Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

A Snapshot on Polymeric Micelles as a Carrier for Drug Delivery

Author(s): Rutvi Agrawal, Chetan Singh Chauhan* and Akash Garg

Volume 13, Issue 1, 2023

Published on: 19 April, 2023

Page: [27 - 38] Pages: 12

DOI: 10.2174/2468187313666230320115153

Price: $65

Abstract

Micellization is the process of formation of micelles using different polymers mainly pluronic (F127, F123, etc.). Polymers are used to formulate polymeric micelles that provide physical and chemical stability of drugs that are encapsulated into them. Moreover, the drugs are encapsulated in the core portion (hydrophobic inner) of micelles and another portion is the shell portion (hydrophilic outer) which provides hydrophilicity to the hydrophobic drug. Delivery of hydrophobic drugs by micelles is easy and preferred due to the nano size structure, well association, low toxicity, biocompatible, well core structure, and a high stability. Several methods of preparation of micelles such as - thin film hydration, solvent evaporation, dialysis, and direct dissolution are discussed here. Micelles formulations in pharmaceutical industries are preferred because they enhance the solubility and bioavailability of drugs of BCS class II and IV. This review focuses on various strategies to overcome the problems related to poor aqueous solubility and bioavailability of drugs, micellar solubilization, and application of micelles for various drug delivery. It also includes future considerations for the development of various polymeric micelles-based drug formulations.

Graphical Abstract

[1]
Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B 2022; 12(7): 3028-48.
[http://dx.doi.org/10.1016/j.apsb.2022.02.025] [PMID: 35865096]
[2]
Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332: 312-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[3]
Patel P, Shah J. Safety and toxicological considerations of nanomedicines: The future directions. Curr Clin Pharmacol 2018; 12(2): 73-82.
[http://dx.doi.org/10.2174/1574884712666170509161252] [PMID: 28486906]
[4]
Wang H, Li J, Wang Y, et al. Nanoparticles-mediated reoxygenation strategy relieves tumor hypoxia for enhanced cancer therapy. J Control Release 2020; 319: 25-45.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.028] [PMID: 31862359]
[5]
Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(5): 691-707.
[http://dx.doi.org/10.1002/wnan.1332] [PMID: 25683687]
[6]
Zhang N, Wardwell P, Bader R. Polysaccharide-based micelles for drug delivery. Pharmaceutics 2013; 5(4): 329-52.
[http://dx.doi.org/10.3390/pharmaceutics5020329] [PMID: 24300453]
[7]
Zhang Y, Huang Y, Li S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 2014; 15(4): 862-71.
[http://dx.doi.org/10.1208/s12249-014-0113-z] [PMID: 24700296]
[8]
Rangel-Yagui CO, Pessoa A Jr, Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci 2005; 8(8): 147-65.
[PMID: 16124926]
[9]
Martin A. Physical Pharmacy. (4th ed.). USA: Lippincott Williams and Wilkins 1993; p. 2.
[10]
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332: 127-47.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.016] [PMID: 33609621]
[11]
Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Deliv Rev 2001; 47(1): 113-31.
[http://dx.doi.org/10.1016/S0169-409X(00)00124-1] [PMID: 11251249]
[12]
Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 1995; 16(2-3): 295-309.
[http://dx.doi.org/10.1016/0169-409X(95)00031-2]
[13]
Rey-Rico A, Cucchiarini M. PEO-PPO-PEO tri-block copolymers for gene delivery applications in human regenerative medicine-an overview. Int J Mol Sci 2018; 19(3): 775.
[http://dx.doi.org/10.3390/ijms19030775] [PMID: 29518011]
[14]
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules turn self-assembling amphiphilic block co-polymer platforms into biomimetic interfaces. Front Chem 2019; 6: 645.
[http://dx.doi.org/10.3389/fchem.2018.00645] [PMID: 30671429]
[15]
Sharma R. Polyethylene oxide-polypropylene oxide based block copolymers as nonovehicles for drug formulations. Bioevolution 2014; 1(3): 68-75.
[16]
Matyjaszewski K, Spanswick J. Controlled/living radical polymerization. Mater Today 2005; 8(3): 26-33.
[http://dx.doi.org/10.1016/S1369-7021(05)00745-5]
[17]
Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH. Multiblock polymers: Panacea or Pandora’s box? Science 2012; 336(6080): 434-40.
[http://dx.doi.org/10.1126/science.1215368] [PMID: 22539713]
[18]
Bu X, Ji N, Dai L, et al. Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients. Trends Food Sci Technol 2021; 114: 386-98.
[http://dx.doi.org/10.1016/j.tifs.2021.06.001]
[19]
Du Y, Bao C, Huang J, et al. Improved stability, epithelial permeability and cellular antioxidant activity of β-carotene via encapsulation by self-assembled α-lactalbumin micelles. Food Chem 2019; 271: 707-14.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.216] [PMID: 30236735]
[20]
Beibei D, Tiantang F, Jiafeng L, et al. PLLA-grafted gelatin amphiphilic copolymer and its self-assembled nano carrier for anticancer drug delivery. Macromol Chem Phys 2019; 220(5): 1800528.
[http://dx.doi.org/10.1002/macp.201800528]
[21]
Silva DS, Almeida A, Prezotti F, Cury B, Campana-Filho SP, Sarmento B. Synthesis and characterization of 3,6- O,O ’- dimyristoyl chitosan micelles for oral delivery of paclitaxel. Colloids Surf B Biointerfaces 2017; 152: 220-8.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.029] [PMID: 28113124]
[22]
Aziz Z, Ahmad A, Mohd-Setapar S, et al. Recent advances in drug delivery of polymeric nano-micelles. Curr Drug Metab 2017; 18(1): 16-29.
[http://dx.doi.org/10.2174/1389200217666160921143616] [PMID: 27654898]
[23]
Huerta-Ángeles G, Brandejsová M, Novotný J, et al. Grafting of steroids to hyaluronan towards the design of delivery systems for antioxidants: The role of hydrophobic core. Carbohydr Polym 2018; 193: 383-92.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.021] [PMID: 29773394]
[24]
Gao X, Gao F, Chen L, Yao Y, Chen T, Lin S. Tuning the morphology of amphiphilic copolymer aggregates by compound emulsifier via emulsion–solvent evaporation. J Saudi Chem Soc 2018; 22(3): 297-305.
[http://dx.doi.org/10.1016/j.jscs.2016.05.007]
[25]
Chiappetta DA, Facorro G, Rubin de Celis E, Sosnik A. Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles. Nanomedicine 2011; 7(5): 624-37.
[http://dx.doi.org/10.1016/j.nano.2011.01.017] [PMID: 21371572]
[26]
Basu Ray G, Chakraborty I, Moulik SP. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J Colloid Interface Sci 2006; 294(1): 248-54.
[http://dx.doi.org/10.1016/j.jcis.2005.07.006] [PMID: 16112127]
[27]
Nandni D, Vohra KK, Mahajan RK. Study of micellar and phase separation behavior of mixed systems of triblock polymers. J Colloid Interface Sci 2009; 338(2): 420-7.
[http://dx.doi.org/10.1016/j.jcis.2009.06.038] [PMID: 19616785]
[28]
Moretton MA, Taira C, Flor S, et al. Novel nelfinavir mesylate loaded d -α-tocopheryl polyethylene glycol 1000 succinate micelles for enhanced pediatric anti HIV therapy: In vitro characterization and in vivo evaluation. Colloids Surf B Biointerfaces 2014; 123: 302-10.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.031] [PMID: 25270729]
[29]
Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017; 113: 211-28.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.019] [PMID: 28087380]
[30]
Topel Ö, Çakır BA, Budama L, Hoda N. Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) di-block copolymer by fluorescence spectroscopy and dynamic light scattering. J Mol Liq 2013; 177: 40-3.
[http://dx.doi.org/10.1016/j.molliq.2012.10.013]
[31]
Rosen MJ. Surfactants and interfacial phenomena. New York: John Wiley & Sons 1989; p. 2.
[32]
Attwood D. Surfactant systems: Their chemistry, pharmacy and biology. New York: Chapman and Hall 1983.
[http://dx.doi.org/10.1007/978-94-009-5775-6]
[33]
Alvarez-Núñez FA, Yalkowsky SH. Relationship between Polysorbate 80 solubilization descriptors and octanol–water partition coefficients of drugs. Int J Pharm 2000; 200(2): 217-22.
[http://dx.doi.org/10.1016/S0378-5173(00)00386-0] [PMID: 10867251]
[34]
Yokoyama M. Block copolymers as drug carriers. Crit Rev Ther Drug Carrier Syst 1992; 9(3-4): 213-48.
[PMID: 1458544]
[35]
Krishna AK, Flanagan DR. Micellar solubilization of a new antimalarial drug, beta-arteether. J Pharm Sci 1989; 78(7): 574-6.
[http://dx.doi.org/10.1002/jps.2600780713] [PMID: 2778658]
[36]
Florence AT. Physicochemical Principles of Pharmacy. London: The MacMillan Press 2003; p. 3.
[37]
Alkhamis KA, Allaboun H, Al-Momani WY. Study of the solubilization of gliclazide by aqueous micellar solutions. J Pharm Sci 2003; 92(4): 839-46.
[http://dx.doi.org/10.1002/jps.10350] [PMID: 12661069]
[38]
Li P, Tabibi SE, Yalkowsky SH. Solubilization of ionized and un‐ionized flavopiridol by ethanol and polysorbate 20. J Pharm Sci 1999; 88(5): 507-9.
[http://dx.doi.org/10.1021/js980433o] [PMID: 10229640]
[39]
Rangel-Yagui C, Pessoa HHA, Tavares L. Micellar solubilization of ibuprofen - Influence of surfactant head groups on the extent of solubilization. Revista Brasileira de Ciências Farmacêuticas 2005; 41(2)
[http://dx.doi.org/10.1590/S1516-93322005000200012]
[40]
Burt HM, Zhang X, Toleikis P, Embree L, Hunter WL. Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids Surf B Biointerfaces 1999; 16(1-4): 161-71.
[http://dx.doi.org/10.1016/S0927-7765(99)00067-3]
[41]
Hamaguchi T, Matsumura Y, Suzuki M, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 2005; 92(7): 1240-6.
[http://dx.doi.org/10.1038/sj.bjc.6602479] [PMID: 15785749]
[42]
Yang Y, Wang J, Zhang X, Lu W, Zhang Q. A novel mixed micelle gel with thermo-sensitive property for the local delivery of docetaxel. J Control Release 2009; 135(2): 175-82.
[http://dx.doi.org/10.1016/j.jconrel.2009.01.007] [PMID: 19331864]
[43]
Chen Y, Zhang W, Gu J, et al. Enhanced antitumor efficacy by methotrexate conjugated Pluronic mixed micelles against KBv multidrug resistant cancer. Int J Pharm 2013; 452(1-2): 421-33.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.015] [PMID: 23688623]
[44]
Zhang W, Shi Y, Chen Y, et al. Enhanced antitumor efficacy by Paclitaxel-loaded Pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. Eur J Pharm Biopharm 2010; 75(3): 341-53.
[http://dx.doi.org/10.1016/j.ejpb.2010.04.017] [PMID: 20451605]
[45]
Zhang W, Shi Y, Chen Y, Ye J, Sha X, Fang X. Multifunctional pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials 2011; 32(11): 2894-906.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.039] [PMID: 21256584]
[46]
Li Y, Zhou Y, De B, Li L. Folate-modified pluronic-polyethylenimine and cholic acid polyion complex micelles as targeted drug delivery system for paclitaxel. J Microencapsul 2014; 31(8): 805-14.
[http://dx.doi.org/10.3109/02652048.2014.940010] [PMID: 25090590]
[47]
Chen GJ, Su YZ, Hsu C, et al. Angiopep-pluronic F127-conjugated superparamagnetic iron oxide nanoparticles as nanotheranostic agents for BBB targeting. J Mater Chem B Mater Biol Med 2014; 2(34): 5666-75.
[http://dx.doi.org/10.1039/C4TB00543K] [PMID: 32262201]
[48]
Park H, Na K. Conjugation of the photosensitizer Chlorin e6 to pluronic F127 for enhanced cellular internalization for photodynamic therapy. Biomaterials 2013; 34(28): 6992-7000.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.070] [PMID: 23777915]
[49]
Simon T, Boca SC, Astilean S. Pluronic-Nanogold hybrids: Synthesis and tagging with photosensitizing molecules. Colloids Surf B Biointerfaces 2012; 97: 77-83.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.037] [PMID: 22609585]
[50]
Ju C, Sun J, Zi P, Jin X, Zhang C. Thermosensitive micelles-hydrogel hybrid system based on poloxamer 407 for localized delivery of paclitaxel. J Pharm Sci 2013; 102(8): 2707-17.
[http://dx.doi.org/10.1002/jps.23649] [PMID: 23839931]
[51]
Chen L, Sha X, Jiang X, Chen Y, Ren Q, Fang X. Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: Optimization and in vitro, in vivo evaluation. Int J Nanomedicine 2013; 8: 73-84.
[PMID: 23319859]
[52]
Ebrahim Attia AB, Ong ZY, Hedrick JL, et al. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci 2011; 16(3): 182-94.
[http://dx.doi.org/10.1016/j.cocis.2010.10.003]
[53]
Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials 2008; 29(29): 4012-21.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.004] [PMID: 18649936]
[54]
Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: From therapeutics to diagnostics. J Pharm Sci 2005; 94(10): 2135-46.
[http://dx.doi.org/10.1002/jps.20457] [PMID: 16136558]
[55]
Lin JJ, Chen JS, Huang SJ, et al. Folic acid–Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials 2009; 30(28): 5114-24.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.004] [PMID: 19560199]
[56]
Mishra S, Peddada LY, Devore DI, Roth CM. Poly(alkylene oxide) copolymers for nucleic acid delivery. Acc Chem Res 2012; 45(7): 1057-66.
[http://dx.doi.org/10.1021/ar200232n] [PMID: 22260518]
[57]
Yang Z, Sahay G, Sriadibhatla S, Kabanov AV. Amphiphilic block copolymers enhance cellular uptake and nuclear entry of polyplex-delivered DNA. Bioconjug Chem 2008; 19(10): 1987-94.
[http://dx.doi.org/10.1021/bc800144a] [PMID: 18729495]
[58]
Fan MM, Zhang X, Qin J, Li BJ, Sun X, Zhang S. Self-assembly pluronic and β-cyclodextrin to hollow nanospheres for enhanced gene delivery. Macromol Rapid Commun 2011; 32(19): 1533-8.
[http://dx.doi.org/10.1002/marc.201100272] [PMID: 21786359]
[59]
Huang SJ, Wang TP, Lue SI, Wang LF. Pentablock copolymers of pluronic F127 and modified poly(2-dimethyl amino)ethyl methacrylate for internalization mechanism and gene transfection studies. Int J Nanomedicine 2013; 8: 2011-27.
[PMID: 23745045]
[60]
Xiao L, Xiong X, Sun X, et al. Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles. Biomaterials 2011; 32(22): 5148-57.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.071] [PMID: 21546083]
[61]
Wang J, Qu H, Jin L, et al. Pegylated phosphotidylethanolamine inhibiting P-glycoprotein expression and enhancing retention of doxorubicin in MCF7/ADR cells. J Pharm Sci 2011; 100(6): 2267-77.
[http://dx.doi.org/10.1002/jps.22461] [PMID: 21246559]
[62]
Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 2001; 73(2-3): 137-72.
[http://dx.doi.org/10.1016/S0168-3659(01)00299-1] [PMID: 11516494]
[63]
Li YY, Li L, Dong HQ, Cai XJ, Ren TB. Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery. Mater Sci Eng C 2013; 33(5): 2698-707.
[http://dx.doi.org/10.1016/j.msec.2013.02.036] [PMID: 23623086]
[64]
Choi JS, Yoo HS. Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. J Biomed Mater Res A 2010; 95A(2): 564-73.
[http://dx.doi.org/10.1002/jbm.a.32848] [PMID: 20725966]
[65]
Wei Z, Hao J, Yuan S, et al. Paclitaxel-loaded pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization. Int J Pharm 2009; 376(1-2): 176-85.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.030] [PMID: 19409463]
[66]
Zhao L, Du J, Duan Y, et al. Curcumin loaded mixed micelles composed of Pluronic P123 and F68: Preparation, optimization and in vitro characterization. Colloids Surf B Biointerfaces 2012; 97: 101-8.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.017] [PMID: 22609589]
[67]
Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003; 100(10): 6039-44.
[http://dx.doi.org/10.1073/pnas.0931428100] [PMID: 12716967]
[68]
Torchilin V. Polymeric contrast agents for medical imaging. Curr Pharm Biotechnol 2000; 1(2): 183-215.
[http://dx.doi.org/10.2174/1389201003378960] [PMID: 11467336]
[69]
Patil RR, Yu J, Banerjee SR, et al. Probing in vivo trafficking of polymer/DNA micellar nanoparticles using SPECT/CT imaging. Mol Ther 2011; 19(9): 1626-35.
[70]
Figueiras A, Domingues C, Jarak I, et al. New advances in biomedical application of polymeric micelles. Pharmaceutics 2022; 14(8): 1700.
[http://dx.doi.org/10.3390/pharmaceutics14081700] [PMID: 36015325]
[71]
Tafazoli A, Behjati F, Farhud DD, Abbaszadegan MR. Combination of genetics and nanotechnology for Down syndrome modification: A potential hypothesis and review of the literature. Iran J Public Health 2019; 48(3): 371-8.
[http://dx.doi.org/10.18502/ijph.v48i3.878] [PMID: 31223563]
[72]
Moore FN. Implications of nanotechnology applications: Using genetics as a lesson. Health Law Rev 2002; 10(3): 9-15.
[PMID: 15739310]
[73]
Chitkara D, Singh S, Mittal A. Nanocarrier-based co-delivery of small molecules and siRNA/miRNA for treatment of cancer. Ther Deliv 2016; 7(4): 245-55.
[http://dx.doi.org/10.4155/tde-2015-0003] [PMID: 27010986]
[74]
Heinze T, Shapira P, Senker J, Kuhlmann S. Identifying creative research accomplishments: Methodology and results for nanotechnology and human genetics. Scientometrics 2007; 70(1): 125-52.
[http://dx.doi.org/10.1007/s11192-007-0108-6]
[75]
Al-Qudah T, Mahmood SH, Abu-Zurayk R, et al. Nanotechnology applications in plant tissue culture and molecular genetics: A holistic approach. Curr Nanosci 2022; 18(4): 442-64.
[http://dx.doi.org/10.2174/1573413717666211118111333]
[76]
Jones SK, Lizzio V, Merkel OM. Folate receptor targeted delivery of siRNA and paclitaxel to ovarian cancer cells via folate conjugated triblock copolymer to overcome TLR4 driven chemotherapy resistance. Biomacromolecules 2016; 17(1): 76-87.
[http://dx.doi.org/10.1021/acs.biomac.5b01189] [PMID: 26636884]
[77]
Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B 2022.
[http://dx.doi.org/10.1016/j.apsb.2022.07.003]
[78]
Haider M, Zaki KZ, El Hamshary MR, Hussain Z, Orive G, Ibrahim HO. Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer. J Adv Res 2022; 39: 237-55.
[http://dx.doi.org/10.1016/j.jare.2021.11.008] [PMID: 35777911]
[79]
Kavya KV, Vargheese S, Shukla S, et al. A cationic amino acid polymer nanocarrier synthesized in supercritical CO2 for co-delivery of drug and gene to cervical cancer cells. Colloids Surf B Biointerfaces 2022; 216: 112584.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112584] [PMID: 35617878]
[80]
Soares JCM, Luiz MT, Oshiro Junior JA, et al. Antimicrobial photodynamic therapy mediated by methylene blue-loaded polymeric micelles against Streptococcus mutans and Candida albicans biofilms. Photodiagn Photodyn Ther 2023; 41: 103285.
[http://dx.doi.org/10.1016/j.pdpdt.2023.103285] [PMID: 36639007]
[81]
van Strien J, Escalona-Rayo O, Jiskoot W, Slütter B, Kros A. Elastin-like polypeptide-based micelles as a promising platform in nanomedicine. J Control Release 2023; 353: 713-26.
[http://dx.doi.org/10.1016/j.jconrel.2022.12.033] [PMID: 36526018]
[82]
Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym 2011; 71(3): 227-34.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2010.10.009]
[83]
Dong J, Armstrong J, Chowdhry BZ, Leharne SA. Thermodynamic modelling of the effect of pH upon aggregation transitions in aqueous solutions of the poloxamine, T701. Thermochim Acta 2004; 417(2): 201-6.
[http://dx.doi.org/10.1016/j.tca.2003.08.030]
[84]
Yadav HKS, Almokdad AA. Polymer-based nanomaterials for drug-delivery carriers. In: Nanocarriers for Drug Delivery. 2019; p. 531-56.
[85]
Xiong XB, Falamarzian A, Garg SM, Lavasanifar A. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Release 2011; 155(2): 248-61.
[http://dx.doi.org/10.1016/j.jconrel.2011.04.028] [PMID: 21621570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy