/10.1016/j.cell.2017.11.026] [PMID: 29195072]
[151]
Ganguly, K.; Rauth, S.; Marimuthu, S.; Kumar, S.; Batra, S.K. Unraveling mucin domains in cancer and metastasis: When protectors become predators. Cancer Metastasis Rev., 2020, 39(3), 647-659.
[http://dx.doi.org/10.1007/s10555-020-09896-5] [PMID: 32488403]
[152]
Tuccillo, F.M.; de Laurentiis, A.; Palmieri, C.; Fiume, G.; Bonelli, P.; Borrelli, A.; Tassone, P.; Scala, I.; Buonaguro, F.M.; Quinto, I.; Scala, G. Aberrant glycosylation as biomarker for cancer: Focus on CD43. BioMed Res. Int., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/742831] [PMID: 24689054]
[153]
Limacher, J.M.; Quoix, E. TG4010: A therapeutic vaccine against MUC1 expressing tumors. OncoImmunology, 2012, 1(5), 791-792.
[http://dx.doi.org/10.4161/onci.19863] [PMID: 22934285]
[154]
Rotonda, C.; Anota, A.; Mercier, M.; Bastien, B.; Lacoste, G.; Limacher, J.M.; Quoix, E.; Bonnetain, F. Impact of TG4010 vaccine on health-related quality of life in advanced non-small-cell lung cancer: Results of a phase IIB clinical trial. PLoS One, 2015, 10(7), e0132568.
[http://dx.doi.org/10.1371/journal.pone.0132568] [PMID: 26207902]
[155]
Heery, C.R.; Ibrahim, N.K.; Arlen, P.M.; Mohebtash, M.; Murray, J.L.; Koenig, K.; Madan, R.A.; McMahon, S.; Marté, J.L.; Steinberg, S.M.; Donahue, R.N.; Grenga, I.; Jochems, C.; Farsaci, B.; Folio, L.R.; Schlom, J.; Gulley, J.L. Docetaxel alone or in combination with a therapeutic cancer vaccine (PANVAC) in patients with metastatic breast cancer. JAMA Oncol., 2015, 1(8), 1087-1095.
[http://dx.doi.org/10.1001/jamaoncol.2015.2736] [PMID: 26291768]
[156]
Kufe, D.; Inghirami, G.; Abe, M.; Hayes, D.; Justi-Wheeler, H.; Schlom, J. Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma, 1984, 3(3), 223-232.
[http://dx.doi.org/10.1089/hyb.1984.3.223] [PMID: 6094338]
[157]
Berek, J.; Taylor, P.; McGuire, W.; Smith, L.M.; Schultes, B.; Nicodemus, C.F. Oregovomab maintenance monoimmunotherapy does not improve outcomes in advanced ovarian cancer. J. Clin. Oncol., 2009, 27(3), 418-425.
[http://dx.doi.org/10.1200/JCO.2008.17.8400] [PMID: 19075271]
[158]
Chen, Y.; Clark, S.; Wong, T.; Chen, Y.; Chen, Y.; Dennis, M.S.; Luis, E.; Zhong, F.; Bheddah, S.; Koeppen, H.; Gogineni, A.; Ross, S.; Polakis, P.; Mallet, W. Armed antibodies targeting the mucin repeats of the ovarian cancer antigen, MUC16, are highly efficacious in animal tumor models. Cancer Res., 2007, 67(10), 4924-4932.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4512] [PMID: 17510422]
[159]
Felder, M.; Kapur, A.; Gonzalez-Bosquet, J.; Horibata, S.; Heintz, J.; Albrecht, R.; Fass, L.; Kaur, J.; Hu, K.; Shojaei, H.; Whelan, R.J.; Patankar, M.S. MUC16 (CA125): Tumor biomarker to cancer therapy, a work in progress. Mol. Cancer, 2014, 13(1), 129.
[http://dx.doi.org/10.1186/1476-4598-13-129] [PMID: 24886523]
[160]
Radhakrishnan, P.; Mohr, A.M.; Grandgenett, P.M.; Steele, M.M.; Batra, S.K.; Hollingsworth, M.A. MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer. PLoS One, 2013, 8(10), e73356.
[http://dx.doi.org/10.1371/journal.pone.0073356] [PMID: 24204560]
[161]
Wittel, U.A.; Goel, A.; Varshney, G.C.; Batra, S.K. Mucin antibodies - new tools in diagnosis and therapy of cancer. Front. Biosci., 2001, 6(1), d1296.
[http://dx.doi.org/10.2741/Wittel] [PMID: 11578978]
[162]
Larson, S.M.; Carrasquillo, J.A.; Cheung, N.K.V.; Press, O.W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer, 2015, 15(6), 347-360.
[http://dx.doi.org/10.1038/nrc3925] [PMID: 25998714]
[163]
Ahmad, S.; Lam, T.B.L.; N’Dow, J. Significance of MUC1 in bladder cancer. BJU Int., 2015, 115(1), 161-162.
[http://dx.doi.org/10.1111/bju.12727] [PMID: 24593053]
[164]
Arlen, P.M.; Pazdur, M.; Skarupa, L.; Rauckhorst, M.; Gulley, J.L. A randomized phase II study of docetaxel alone or in combination with PANVAC-V (vaccinia) and PANVAC-F (fowlpox) in patients with metastatic breast cancer (NCI 05-C-0229). Clin. Breast Cancer, 2006, 7(2), 176-179.
[http://dx.doi.org/10.3816/CBC.2006.n.032] [PMID: 16800982]
[165]
Lou, E.; Marshall, J.; Aklilu, M.; Cole, D.; Chang, D.; Morse, M. A phase II study of active immunotherapy with PANVAC or autologous, cultured dendritic cells infected with PANVAC after complete resection of hepatic metastases of colorectal carcinoma. Clin. Colorectal Cancer, 2006, 5(5), 368-371.
[http://dx.doi.org/10.3816/CCC.2006.n.009] [PMID: 16512998]
[166]
Petrulio, C.A.; Kaufman, H.L. Development of the PANVAC™-VF vaccine for pancreatic cancer. Expert Rev. Vaccines, 2006, 5(1), 9-19.
[http://dx.doi.org/10.1586/14760584.5.1.9] [PMID: 16451103]
[167]
Wurz, G.T.; Kao, C.J.; Wolf, M.; DeGregorio, M.W. Tecemotide: An antigen-specific cancer immunotherapy. Hum. Vaccin. Immunother., 2014, 10(11), 3383-3393.
[http://dx.doi.org/10.4161/hv.29836] [PMID: 25483673]
[168]
DeGregorio, M.; Soe, L.; Wolf, M. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small cell lung cancer (START): A randomized, double-blind, phase III trial. J. Thorac. Dis., 2014, 6(6), 571-573.
[PMID: 24976972]
[169]
Sangha, R.; North, S. L-BLP25: A MUC1-targeted peptide vaccine therapy in prostate cancer. Expert Opin. Biol. Ther., 2007, 7(11), 1723-1730.
[http://dx.doi.org/10.1517/14712598.7.11.1723] [PMID: 17961094]
[170]
Arriola, E.; Ottensmeier, C. TG4010: A vaccine with a therapeutic role in cancer. Immunotherapy, 2016, 8(5), 511-519.
[http://dx.doi.org/10.2217/imt-2016-0015] [PMID: 27140406]
[171]
Arias-Pinilla, G.A.; Modjtahedi, H. Therapeutic application of monoclonal antibodies in pancreatic cancer: Advances, challenges and future opportunities. Cancers, 2021, 13(8), 1781.
[http://dx.doi.org/10.3390/cancers13081781] [PMID: 33917882]
[172]
Aithal, A.; Rauth, S.; Kshirsagar, P.; Shah, A.; Lakshmanan, I.; Junker, W.M.; Jain, M.; Ponnusamy, M.P.; Batra, S.K. MUC16 as a novel target for cancer therapy. Expert Opin. Ther. Targets, 2018, 22(8), 675-686.
[http://dx.doi.org/10.1080/14728222.2018.1498845] [PMID: 29999426]
[173]
Boland, A.J.; O’Kane, A.A.; Buick, R.; Longley, D.B.; Scott, C.J. Antibody therapy in pancreatic cancer: MAb-ye we’re onto something? Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188557.
[http://dx.doi.org/10.1016/j.bbcan.2021.188557] [PMID: 33945846]
[174]
Heublein, S.; Mayr, D.; Egger, M.; Karsten, U.; Goletz, S.; Angele, M.; Gallwas, J.; Jeschke, U.; Ditsch, N. Immunoreactivity of the fully humanized therapeutic antibody PankoMab-GEX™ is an independent prognostic marker for breast cancer patients. J. Exp. Clin. Cancer Res., 2015, 34(1), 50.
[http://dx.doi.org/10.1186/s13046-015-0152-7] [PMID: 25986064]
[175]
Fiedler, W.; DeDosso, S.; Cresta, S.; Weidmann, J.; Tessari, A.; Salzberg, M.; Dietrich, B.; Baumeister, H.; Goletz, S.; Gianni, L.; Sessa, C. A phase I study of PankoMab-GEX, a humanised glyco-optimised monoclonal antibody to a novel tumour-specific MUC1 glycopeptide epitope in patients with advanced carcinomas. Eur. J. Cancer, 2016, 63, 55-63.
[http://dx.doi.org/10.1016/j.ejca.2016.05.003] [PMID: 27285281]
[176]
Ehlen, T.G.; Hoskins, P.J.; Miller, D.; Whiteside, T.L.; Nicodemus, C.F.; Schultes, B.C.; Swenerton, K.D. A pilot phase 2 study of oregovomab murine monoclonal antibody to CA125 as an immunotherapeutic agent for recurrent ovarian cancer. Int. J. Gynecol. Cancer, 2005, 15(6), 1023-1034.
[http://dx.doi.org/10.1111/j.1525-1438.2005.00483.x] [PMID: 16343178]
[177]
Hendriks, D.; Choi, G.; de Bruyn, M.; Wiersma, V.R.; Bremer, E. Antibody-based cancer therapy. Int. Rev. Cell Mol. Biol., 2017, 331, 289-383.
[http://dx.doi.org/10.1016/bs.ircmb.2016.10.002] [PMID: 28325214]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy