Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Antimicrobial Peptides: A Promising Strategy for Anti-tuberculosis Therapeutics

Author(s): Yu Ning, Lujuan Wang, Menglu Wang, Xiangying Meng and Jinjuan Qiao*

Volume 30, Issue 4, 2023

Published on: 11 April, 2023

Page: [280 - 294] Pages: 15

DOI: 10.2174/0929866530666230315113624

Price: $65

Abstract

The high global burden of tuberculosis (TB) and the increasing emergence of the drugresistant (DR) strain of Mycobacterium tuberculosis (Mtb) emphasize the urgent need for novel antimycobacterial agents. Antimicrobial peptides (AMPs) are small peptides widely existing in a variety of organisms and usually have amphiphilic cationic structures, which have a selective affinity to the negatively charged bacterial cell wall. Besides direct bactericidal mechanisms, including interacting with the bacterial cell membrane and interfering with the biosynthesis of the cell wall, DNA, or protein, some AMPs are involved in the host's innate immunity. AMPs are promising alternative or complementary agents for the treatment of DR-TB, given their various antibacterial mechanisms and low cytotoxicity. A large number of AMPs, synthetic or natural, from human to bacteriophage sources, have displayed potent anti-mycobacterial activity in vitro and in vivo. In this review, we summarized the features, antimycobacterial activity, and mechanisms of action of the AMPs according to their sources. Although AMPs have not yet met the expectations for clinical application due to their low bioavailabilities, high cost, and difficulties in large-scale production, their potent antimycobacterial activity and action mechanisms, which are different from conventional antibiotics, make them promising antibacterial agents against DR-Mtb in the future.

Graphical Abstract

[1]
World Health Organization (WHO) Global tuberculosis report., 2022. Available from: [https://wwwwhoint/publications/i/item/9789240061729
[2]
Zhang, W.; Jiang, H.; Bai, Y.; Kang, J.; Xu, Z.K.; Wang, L.M. Construction and immunogenicity of the DNA vaccine of Mycobacterium tuberculosis dormancy antigen rv1733c. Scand. J. Immunol., 2014, 79(5), 292-298.
[http://dx.doi.org/10.1111/sji.12160] [PMID: 24498941]
[3]
Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[4]
Aoki, W.; Ueda, M. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals, 2013, 6(8), 1055-1081.
[http://dx.doi.org/10.3390/ph6081055] [PMID: 24276381]
[5]
Arranz-Trullen, J.; Lu, L.; Pulido, D.; Bhakta, S.; Boix, E. Host antimicrobial peptides: The promise of new treatment strategies against tuberculosis. Front. Immunol., 2017, 8, 1499.
[http://dx.doi.org/10.3389/fimmu.2017.01499]
[6]
Yang, Y.; Liu, Z.; He, X.; Yang, J.; Wu, J.; Yang, H.; Li, M.; Qian, Q.; Lai, R.; Xu, W.; Wei, L. A small mycobacteriophage-derived peptide and its improved isomer restrict mycobacterial infection via dual mycobactericidal-immunoregulatory activities. J. Biol. Chem., 2019, 294(19), 7615-7631.
[http://dx.doi.org/10.1074/jbc.RA118.006968] [PMID: 30894414]
[7]
Sørensen, O.E.; Follin, P.; Johnsen, A.H.; Calafat, J.; Tjabringa, G.S.; Hiemstra, P.S.; Borregaard, N. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood, 2001, 97(12), 3951-3959.
[http://dx.doi.org/10.1182/blood.V97.12.3951] [PMID: 11389039]
[8]
Rivas-Santiago, B.; Rivas Santiago, C.E.; Castañeda-Delgado, J.E.; León-Contreras, J.C.; Hancock, R.E.W.; Hernandez-Pando, R. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents, 2013, 41(2), 143-148.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.09.015] [PMID: 23141114]
[9]
Johansson, J.; Gudmundsson, G.H.; Rottenberg, M.E.; Berndt, K.D.; Agerberth, B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem., 1998, 273(6), 3718-3724.
[http://dx.doi.org/10.1074/jbc.273.6.3718] [PMID: 9452503]
[10]
Zanetti, M.; Gennaro, R.; Scocchi, M.; Skerlavaj, B. Structure and biology of cathelicidins. Adv. Exp. Med. Biol., 2000, 479, 203-218.
[http://dx.doi.org/10.1007/0-306-46831-X_17]
[11]
Choi, K.Y.; Chow, L.N.Y.; Mookherjee, N. Cationic host defence peptides: Multifaceted role in immune modulation and inflammation. J. Innate Immun., 2012, 4(4), 361-370.
[http://dx.doi.org/10.1159/000336630] [PMID: 22739631]
[12]
Hazlett, L.; Wu, M. Defensins in innate immunity. Cell Tissue Res., 2011, 343(1), 175-188.
[http://dx.doi.org/10.1007/s00441-010-1022-4] [PMID: 20730446]
[13]
Sharma, S.; Verma, I.; Khuller, G. Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: In vitro and ex vivo study. Eur. Respir. J., 2000, 16(1), 112-117.
[http://dx.doi.org/10.1034/j.1399-3003.2000.16a20.x] [PMID: 10933095]
[14]
Sharma, S.; Verma, I.; Khuller, G.K. Biochemical interaction of human neutrophil peptide-1 with Mycobacterium tuberculosis H37 Ra. Arch. Microbiol., 1999, 171(5), 338-342.
[http://dx.doi.org/10.1007/s002030050719] [PMID: 10382264]
[15]
Le, C.F.; Fang, C.M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother., 2017, 61(4), e02340-e16.
[http://dx.doi.org/10.1128/AAC.02340-16] [PMID: 28167546]
[16]
Sharma, S.; Khuller, G.K. DNA as the intracellular secondary target for antibacterial action of human neutrophil peptide-I against Mycobacterium tuberculosis H37Ra. Curr. Microbiol., 2001, 43(1), 74-76.
[http://dx.doi.org/10.1007/s002840010263] [PMID: 11375668]
[17]
Kisich, K.O.; Higgins, M.; Diamond, G.; Heifets, L. Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils. Infect. Immun., 2002, 70(8), 4591-4599.
[http://dx.doi.org/10.1128/IAI.70.8.4591-4599.2002] [PMID: 12117972]
[18]
Bals, R.; Wang, X.; Wu, Z.; Freeman, T.; Bafna, V.; Zasloff, M.; Wilson, J.M. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest., 1998, 102(5), 874-880.
[http://dx.doi.org/10.1172/JCI2410] [PMID: 9727055]
[19]
Gallo, R.L.; Murakami, M.; Ohtake, T.; Zaiou, M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J. Allergy Clin. Immunol., 2002, 110(6), 823-831.
[http://dx.doi.org/10.1067/mai.2002.129801] [PMID: 12464945]
[20]
Corrales-Garcia, L.; Ortiz, E.; Castañeda-Delgado, J.; Rivas-Santiago, B.; Corzo, G. Bacterial expression and antibiotic activities of recombinant variants of human-defensins on pathogenic bacteria and M. tuberculosis. Protein Expr. Purif., 2013, 89(1), 33-43.
[http://dx.doi.org/10.1016/j.pep.2013.02.007] [PMID: 23459290]
[21]
Campopiano, D.J.; Clarke, D.J.; Polfer, N.C.; Barran, P.E.; Langley, R.J.; Govan, J.R.W.; Maxwell, A.; Dorin, J.R. Structure-activity relationships in defensin dimers: A novel link between beta-defensin tertiary structure and antimicrobial activity. J. Biol. Chem., 2004, 279(47), 48671-48679.
[http://dx.doi.org/10.1074/jbc.M404690200] [PMID: 15317821]
[22]
Peña, S.V.; Hanson, D.A.; Carr, B.A.; Goralski, T.J.; Krensky, A.M. Processing, subcellular localization, and function of 519 (granulysin), a human late T cell activation molecule with homology to small, lytic, granule proteins. J. Immunol., 1997, 158(6), 2680-2688.
[http://dx.doi.org/10.4049/jimmunol.158.6.2680] [PMID: 9058801]
[23]
Stenger, S.; Hanson, D.A.; Teitelbaum, R.; Dewan, P.; Niazi, K.R.; Froelich, C.J.; Ganz, T.; Thoma-Uszynski, S.; Melián, A.; Bogdan, C.; Porcelli, S.A.; Bloom, B.R.; Krensky, A.M.; Modlin, R.L. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science, 1998, 282(5386), 121-125.
[http://dx.doi.org/10.1126/science.282.5386.121] [PMID: 9756476]
[24]
Walch, M.; Dotiwala, F.; Mulik, S.; Thiery, J.; Kirchhausen, T.; Clayberger, C.; Krensky, A.M.; Martinvalet, D.; Lieberman, J. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell, 2014, 157(6), 1309-1323.
[http://dx.doi.org/10.1016/j.cell.2014.03.062] [PMID: 24906149]
[25]
Deng, A.; Chen, S.; Li, Q.; Lyu, S.; Clayberger, C.; Krensky, A.M. Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator. J. Immunol., 2005, 174(9), 5243-5248.
[http://dx.doi.org/10.4049/jimmunol.174.9.5243] [PMID: 15843520]
[26]
Park, C.H.; Valore, E.V.; Waring, A.J.; Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem., 2001, 276(11), 7806-7810.
[http://dx.doi.org/10.1074/jbc.M008922200] [PMID: 11113131]
[27]
Sow, F.B.; Florence, W.C.; Satoskar, A.R.; Schlesinger, L.S.; Zwilling, B.S.; Lafuse, W.P. Expression and localization of hepcidin in macrophages: A role in host defense against tuberculosis. J. Leukoc. Biol., 2007, 82(4), 934-945.
[http://dx.doi.org/10.1189/jlb.0407216] [PMID: 17609338]
[28]
Foss, M.H.; Powers, K.M.; Purdy, G.E. Structural and functional characterization of mycobactericidal ubiquitin-derived peptides in model and bacterial membranes. Biochemistry, 2012, 51(49), 9922-9929.
[http://dx.doi.org/10.1021/bi301426j] [PMID: 23173767]
[29]
Purdy, G.E.; Niederweis, M.; Russell, D.G. Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol. Microbiol., 2009, 73(5), 844-857.
[http://dx.doi.org/10.1111/j.1365-2958.2009.06801.x] [PMID: 19682257]
[30]
Monteseirín, J.; Vega, A.; Chacón, P.; Camacho, M.J.; El Bekay, R.; Asturias, J.A.; Martínez, A.; Guardia, P.; Pérez-Cano, R.; Conde, J. Neutrophils as a novel source of eosinophil cationic protein in IgE-mediated processes. J. Immunol., 2007, 179(4), 2634-2641.
[http://dx.doi.org/10.4049/jimmunol.179.4.2634] [PMID: 17675527]
[31]
Venge, P.; Byström, J.; Carlson, M.; Håkansson, L.; Karawacjzyk, M.; Peterson, C.; Sevéus, L.; Trulson, A. Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin. Exp. Allergy, 1999, 29(9), 1172-1186.
[http://dx.doi.org/10.1046/j.1365-2222.1999.00542.x] [PMID: 10469025]
[32]
Pulido, D.; Torrent, M.; Andreu, D.; Nogués, M.V.; Boix, E. Two human host defense ribonucleases against mycobacteria, the eosinophil cationic protein (RNase 3) and RNase 7. Antimicrob. Agents Chemother., 2013, 57(8), 3797-3805.
[http://dx.doi.org/10.1128/AAC.00428-13] [PMID: 23716047]
[33]
Torrent, M.; Sánchez, D.; Buzón, V.; Nogués, M.V.; Cladera, J.; Boix, E. Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7. Biochim. Biophys. Acta Biomembr., 2009, 1788(5), 1116-1125.
[http://dx.doi.org/10.1016/j.bbamem.2009.01.013] [PMID: 19366593]
[34]
Lu, L.; Arranz-Trullen, J.; Prats-Ejarque, G.; Pulido, D.; Bhakta, S.; Boix, E. Human antimicrobial RNases inhibit intracellular bacterial growth and induce autophagy in mycobacteria-infected macrophages. Front. Immunol., 2019, 10, 1500.
[http://dx.doi.org/10.3389/fimmu.2019.01500]
[35]
Lu, L.; Li, J.; Moussaoui, M.; Boix, E. Immune modulation by human secreted RNases at the extracellular space. Front. Immunol., 2018, 9, 1012.
[http://dx.doi.org/10.3389/fimmu.2018.01012]
[36]
Harder, J.; Schröder, J.M. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J. Biol. Chem., 2002, 277(48), 46779-46784.
[http://dx.doi.org/10.1074/jbc.M207587200] [PMID: 12244054]
[37]
Torres-Juarez, F.; Touqui, L.; Leon-Contreras, J.; Rivas-Santiago, C.; Enciso-Moreno, J.A.; Hernández-Pando, R.; Rivas-Santiago, B. RNase 7 but not psoriasin nor sPLA2-IIA associates with Mycobacterium tuberculosis during airway epithelial cell infection. Pathog. Dis., 2018, 76(2)
[http://dx.doi.org/10.1093/femspd/fty005] [PMID: 29346642]
[38]
Méndez-Samperio, P. The human cathelicidin hCAP18/LL-37: A multifunctional peptide involved in mycobacterial infections. Peptides, 2010, 31(9), 1791-1798.
[http://dx.doi.org/10.1016/j.peptides.2010.06.016] [PMID: 20600427]
[39]
Nijnik, A.; Pistolic, J.; Wyatt, A.; Tam, S.; Hancock, R.E.W. Human cathelicidin peptide LL-37 modulates the effects of IFN-gamma on APCs. J. Immunol., 2009, 183(9), 5788-5798.
[http://dx.doi.org/10.4049/jimmunol.0901491] [PMID: 19812202]
[40]
Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; Kamen, D.L.; Wagner, M.; Bals, R.; Steinmeyer, A.; Zügel, U.; Gallo, R.L.; Eisenberg, D.; Hewison, M.; Hollis, B.W.; Adams, J.S.; Bloom, B.R.; Modlin, R.L. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006, 311(5768), 1770-1773.
[http://dx.doi.org/10.1126/science.1123933] [PMID: 16497887]
[41]
Yuk, J.M.; Shin, D.M.; Lee, H.M.; Yang, C.S.; Jin, H.S.; Kim, K.K.; Lee, Z.W.; Lee, S.H.; Kim, J.M.; Jo, E.K. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe, 2009, 6(3), 231-243.
[http://dx.doi.org/10.1016/j.chom.2009.08.004] [PMID: 19748465]
[42]
Rekha, R.S.; Rao Muvva, S.S.V.J.; Wan, M.; Raqib, R.; Bergman, P.; Brighenti, S.; Gudmundsson, G.H.; Agerberth, B. Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages. Autophagy, 2015, 11(9), 1688-1699.
[http://dx.doi.org/10.1080/15548627.2015.1075110] [PMID: 26218841]
[43]
Torres-Juarez, F.; Cardenas-Vargas, A.; Montoya-Rosales, A.; González-Curiel, I.; Garcia-Hernandez, M.H.; Enciso-Moreno, J.A.; Hancock, R.E.W.; Rivas-Santiago, B. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages. Infect. Immun., 2015, 83(12), 4495-4503.
[http://dx.doi.org/10.1128/IAI.00936-15] [PMID: 26351280]
[44]
Yang, D.; Chen, Q.; Schmidt, A.P.; Anderson, G.M.; Wang, J.M.; Wooters, J.; Oppenheim, J.J.; Chertov, O. LL-37, the neutrophil granule and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med., 2000, 192(7), 1069-1074.
[http://dx.doi.org/10.1084/jem.192.7.1069] [PMID: 11015447]
[45]
Elssner, A.; Duncan, M.; Gavrilin, M.; Wewers, M.D. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J. Immunol., 2004, 172(8), 4987-4994.
[http://dx.doi.org/10.4049/jimmunol.172.8.4987] [PMID: 15067080]
[46]
Wan, M.; van der Does, A.M.; Tang, X.; Lindbom, L.; Agerberth, B.; Haeggström, J.Z. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J. Leukoc. Biol., 2014, 95(6), 971-981.
[http://dx.doi.org/10.1189/jlb.0513304] [PMID: 24550523]
[47]
Lehrer, R.I.; Lichtenstein, A.K.; Ganz, T. Defensins: Antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol., 1993, 11, 105-128.
[http://dx.doi.org/10.1146/annurev.iy.11.040193.000541] [PMID: 8476558]
[48]
Fu, L.M. The potential of human neutrophil peptides in tuberculosis therapy. Int. J. Tuberc. Lung Dis., 2003, 7(11), 1027-1032.
[http://dx.doi.org/10.1016/S0147-9563(03)00105-5] [PMID: 14598960]
[49]
Kalita, A.; Verma, I.; Khuller, G.K. Role of human neutrophil peptide-1 as a possible adjunct to antituberculosis chemotherapy. J. Infect. Dis., 2004, 190(8), 1476-1480.
[http://dx.doi.org/10.1086/424463] [PMID: 15378441]
[50]
Sharma, S.; Verma, I.; Khuller, G.K. Therapeutic potential of human neutrophil peptide 1 against experimental tuberculosis. Antimicrob. Agents Chemother., 2001, 45(2), 639-640.
[http://dx.doi.org/10.1128/AAC.45.2.639-640.2001] [PMID: 11158773]
[51]
Pazgier, M.; Hoover, D.M.; Yang, D.; Lu, W.; Lubkowski, J. Human-defensins. Cell. Mol. Life Sci., 2006, 63(11), 1294-1313.
[http://dx.doi.org/10.1007/s00018-005-5540-2] [PMID: 16710608]
[52]
Machado, L.R.; Ottolini, B. An evolutionary history of defensins: A role for copy number variation in maximizing host innate and adaptive immune responses. Front. Immunol., 2015, 6, 115.
[http://dx.doi.org/10.3389/fimmu.2015.00115] [PMID: 25852686]
[53]
Méndez-Samperio, P.; Miranda, E.; Trejo, A. Mycobacterium bovis Bacillus Calmette-Guérin (BCG) stimulates human-defensin-2 gene transcription in human epithelial cells. Cell. Immunol., 2006, 239(1), 61-66.
[http://dx.doi.org/10.1016/j.cellimm.2006.04.001] [PMID: 16762333]
[54]
Zhao, Z.; Mu, Z.L.; Liu, X.W.; Liu, X.J.; Jia, J.; Cai, L.; Zhang, J.Z. Expressions of antimicrobial peptides LL-37, human beta defensin-2 and -3 in the lesions of cutaneous tuberculosis and tuberculids. Chin. Med. J. , 2016, 129(6), 696-701.
[http://dx.doi.org/10.4103/0366-6999.178011] [PMID: 26960373]
[55]
Rivas-Santiago, B.; Rivas-Santiago, C.; Sada, E.; Hernández-Pando, R. Prophylactic potential of defensins and L-isoleucine in tuberculosis household contacts: An experimental model. Immunotherapy, 2015, 7(3), 207-213.
[http://dx.doi.org/10.2217/imt.14.119] [PMID: 25804474]
[56]
Semple, F. Dorin, J.R.-Defensins: Multifunctional modulators of infection, inflammation and more? J. Innate Immun., 2012, 4(4), 337-348.
[http://dx.doi.org/10.1159/000336619] [PMID: 22441423]
[57]
Tewary, P.; de la Rosa, P.; Sharma, N.; Rodriguez, L.G; Tarasov, S.G; Howard, O.M.Z.; Shirota, H.; Steinhagen, F.; Klinman, D.M.; Yang, D. Oppenheim, J.J.-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN- production by human plasmacytoid dendritic cells, and promote inflammation. J. Immunol., 2013, 191(2), 865-874.
[http://dx.doi.org/10.4049/jimmunol.1201648] [PMID: 23776172]
[58]
Ernst, W.A.; Thoma-Uszynski, S.; Teitelbaum, R.; Ko, C.; Hanson, D.A.; Clayberger, C.; Krensky, A.M.; Leippe, M.; Bloom, B.R.; Ganz, T.; Modlin, R.L. Granulysin, a T cell product, kills bacteria by altering membrane permeability. J. Immunol., 2000, 165(12), 7102-7108.
[http://dx.doi.org/10.4049/jimmunol.165.12.7102] [PMID: 11120840]
[59]
Lu, C.C.; Wu, T.S.; Hsu, Y.J.; Chang, C.J.; Lin, C.S.; Chia, J.H.; Wu, T.L.; Huang, T.T.; Martel, J.; Ojcius, D.M.; Young, J.D.; Lai, H.C. NK cells kill mycobacteria directly by releasing perforin and granulysin. J. Leukoc. Biol., 2014, 96(6), 1119-1129.
[http://dx.doi.org/10.1189/jlb.4A0713-363RR] [PMID: 25139289]
[60]
Andersson, J.; Samarina, A.; Fink, J.; Rahman, S.; Grundström, S. Impaired expression of perforin and granulysin in CD8+ T cells at the site of infection in human chronic pulmonary tuberculosis. Infect. Immun., 2007, 75(11), 5210-5222.
[http://dx.doi.org/10.1128/IAI.00624-07] [PMID: 17664265]
[61]
Sahiratmadja, E.; Alisjahbana, B.; Buccheri, S.; Di Liberto, D.; de Boer, T.; Adnan, I.; van Crevel, R.; Klein, M.R.; van Meijgaarden, K.E.; Nelwan, R.H.H.; van de Vosse, E.; Dieli, F.; Ottenhoff, T.H.M. Plasma granulysin levels and cellular interferon production correlate with curative host responses in tuberculosis, while plasma interferon- levels correlate with tuberculosis disease activity in adults. Tuberculosis , 2007, 87(4), 312-321.
[http://dx.doi.org/10.1016/j.tube.2007.01.002] [PMID: 17382591]
[62]
Pitabut, N.; Mahasirimongkol, S.; Yanai, H.; Ridruechai, C.; Sakurada, S.; Dhepakson, P.; Kantipong, P.; Piyaworawong, S.; Moolphate, S.; Hansudewechakul, C.; Yamada, N.; Keicho, N.; Okada, M.; Khusmith, S. Decreased plasma granulysin and increased interferon-gamma concentrations in patients with newly diagnosed and relapsed tuberculosis. Microbiol. Immunol., 2011, 55(8), 565-573.
[http://dx.doi.org/10.1111/j.1348-0421.2011.00348.x] [PMID: 21545511]
[63]
Pitabut, N.; Sakurada, S.; Tanaka, T.; Ridruechai, C.; Tanuma, J.; Aoki, T.; Kantipong, P.; Piyaworawong, S.; Kobayashi, N.; Dhepakson, P.; Yanai, H.; Yamada, N.; Oka, S.; Okada, M.; Khusmith, S.; Keicho, N. Potential function of granulysin, other related effector molecules and lymphocyte subsets in patients with TB and HIV/TB coinfection. Int. J. Med. Sci., 2013, 10(8), 1003-1014.
[http://dx.doi.org/10.7150/ijms.6437] [PMID: 23801887]
[64]
Toro, J.C.; Hoffner, S.; Linde, C.; Andersson, M.; Andersson, J.; Grundström, S. Enhanced susceptibility of multidrug resistant strains of Mycobacterium tuberculosis to granulysin peptides correlates with a reduced fitness phenotype. Microbes Infect., 2006, 8(8), 1985-1993.
[http://dx.doi.org/10.1016/j.micinf.2006.02.030] [PMID: 16793311]
[65]
Siano, A.; Tonarelli, G.; Imaz, M.; Perín, J.; Ruggeri, N.; López, M.; Santi, M.; Zerbini, E. Bactericidal and hemolytic activities of synthetic peptides derived from granulysin. Protein Pept. Lett., 2010, 17(4), 517-521.
[http://dx.doi.org/10.2174/092986610790963555] [PMID: 19961432]
[66]
Nicolas, G.; Chauvet, C.; Viatte, L.; Danan, J.L.; Bigard, X.; Devaux, I.; Beaumont, C.; Kahn, A.; Vaulont, S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J. Clin. Invest., 2002, 110(7), 1037-1044.
[http://dx.doi.org/10.1172/JCI0215686] [PMID: 12370282]
[67]
Sow, F.B.; Alvarez, G.R.; Gross, R.P.; Satoskar, A.R.; Schlesinger, L.S.; Zwilling, B.S.; Lafuse, W.P. Role of STAT1, NFB, and C/EBP in the macrophage transcriptional regulation of hepcidin by mycobacterial infection and IFN- J. Leukoc. Biol., 2009, 86(5), 1247-1258.
[http://dx.doi.org/10.1189/jlb.1208719] [PMID: 19652026]
[68]
Sow, F.B.; Nandakumar, S.; Velu, V.; Kellar, K.L.; Schlesinger, L.S.; Amara, R.R.; Lafuse, W.P.; Shinnick, T.M.; Sable, S.B. Mycobacterium tuberculosis components stimulate production of the antimicrobial peptide hepcidin. Tuberculosis , 2011, 91(4), 314-321.
[http://dx.doi.org/10.1016/j.tube.2011.03.003] [PMID: 21482189]
[69]
Ciechanover, A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Cell Death Differ., 2005, 12(9), 1178-1190.
[http://dx.doi.org/10.1038/sj.cdd.4401692] [PMID: 16094394]
[70]
Purdy, G.E.; Russell, D.G. Ubiquitin trafficking to the lysosome: Keeping the house tidy and getting rid of unwanted guests. Autophagy, 2007, 3(4), 399-401.
[http://dx.doi.org/10.4161/auto.4272] [PMID: 17457035]
[71]
Purdy, G.E. Taking out TB-lysosomal trafficking and mycobactericidal ubiquitin-derived peptides. Front. Microbiol., 2011, 2, 7.
[http://dx.doi.org/10.3389/fmicb.2011.00007]
[72]
Alonso, S.; Pethe, K.; Russell, D.G.; Purdy, G.E. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc. Natl. Acad. Sci. USA, 2007, 104(14), 6031-6036.
[http://dx.doi.org/10.1073/pnas.0700036104] [PMID: 17389386]
[73]
Purdy, G.E.; Russell, D.G. Lysosomal ubiquitin and the demise of Mycobacterium tuberculosis. Cell. Microbiol., 2007, 9(12), 2768-2774.
[http://dx.doi.org/10.1111/j.1462-5822.2007.01039.x] [PMID: 17714517]
[74]
Samuchiwal, S.K.; Tousif, S.; Singh, D.K.; Kumar, A.; Ghosh, A.; Bhalla, K.; Prakash, P.; Kumar, S.; Bhattacharyya, M.; Moodley, P.; Das, G.; Ranganathan, A. A peptide fragment from the human COX3 protein disrupts association of Mycobacterium tuberculosis virulence proteins ESAT-6 and CFP10, inhibits mycobacterial growth and mounts protective immune response. BMC Infect. Dis., 2014, 14, 355.
[http://dx.doi.org/10.1186/1471-2334-14-355]
[75]
Meher, A.K.; Bal, N.C.; Chary, K.V.R.; Arora, A. Mycobacterium tuberculosis H37Rv ESAT-6-CFP-10 complex formation confers thermodynamic and biochemical stability. FEBS J., 2006, 273(7), 1445-1462.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05166.x] [PMID: 16689931]
[76]
Kulig, P.; Kantyka, T.; Zabel, B.A.; Bana, M.; Chyra, A.; Stefaska, A.; Tu, H.; Allen, S.J; Handel, T.M; Kozik, A.; Potempa, J.; Butcher, E.C; Cichy, J. Regulation of chemerin chemoattractant and antibacterial activity by human cysteine cathepsins. J. Immunol., 2011, 187(3), 1403-1410.
[http://dx.doi.org/10.4049/jimmunol.1002352] [PMID: 21715684]
[77]
Godlewska, U.; Bilska, B.; Zegar, A.; Brzoza, P.; Borek, A.; Murzyn, K.; Bochenska, O.; Morytko, A.; Kuleta, P.; Kozik, A.; Pyza, E.; Osyczka, A.; Zabel, B.A.; Cichy, J. The antimicrobial activity of chemerin-derived peptide p4 requires oxidative conditions. J. Biol. Chem., 2019, 294(4), 1267-1278.
[http://dx.doi.org/10.1074/jbc.RA118.005495] [PMID: 30504221]
[78]
Pratap Verma, D.; Ansari, M.M.; Verma, N.K.; Saroj, J.; Akhtar, S.; Pant, G.; Mitra, K.; Singh, B.N.; Ghosh, J.K. Tandem repeat of a short human chemerin-derived peptide and its nontoxic d-lysine-containing enantiomer display broad-spectrum antimicrobial and antitubercular activities. J. Med. Chem., 2021, 64(20), 15349-15366.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01352] [PMID: 34662112]
[79]
Martin, A.; Bland, M.J.; Rodriguez-Villalobos, H.; Gala, J.L.; Gabant, P. Promising antimicrobial activity and synergy of bacteriocins against Mycobacterium tuberculosis. Microb. Drug Resist., 2022.
[http://dx.doi.org/10.1089/mdr.2021.0429] [PMID: 35852864]
[80]
Carroll, J.; Draper, L.A.; O’Connor, P.M.; Coffey, A.; Hill, C.; Ross, R.P.; Cotter, P.D.; O’Mahony, J. Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. Int. J. Antimicrob. Agents, 2010, 36(2), 132-136.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.03.029] [PMID: 20547041]
[81]
Morgan, S.M.; O’Connor, P.M.; Cotter, P.D.; Ross, R.P.; Hill, C. Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob. Agents Chemother., 2005, 49(7), 2606-2611.
[http://dx.doi.org/10.1128/AAC.49.7.2606-2611.2005] [PMID: 15980326]
[82]
Yoneyama, F.; Imura, Y.; Ichimasa, S.; Fujita, K.; Zendo, T.; Nakayama, J.; Matsuzaki, K.; Sonomoto, K. Lacticin Q, a lactococcal bacteriocin, causes high-level membrane permeability in the absence of specific receptors. Appl. Environ. Microbiol., 2009, 75(2), 538-541.
[http://dx.doi.org/10.1128/AEM.01827-08] [PMID: 19011053]
[83]
Montville, T.J.; Chung, H.J.; Chikindas, M.L.; Chen, Y. Nisin A depletes intracellular ATP and acts in bactericidal manner against Mycobacterium smegmatis. Lett. Appl. Microbiol., 1999, 28(3), 189-193.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00511.x] [PMID: 10196766]
[84]
Carroll, J.; Field, D.; O’ Connor, P.M.; Cotter, P.D.; Coffey, A.; Hill, C.; O’ Mahony, J.; O’Mahony, J. The gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioeng. Bugs, 2010, 1(6), 408-412.
[http://dx.doi.org/10.4161/bbug.1.6.13642] [PMID: 21468208]
[85]
Karczewski, J.; Krasucki, S.P.; Asare-Okai, P.N.; Diehl, C.; Friedman, A.; Brown, C.M.; Maezato, Y.; Streatfield, S.J. Isolation, characterization and structure elucidation of a novel lantibiotic from Paenibacillus sp. Front. Microbiol., 2020, 11598789
[http://dx.doi.org/10.3389/fmicb.2020.598789] [PMID: 33324379]
[86]
Kers, J.A.; Sharp, R.E.; Defusco, A.W.; Park, J.H.; Xu, J.; Pulse, M.E.; Weiss, W.J.; Handfield, M. Mutacin 1140 lantibiotic variants are efficacious against Clostridium difficile infection. Front. Microbiol., 2018, 9, 415.
[http://dx.doi.org/10.3389/fmicb.2018.00415] [PMID: 29615987]
[87]
Pokhrel, R.; Bhattarai, N.; Baral, P.; Gerstman, B.S.; Park, J.H.; Handfield, M.; Chapagain, P.P. Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140. Phys. Chem. Chem. Phys., 2019, 21(23), 12530-12539.
[http://dx.doi.org/10.1039/C9CP01558B] [PMID: 31147666]
[88]
Gavrish, E.; Sit, C.S.; Cao, S.; Kandror, O.; Spoering, A.; Peoples, A.; Ling, L.; Fetterman, A.; Hughes, D.; Bissell, A.; Torrey, H.; Akopian, T.; Mueller, A.; Epstein, S.; Goldberg, A.; Clardy, J.; Lewis, K. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol., 2014, 21(4), 509-518.
[http://dx.doi.org/10.1016/j.chembiol.2014.01.014] [PMID: 24684906]
[89]
Andersen, F.D.; Pedersen, K.D.; Wilkens Juhl, D.; Mygind, T.; Chopin, P.; B Svenningsen, E.; Poulsen, T.B; Braad Lund, M.; Schramm, A.; Gotfredsen, C.H Tørring, T. Triculamin: An unusual lasso peptide with potent antimycobacterial activity. J. Nat. Prod., 2022, 85(6), 1514-1521.
[http://dx.doi.org/10.1021/acs.jnatprod.2c00065] [PMID: 35748039]
[90]
Iwatsuki, M.; Uchida, R.; Takakusagi, Y.; Matsumoto, A.; Jiang, C.L.; Takahashi, Y.; Arai, M.; Kobayashi, S.; Matsumoto, ,M.; Inokoshi, J.; Tomoda, H.; mura, S. Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J. Antibiot. , 2007, 60(6), 357-363.
[http://dx.doi.org/10.1038/ja.2007.48] [PMID: 17617692]
[91]
Xie, Y.; Chen, R.; Si, S.; Sun, C.; Xu, H. A new nucleosidyl-peptide antibiotic, sansanmycin. J. Antibiot. , 2007, 60(2), 158-161.
[http://dx.doi.org/10.1038/ja.2007.16] [PMID: 17420567]
[92]
Tran, A.T.; Watson, E.E.; Pujari, V.; Conroy, T.; Dowman, L.J.; Giltrap, A.M.; Pang, A.; Wong, W.R.; Linington, R.G.; Mahapatra, S.; Saunders, J.; Charman, S.A.; West, N.P.; Bugg, T.D.; Tod, J.; Dowson, C.G.; Roper, D.I.; Crick, D.C.; Britton, W.J.; Payne, R.J. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nat. Commun., 2017, 8, 14414.
[http://dx.doi.org/10.1038/ncomms14414] [PMID: 28248311]
[93]
Xie, Y.; Xu, H.; Si, S.; Sun, C.; Chen, R. Sansanmycins B and C, new components of sansanmycins. J. Antibiot. , 2008, 61(4), 237-240.
[http://dx.doi.org/10.1038/ja.2008.34] [PMID: 18503203]
[94]
Li, Y.B.; Xie, Y.Y.; Du, N.N.; Lu, Y.; Xu, H.Z.; Wang, B.; Yu, Y.; Liu, Y.X.; Song, D.Q.; Chen, R.X. Synthesis and in vitro antitubercular evaluation of novel sansanmycin derivatives. Bioorg. Med. Chem. Lett., 2011, 21(22), 6804-6807.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.031] [PMID: 21982497]
[95]
Cai, G.; Napolitano, J.G.; McAlpine, J.B.; Wang, Y.; Jaki, B.U.; Suh, J.W.; Yang, S.H.; Lee, I.A.; Franzblau, S.G.; Pauli, G.F.; Cho, S. Hytramycins V and I, anti-Mycobacterium tuberculosis hexapeptides from a Streptomyces hygroscopicus strain. J. Nat. Prod., 2013, 76(11), 2009-2018.
[http://dx.doi.org/10.1021/np400145u] [PMID: 24224794]
[96]
Hwang, S.; Shin, D.; Kim, T.H.; An, J.S.; Jo, S.I.; Jang, J.; Hong, S.; Shin, J.; Oh, D.C. Structural revision of Lydiamycin A by reinvestigation of the stereochemistry. Org. Lett., 2020, 22(10), 3855-3859.
[http://dx.doi.org/10.1021/acs.orglett.0c01110] [PMID: 32330060]
[97]
Sosunov, V.; Mischenko, V.; Eruslanov, B.; Svetoch, E.; Shakina, Y.; Stern, N.; Majorov, K.; Sorokoumova, G.; Selishcheva, A.; Apt, A. Antimycobacterial activity of bacteriocins and their complexes with liposomes. J. Antimicrob. Chemother., 2007, 59(5), 919-925.
[http://dx.doi.org/10.1093/jac/dkm053] [PMID: 17347179]
[98]
Aguilar-Pérez, C.; Gracia, B.; Rodrigues, L.; Vitoria, A.; Cebrián, R.; Deboosère, N.; Song, O.; Brodin, P.; Maqueda, M.; Aínsa, J.A. Synergy between Circular Bacteriocin AS-48 and Ethambutol against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2018, 62(9), e00359-e18.
[http://dx.doi.org/10.1128/AAC.00359-18] [PMID: 29987141]
[99]
McAuliffe, O.; Ross, R.P.; Hill, C. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiol. Rev., 2001, 25(3), 285-308.
[http://dx.doi.org/10.1111/j.1574-6976.2001.tb00579.x] [PMID: 11348686]
[100]
Wiedemann, I.; Breukink, E.; van Kraaij, C.; Kuipers, O.P.; Bierbaum, G.; de Kruijff, B.; Sahl, H.G. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem., 2001, 276(3), 1772-1779.
[http://dx.doi.org/10.1074/jbc.M006770200] [PMID: 11038353]
[101]
Silva, J.P.; Appelberg, R.; Gama, F.M. Antimicrobial peptides as novel anti-tuberculosis therapeutics. Biotechnol. Adv., 2016, 34(5), 924-940.
[http://dx.doi.org/10.1016/j.biotechadv.2016.05.007] [PMID: 27235189]
[102]
Maksimov, M.O.; Pan, S.J.; James Link, A.; Lasso peptides, Structure. function, biosynthesis, and engineering. Nat. Prod. Rep., 2012, 29(9), 996-1006.
[http://dx.doi.org/10.1039/c2np20070h] [PMID: 22833149]
[103]
Zhu, S.; Su, Y.; Shams, S.; Feng, Y.; Tong, Y.; Zheng, G. Lassomycin and lariatin lasso peptides as suitable antibiotics for combating mycobacterial infections: current state of biosynthesis and perspectives for production. Appl. Microbiol. Biotechnol., 2019, 103(10), 3931-3940.
[http://dx.doi.org/10.1007/s00253-019-09771-6] [PMID: 30915503]
[104]
Sánchez-Hidalgo, M.; Montalbán-López, M.; Cebrián, R.; Valdivia, E.; Martínez-Bueno, M.; Maqueda, M. AS-48 bacteriocin: Close to perfection. Cell. Mol. Life Sci., 2011, 68(17), 2845-2857.
[http://dx.doi.org/10.1007/s00018-011-0724-4] [PMID: 21590312]
[105]
Sandiford, S.; Upton, M. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci. Antimicrob. Agents Chemother., 2012, 56(3), 1539-1547.
[http://dx.doi.org/10.1128/AAC.05397-11] [PMID: 22155816]
[106]
Netz, D.J.A.; Pohl, R.; Beck-Sickinger, A.G.; Selmer, T.; Pierik, A.J.; Bastos, M.C.F.; Sahl, H.G. Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. J. Mol. Biol., 2002, 319(3), 745-756.
[http://dx.doi.org/10.1016/S0022-2836(02)00368-6] [PMID: 12054867]
[107]
Pruksakorn, P.; Arai, M.; Kotoku, N.; Vilchèze, C.; Baughn, A.D.; Moodley, P.; Jacobs, W.R., Jr; Kobayashi, M. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg. Med. Chem. Lett., 2010, 20(12), 3658-3663.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.100] [PMID: 20483615]
[108]
Pruksakorn, P.; Arai, M.; Liu, L.; Moodley, P.; Jacobs, W.R., Jr; Kobayashi, M. Action-mechanism of trichoderin A, an anti-dormant mycobacterial aminolipopeptide from marine sponge-derived Trichoderma sp. Biol. Pharm. Bull., 2011, 34(8), 1287-1290.
[http://dx.doi.org/10.1248/bpb.34.1287] [PMID: 21804219]
[109]
Mygind, P.H.; Fischer, R.L.; Schnorr, K.M.; Hansen, M.T.; Sönksen, C.P.; Ludvigsen, S.; Raventós, D.; Buskov, S.; Christensen, B.; De Maria, L.; Taboureau, O.; Yaver, D.; Elvig-Jørgensen, S.G.; Sørensen, M.V.; Christensen, B.E.; Kjærulff, S.; Frimodt-Moller, N.; Lehrer, R.I.; Zasloff, M.; Kristensen, H.H. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature, 2005, 437(7061), 975-980.
[http://dx.doi.org/10.1038/nature04051] [PMID: 16222292]
[110]
Tenland, E.; Krishnan, N.; Ronnholm, A.; Kalsum, S.; Puthia, M.; Morgelin, M.; Davoudi, M.; Otrocka, M.; Alaridah, N.; Glegola-Madejska, I.; Sturegard, E.; Schmidtchen, A.; Lerm, M.; Robertson, B.D.; Godaly, G. A novel derivative of the fungal antimicrobial peptide plectasin is active against Mycobacterium tuberculosis. Tuberculosis , 2018, 113, 231-238.
[http://dx.doi.org/10.1016/j.tube.2018.10.008] [PMID: 30514507]
[111]
Koyama, N.; Kojima, S.; Fukuda, T.; Nagamitsu, T.; Yasuhara, T.; O̅ mura,, S.; Tomoda, H. Structure and total synthesis of fungal calpinactam, a new antimycobacterial agent. Org. Lett., 2010, 12(3), 432-435.
[http://dx.doi.org/10.1021/ol902553z] [PMID: 20030344]
[112]
Koyama, N.; Kojima, s.; Nonaka, k.; Masuma, R.; Matsumoto, M.; mura, S.; Tomoda, H. Calpinactam, a new anti-mycobacterial agent, produced by Mortierella alpina FKI-4905. J. Antibiot. , 2010, 63(4), 183-186.
[http://dx.doi.org/10.1038/ja.2010.14] [PMID: 20186169]
[113]
Wei, L.; Wu, J.; Liu, H.; Yang, H.; Rong, M.; Li, D.; Zhang, P.; Han, J.; Lai, R. A mycobacteriophage ;derived trehalose-6,6 dimycolate binding peptide containing both antimycobacterial and anti inflammatory abilities. FASEB J., 2013, 27(8), 3067-3077.
[http://dx.doi.org/10.1096/fj.13-227454] [PMID: 23603838]
[114]
Linde, C.M.A.; Hoffner, S.E.; Refai, E.; Andersson, M. In vitro activity of PR-39, a proline-arginine-rich peptide, against susceptible and multi-drug-resistant Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2001, 47(5), 575-580.
[http://dx.doi.org/10.1093/jac/47.5.575] [PMID: 11328767]
[115]
Boman, H.G.; Agerberth, B.; Boman, A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun., 1993, 61(7), 2978-2984.
[http://dx.doi.org/10.1128/iai.61.7.2978-2984.1993] [PMID: 8514403]
[116]
Miyakawa, Y.; Ratnakar, P.; Rao, A.G.; Costello, M.L.; Mathieu-Costello, O.; Lehrer, R.I.; Catanzaro, A. In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. Infect. Immun., 1996, 64(3), 926-932.
[http://dx.doi.org/10.1128/iai.64.3.926-932.1996] [PMID: 8641802]
[117]
Portell-Buj, E.; Vergara, A.; Alejo, I.; López-Gavín, A.; Monté, M.R.; San Nicolás, L.; González-Martín, J.; Tudó, G. In vitro activity of 12 antimicrobial peptides against Mycobacterium tuberculosis and Mycobacterium avium clinical isolates. J. Med. Microbiol., 2019, 68(2), 211-215.
[http://dx.doi.org/10.1099/jmm.0.000912] [PMID: 30570475]
[118]
KościuczukE.M. LisowskiP.JarczakJ.StrzakowskaN.JówikA.Horbaczuk,J. KrzyewskiJ.ZwierzchowskiL.BagnickaE. Cathelicidins: Family of antimicrobial peptides. A review. Mol. Biol. Rep., 2012, 39(12), 10957-10970.
[http://dx.doi.org/10.1007/s11033-012-1997-x] [PMID: 23065264]
[119]
Abraham, P.; Jose, L.; Maliekal, T.T.; Kumar, R.A.; Kumar, K.S. B1CTcu5: A frog-derived brevinin-1 peptide with anti-tuberculosis activity. Peptides, 2020, 132170373
[http://dx.doi.org/10.1016/j.peptides.2020.170373]
[120]
Xie, J.P.; Yue, J.; Xiong, Y.L.; Wang, W.Y.; Yu, S.Q.; Wang, H.H. In vitro activities of small peptides from snake venom against clinical isolates of drug-resistant Mycobacterium tuberculosis. Int. J. Antimicrob. Agents, 2003, 22(2), 172-174.
[http://dx.doi.org/10.1016/S0924-8579(03)00110-9] [PMID: 12927960]
[121]
Priya, A.; Aditya, A.; Budagavi, D.P.; Chugh, A. Tachyplesin and CyLoP-1 as efficient anti-mycobacterial peptides: A novel finding. Biochim. Biophys. Acta Biomembr., 2022, 1864(7)183895
[http://dx.doi.org/10.1016/j.bbamem.2022.183895] [PMID: 35271828]
[122]
Hong, J.; Guan, W.; Jin, G.; Zhao, H.; Jiang, X.; Dai, J. Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry. Microbiol. Res., 2015, 170, 69-77.
[http://dx.doi.org/10.1016/j.micres.2014.08.012] [PMID: 25267486]
[123]
Rodríguez, A.; Villegas, E.; Montoya-Rosales, A.; Rivas-Santiago, B.; Corzo, G. Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis. PLoS One, 2014, 9(7)e101742
[http://dx.doi.org/10.1371/journal.pone.0101742] [PMID: 25019413]
[124]
Ramirez-Carreto, S.; Jimenez-Vargas, J.M.; Rivas-Santiago, B.; Corzo, G.; Possani, L.D.; Becerril, B.; Ortiz, E. Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity. Peptides, 2015, 73, 51-59.
[http://dx.doi.org/10.1016/j.peptides.2015.08.014] [PMID: 26352292]
[125]
da Silva, G.R.; Taveira, G.B.; de Azevedo dos, S.L; Calixto, S.D; Simão, T.L.B.V.; Lassounskaia, E.; Muzitano, M.F.; Teixeira-Ferreira, A.; Perales, J.; Rodrigues, R.; de Oliveira, C.A; Gomes, V.M Identification and characterization of two defensins from Capsicum annuum fruits that exhibit antimicrobial activity. Probiotics Antimicrob. Proteins, 2020, 12(3), 1253-1265.
[http://dx.doi.org/10.1007/s12602-020-09647-6] [PMID: 32221795]
[126]
Henao, A.D.C.; Toro, L.J.; Tellez, R.G.A.; Osorio-Mendez, J.F.; Rodriguez-Carlos, A.; Valle, J.; Marin-Luevano, S.P.; Rivas-Santiago, B.; Andreu, D.; Castano, O.J.C. Novel antimicrobial cecropins derived from O. curvicornis and D. satanas dung beetles. Peptides, 2021, 145170626
[http://dx.doi.org/10.1016/j.peptides.2021.170626] [PMID: 34391826]
[127]
Shi, J.; Ross, C.R.; Chengappa, M.M.; Blecha, F. Identification of a proline-arginine-rich antibacterial peptide from neutrophils that is analogous to PR-39, an antibacterial peptide from the small intestine. J. Leukoc. Biol., 1994, 56(6), 807-811.
[http://dx.doi.org/10.1002/jlb.56.6.807] [PMID: 7996056]
[128]
Li, J.; Hu, S.; Jian, W.; Xie, C.; Yang, X. Plant antimicrobial peptides: Structures, functions, and applications. Bot. Stud. , 2021, 62(1), 5.
[http://dx.doi.org/10.1186/s40529-021-00312-x] [PMID: 33914180]
[129]
Chowanski, S.; Adamski, Z.; Lubawy, J.; Marciniak, P.; Pacholska-Bogalska, J.; Slocinska, M.; Spochacz, M.; Szymczak, M.; Urbanski, A.; Walkowiak-Nowicka, K.; Rosinski, G. Insect peptides - perspectives in human diseases treatment. Curr. Med. Chem., 2017, 24(29), 3116-3152.
[http://dx.doi.org/10.2174/0929867324666170526120218] [PMID: 28552052]
[130]
Kapoor, R.; Eimerman, P.R.; Hardy, J.W.; Cirillo, J.D.; Contag, C.H.; Barron, A.E. Efficacy of antimicrobial peptoids against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2011, 55(6), 3058-3062.
[http://dx.doi.org/10.1128/AAC.01667-10] [PMID: 21464254]
[131]
Khara, J.S.; Wang, Y.; Ke, X.Y.; Liu, S.; Newton, S.M.; Langford, P.R.; Yang, Y.Y.; Ee, P.L.R. Anti-mycobacterial activities of synthetic cationic -helical peptides and their synergism with rifampicin. Biomaterials, 2014, 35(6), 2032-2038.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.035] [PMID: 24314557]
[132]
Lan, Y.; Lam, J.T.; Siu, G.K.H.; Yam, W.C.; Mason, A.J.; Lam, J.K.W. Cationic amphipathic D-enantiomeric antimicrobial peptides with in vitro and ex vivo activity against drug-resistant Mycobacterium tuberculosis. Tuberculosis , 2014, 94(6), 678-689.
[http://dx.doi.org/10.1016/j.tube.2014.08.001] [PMID: 25154927]
[133]
Hicks, R.P. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C amino acids. Bioorg. Med. Chem., 2016, 24(18), 4056-4065.
[http://dx.doi.org/10.1016/j.bmc.2016.06.048] [PMID: 27387357]
[134]
Fleck, B.S.; Mukherjee, D.; Tram, N.D.T.; Ee, P.L.R.; Schepers, U. Novel tetrameric cell penetrating antimicrobial peptoids effective against mycobacteria and drug-resistant Staphylococcus aureus. Front. Biosci. Landmark, 2022, 27(2), 64.
[http://dx.doi.org/10.31083/j.fbl2702064] [PMID: 35227007]
[135]
Rodríguez Plaza, J.G.; Villalón Rojas, A.; Herrera, S.; Garza-Ramos, G.; Torres Larios, A.; Amero, C.; Zarraga Granados, G.; Gutiérrez Aguilar, M.; Lara Ortiz, M.T.; Polanco Gonzalez, C.; Uribe Carvajal, S.; Coria, R.; Peña Díaz, A.; Bredesen, D.E.; Castro-Obregon, S.; del Rio, G. Moonlighting peptides with emerging function. PLoS One, 2012, 7(7)e40125
[http://dx.doi.org/10.1371/journal.pone.0040125] [PMID: 22808104]
[136]
Peláez Coyotl, E.A.; Barrios Palacios, J.; Muciño, G.; Moreno-Blas, D.; Costas, M.; Montiel Montes, T.; Diener, C.; Uribe-Carvajal, S.; Massieu, L.; Castro-Obregón, S.; Espinosa, O.R.; Mata Espinosa, D.; Barrios-Payan, J.; León Contreras, J.C.; Corzo, G.; Hernández-Pando, R.; Del Rio, G. Antimicrobial peptide against Mycobacterium tuberculosis that activates autophagy is an effective treatment for tuberculosis. Pharmaceutics, 2020, 12(11), 1071.
[http://dx.doi.org/10.3390/pharmaceutics12111071] [PMID: 33182483]
[137]
Pearson, C.S.; Kloos, Z.; Murray, B.; Tabe, E.; Gupta, M.; Kwak, J.H.; Karande, P.; McDonough, K.A.; Belfort, G. Combined bioinformatic and rational design approach to develop antimicrobial peptides against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2016, 60(5), 2757-2764.
[http://dx.doi.org/10.1128/AAC.00940-15] [PMID: 26902758]
[138]
Simonson, A.W.; Mongia, A.S.; Aronson, M.R.; Alumasa, J.N.; Chan, D.C.; Lawanprasert, A.; Howe, M.D.; Bolotsky, A.; Mal, T.K.; George, C.; Ebrahimi, A.; Baughn, A.D.; Proctor, E.A.; Keiler, K.C.; Medina, S.H. Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry. Nat. Biomed. Eng., 2021, 5(5), 467-480.
[http://dx.doi.org/10.1038/s41551-020-00665-x] [PMID: 33390588]
[139]
Beitzinger, B.; Gerbl, F.; Vomhof, T.; Schmid, R.; Noschka, R.; Rodriguez, A.; Wiese, S.; Weidinger, G.; Ständker, L.; Walther, P.; Michaelis, J.; Lindén, M.; Stenger, S. Delivery by dendritic mesoporous silica nanoparticles enhances the antimicrobial activity of a napsin-derived peptide against intracellular Mycobacterium tuberculosis. Adv. Healthc. Mater., 2021, 10(14)2100453
[http://dx.doi.org/10.1002/adhm.202100453] [PMID: 34142469]
[140]
Costa, F.; Teixeira, C.; Gomes, P.; Martins, M.C.L. Clinical application of AMPs. Adv. Exp. Med. Biol., 2019, 1117, 281-298.
[http://dx.doi.org/10.1007/978-981-13-3588-4_15]
[141]
Tenland, E.; Pochert, A.; Krishnan, N.; Umashankar Rao, K.; Kalsum, S.; Braun, K.; Glegola-Madejska, I.; Lerm, M.; Robertson, B.D.; Lindén, M.; Godaly, G. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One, 2019, 14(2)e0212858
[http://dx.doi.org/10.1371/journal.pone.0212858] [PMID: 30807612]
[142]
Deng, T.; Ge, H.; He, H.; Liu, Y.; Zhai, C.; Feng, L.; Yi, L. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr. Purif., 2017, 140, 52-59.
[http://dx.doi.org/10.1016/j.pep.2017.08.003] [PMID: 28807840]
[143]
Mirzaee, M.; Holásková, E.; Miúchová, A.; Kopený, D.J.; Osmani, Z.; Frébort, I. Long-lasting stable expression of human LL-37 antimicrobial peptide in transgenic barley plants. Antibiotics , 2021, 10(8), 898.
[http://dx.doi.org/10.3390/antibiotics10080898] [PMID: 34438948]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy