Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Physical Exercise to Redynamize Interoception in Substance use Disorders

Author(s): Damien Brevers*, Joël Billieux, Philippe de Timary, Olivier Desmedt, Pierre Maurage, José Cesar Perales, Samuel Suárez-Suárez and Antoine Bechara

Volume 22, Issue 6, 2024

Published on: 14 March, 2023

Page: [1047 - 1063] Pages: 17

DOI: 10.2174/1570159X21666230314143803

Price: $65

Abstract

Physical exercise is considered a promising medication-free and cost-effective adjunct treatment for substance use disorders (SUD). Nevertheless, evidence regarding the effectiveness of these interventions is currently limited, thereby signaling the need to better understand the mechanisms underlying their impact on SUD, in order to reframe and optimize them. Here we advance that physical exercise could be re-conceptualized as an “interoception booster”, namely as a way to help people with SUD to better decode and interpret bodily-related signals associated with transient states of homeostatic imbalances that usually trigger consumption. We first discuss how mismatches between current and desired bodily states influence the formation of reward-seeking states in SUD, in light of the insular cortex brain networks. Next, we detail effort perception during physical exercise and discuss how it can be used as a relevant framework for re-dynamizing interoception in SUD. We conclude by providing perspectives and methodological considerations for applying the proposed approach to mixed-design neurocognitive research on SUD.

[1]
Bouchard, C.; Blair, S.N.; Haskell, W.L. Physical activity and health, 2nd ed.; Human kinetics.: Bloomsbury Publishing, 2012.
[http://dx.doi.org/10.5040/9781492595717]
[2]
Lynch, W.J.; Peterson, A.B.; Sanchez, V.; Abel, J.; Smith, M.A. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neurosci. Biobehav. Rev., 2013, 37(8), 1622-1644.
[http://dx.doi.org/10.1016/j.neubiorev.2013.06.011] [PMID: 23806439]
[3]
Basso, J.C.; Suzuki, W.A. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plast., 2017, 2(2), 127-152.
[http://dx.doi.org/10.3233/BPL-160040] [PMID: 29765853]
[4]
Sothmann, M.S.; Buckworth, J.; Claytor, R.P.; Cox, R.H.; White-Welkley, J.; Dishman, R.K. Exercise training and the cross-stressor adaptation hypothesis. Exerc. Sport Sci. Rev., 1996, 24, 267-288.
[http://dx.doi.org/10.1249/00003677-199600240-00011] [PMID: 8744253]
[5]
Chen, C.; Nakagawa, S.; An, Y.; Ito, K.; Kitaichi, Y.; Kusumi, I. The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front. Neuroendocrinol., 2017, 44, 83-102.
[http://dx.doi.org/10.1016/j.yfrne.2016.12.001] [PMID: 27956050]
[6]
Klaperski, S.; von Dawans, B.; Heinrichs, M.; Fuchs, R. Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: A randomized controlled trial. J. Behav. Med., 2014, 37(6), 1118-1133.
[http://dx.doi.org/10.1007/s10865-014-9562-9] [PMID: 24659155]
[7]
Landers, D.M.; Arent, S.M. Physical activity and mental health. Handbook of sport psychology; Singer, R.; Hausenblas, H; Janelle, C., Ed.; s Wiley: New York, 2001, pp. 740-765.
[8]
Boecker, H.; Sprenger, T.; Spilker, M.E.; Henriksen, G.; Koppenhoefer, M.; Wagner, K.J.; Valet, M.; Berthele, A.; Tolle, T.R. The runner’s high: Opioidergic mechanisms in the human brain. Cereb. Cortex, 2008, 18(11), 2523-2531.
[http://dx.doi.org/10.1093/cercor/bhn013] [PMID: 18296435]
[9]
Harber, V.J.; Sutton, J.R. Endorphins and exercise. Sports Med., 1984, 1(2), 154-171.
[http://dx.doi.org/10.2165/00007256-198401020-00004] [PMID: 6091217]
[10]
Meeusen, R. Exercise and the brain: Insight in new therapeutic modalities. Ann. Transplant., 2005, 10(4), 49-51.
[PMID: 17037089]
[11]
Salmon, P. Effects of physical exercise on anxiety, depression, and sensitivity to stress. Clin. Psychol. Rev., 2001, 21(1), 33-61.
[http://dx.doi.org/10.1016/S0272-7358(99)00032-X] [PMID: 11148895]
[12]
Wipfli, B.; Landers, D.; Nagoshi, C.; Ringenbach, S. An examination of serotonin and psychological variables in the relationship between exercise and mental health. Scand. J. Med. Sci. Sports, 2011, 21(3), 474-481.
[http://dx.doi.org/10.1111/j.1600-0838.2009.01049.x] [PMID: 20030777]
[13]
Chen, C.; Nakagawa, S.; Kitaichi, Y.; An, Y.; Omiya, Y.; Song, N.; Koga, M.; Kato, A.; Inoue, T.; Kusumi, I. The role of medial prefrontal corticosterone and dopamine in the antidepressant-like effect of exercise. Psychoneuroendocrinology, 2016, 69, 1-9.
[http://dx.doi.org/10.1016/j.psyneuen.2016.03.008] [PMID: 27003115]
[14]
Moake, T.R.; Patel, A.S. A cross-stressor adaptation perspective on challenge stressors, dietary behavior, and exercise of college students. Soc. Sci. J., 2021, 1-10.
[http://dx.doi.org/10.1080/03623319.2020.1867948]
[15]
Archer, T.; Badgaiyan, R.D.; Blum, K. Physical exercise interventions for drug addictive disorder. J. Reward Defic. Syndr. Addict. Sci., 2017, 3(1), 17-20.
[http://dx.doi.org/10.17756/jrdsas.2017-036] [PMID: 29034367]
[16]
Weinstock, J.; Wadeson, H.K.; VanHeest, J.L. Exercise as an adjunct treatment for opiate agonist treatment: Review of the current research and implementation strategies. Subst. Abus., 2012, 33(4), 350-360.
[http://dx.doi.org/10.1080/08897077.2012.663327] [PMID: 22989278]
[17]
Wang, D.; Wang, Y.; Wang, Y.; Li, R.; Zhou, C. Impact of physical exercise on substance use disorders: A meta-analysis. PLoS One, 2014, 9(10), e110728.
[http://dx.doi.org/10.1371/journal.pone.0110728] [PMID: 25330437]
[18]
Zhang, Z.; Liu, X. A systematic review of exercise intervention program for people with substance use disorder. Front. Psychiatry, 2022, 13, 817927.
[http://dx.doi.org/10.3389/fpsyt.2022.817927] [PMID: 35360135]
[19]
Araos, P.; Vergara-Moragues, E.; Pedraz, M.; Pavón, F.J.; Campos Cloute, R.; Calado, M.; Ruiz, J.J.; García-Marchena, N.; Gornemann, I.; Torrens, M.; Rodríguez de Fonseca, F. Psychopathological comorbidity in cocaine users in outpatient treatment. Adicciones, 2014, 26(1), 15-26.
[http://dx.doi.org/10.20882/adicciones.124] [PMID: 24652395]
[20]
Bresin, K.; Mekawi, Y.; Verona, E. The effect of laboratory manipulations of negative affect on alcohol craving and use: A meta-analysis. Psychol. Addict. Behav., 2018, 32(6), 617-627.
[http://dx.doi.org/10.1037/adb0000383] [PMID: 30010350]
[21]
Greenwald, M.K. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol. Stress, 2018, 9, 84-104.
[http://dx.doi.org/10.1016/j.ynstr.2018.08.003] [PMID: 30238023]
[22]
Colledge, F.; Cody, R.; Buchner, U.G.; Schmidt, A.; Pühse, U.; Gerber, M.; Wiesbeck, G.; Lang, U.E.; Walter, M. Excessive exercise-a meta-review. Front. Psychiatry, 2020, 11, 521572.
[http://dx.doi.org/10.3389/fpsyt.2020.521572] [PMID: 33329076]
[23]
Giménez-Meseguer, J.; Tortosa-Martínez, J.; Cortell-Tormo, J. The benefits of physical exercise on mental disorders and quality of life in substance use disorders patients. Systematic review and meta-analysis. Int. J. Environ. Res. Public Health, 2020, 17(10), 3680.
[http://dx.doi.org/10.3390/ijerph17103680] [PMID: 32456164]
[24]
Gür, F.; Can Gür, G. Is exercise a useful intervention in the treatment of alcohol use disorder? systematic review and meta-analysis. Am. J. Health Promot., 2020, 34(5), 520-537.
[http://dx.doi.org/10.1177/0890117120913169] [PMID: 32212949]
[25]
Hallgren, M.; Vancampfort, D.; Giesen, E.S.; Lundin, A.; Stubbs, B. Exercise as treatment for alcohol use disorders: Systematic review and meta-analysis. Br. J. Sports Med., 2017, 51(14), 1058-1064.
[http://dx.doi.org/10.1136/bjsports-2016-096814] [PMID: 28087569]
[26]
Klinsophon, T.; Thaveeratitham, P.; Sitthipornvorakul, E.; Janwantanakul, P. Effect of exercise type on smoking cessation: A meta-analysis of randomized controlled trials. BMC Res. Notes, 2017, 10(1), 442.
[http://dx.doi.org/10.1186/s13104-017-2762-y] [PMID: 28874175]
[27]
Lardier, D.T.; Coakley, K.E.; Holladay, K.R.; Amorim, F.T.; Zuhl, M.N. Exercise as a useful intervention to reduce alcohol consumption and improve physical fitness in individuals with alcohol use disorder: A systematic review and meta-analysis. Front. Psychol., 2021, 12, 675285.
[http://dx.doi.org/10.3389/fpsyg.2021.675285] [PMID: 34305729]
[28]
Thompson, T.P.; Horrell, J.; Taylor, A.H.; Wanner, A.; Husk, K.; Wei, Y.; Creanor, S.; Kandiyali, R.; Neale, J.; Sinclair, J.; Nasser, M.; Wallace, G. Physical activity and the prevention, reduction, and treatment of alcohol and other drug use across the lifespan (The PHASE review): A systematic review. Ment. Health Phys. Act., 2020, 19, 100360.
[http://dx.doi.org/10.1016/j.mhpa.2020.100360] [PMID: 33020704]
[29]
De La Garza, R., II; Yoon, J.H.; Thompson-Lake, D.G.Y.; Haile, C.N.; Eisenhofer, J.D.; Newton, T.F.; Mahoney, J.J., III Treadmill exercise improves fitness and reduces craving and use of cocaine in individuals with concurrent cocaine and tobacco-use disorder. Psychiatry Res., 2016, 245, 133-140.
[http://dx.doi.org/10.1016/j.psychres.2016.08.003] [PMID: 27541349]
[30]
Hallgren, M.; Herring, M.P.; Vancampfort, D.; Hoang, M.T.; Andersson, V.; Andreasson, S.; Abrantes, A.M. Changes in craving following acute aerobic exercise in adults with alcohol use disorder. J. Psychiatr. Res., 2021, 142, 243-249.
[http://dx.doi.org/10.1016/j.jpsychires.2021.08.007] [PMID: 34391078]
[31]
Sari, S.; Bilberg, R.; Jensen, K.; Søgaard-Nielsen, A.; Nielsen, B.; Roessler, K.K. Physical exercise as a supplement to outpatient treatment of alcohol use disorders-a randomized controlled trial. BMC Psychol., 2013, 1(1), 23.
[http://dx.doi.org/10.1186/2050-7283-1-23]
[32]
Fontes, E.B.; Bortolotti, H.; Grandjean da Costa, K.; Machado de Campos, B.; Castanho, G.K.; Hohl, R.; Noakes, T.; Min, L.L. Modulation of cortical and subcortical brain areas at low and high exercise intensities. Br. J. Sports Med., 2020, 54(2), 110-115.
[http://dx.doi.org/10.1136/bjsports-2018-100295] [PMID: 31420319]
[33]
Costa, K.G.; Cabral, D.A.; Hohl, R.; Fontes, E.B. Rewiring the addicted brain through a psychobiological model of physical exercise. Front. Psychiatry, 2019, 10, 600.
[http://dx.doi.org/10.3389/fpsyt.2019.00600] [PMID: 31507468]
[34]
Cabé, N.; Lanièpce, A.; Pitel, A.L. Physical activity: A promising adjunctive treatment for severe alcohol use disorder. Addict. Behav., 2021, 113, 106667.
[http://dx.doi.org/10.1016/j.addbeh.2020.106667] [PMID: 33074123]
[35]
Paulus, M.P.; Stewart, J.L.; Haase, L. Treatment approaches for interoceptive dysfunctions in drug addiction. Front. Psychiatry, 2013, 4, 137.
[http://dx.doi.org/10.3389/fpsyt.2013.00137] [PMID: 24151471]
[36]
Thal, S.B.; Maunz, L.A.; Quested, E.; Bright, S.J.; Myers, B.; Ntoumanis, N. Behavior change techniques in physical activity interventions for adults with substance use disorders: A systematic review. Psychol. Addict. Behav., 2023, 37(3), 416-433.
[http://dx.doi.org/10.1037/adb0000842] [PMID: 35666890]
[37]
Koob, G.; Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacol., 2001, 24(2), 97-129.
[http://dx.doi.org/10.1016/S0893-133X(00)00195-0] [PMID: 11120394]
[38]
Miller, M.; Kiverstein, J.; Rietveld, E. Embodying addiction: A predictive processing account. Brain Cogn., 2020, 138, 105495.
[http://dx.doi.org/10.1016/j.bandc.2019.105495] [PMID: 31877434]
[39]
Naqvi, N.H.; Gaznick, N.; Tranel, D.; Bechara, A. The insula: a critical neural substrate for craving and drug seeking under conflict and risk. Ann. N. Y. Acad. Sci., 2014, 1316(1), 53-70.
[http://dx.doi.org/10.1111/nyas.12415] [PMID: 24690001]
[40]
Everitt, B.J.; Robbins, T.W. Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci., 2005, 8(11), 1481-1489.
[http://dx.doi.org/10.1038/nn1579] [PMID: 16251991]
[41]
DeWitt, S.J.; Ketcherside, A.; McQueeny, T.M.; Dunlop, J.P.; Filbey, F.M. The hyper-sentient addict: An exteroception model of addiction. Am. J. Drug Alcohol Abuse, 2015, 41(5), 374-381.
[http://dx.doi.org/10.3109/00952990.2015.1049701] [PMID: 26154169]
[42]
Jasinska, A.J.; Stein, E.A.; Kaiser, J.; Naumer, M.J.; Yalachkov, Y. Factors modulating neural reactivity to drug cues in addiction: A survey of human neuroimaging studies. Neurosci. Biobehav. Rev., 2014, 38, 1-16.
[http://dx.doi.org/10.1016/j.neubiorev.2013.10.013] [PMID: 24211373]
[43]
Volkow, N.D.; Michaelides, M.; Baler, R. The neuroscience of drug reward and addiction. Physiol. Rev., 2019, 99(4), 2115-2140.
[http://dx.doi.org/10.1152/physrev.00014.2018] [PMID: 31507244]
[44]
Zilverstand, A.; Huang, A.S.; Alia-Klein, N.; Goldstein, R.Z. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review. Neuron, 2018, 98(5), 886-903.
[http://dx.doi.org/10.1016/j.neuron.2018.03.048] [PMID: 29879391]
[45]
Drummond, D.C.; Litten, R.Z.; Lowman, C.; Hunt, W.A. Craving research: Future directions. Addiction, 2000, 95(8)(Suppl. 2), 247-255.
[http://dx.doi.org/10.1080/09652140050111816] [PMID: 11002919]
[46]
Kozlowski, L.T.; Wilkinson, D.A. Use and misuse of the concept of craving by alcohol, tobacco, and drug researchers. Addiction, 1987, 82(1), 31-36.
[http://dx.doi.org/10.1111/j.1360-0443.1987.tb01430.x] [PMID: 3470042]
[47]
Pickens, R.W.; Johanson, C.E. Craving: Consensus of status and agenda for future research. Drug Alcohol Depend., 1992, 30(2), 127-131.
[http://dx.doi.org/10.1016/0376-8716(92)90017-7] [PMID: 1633752]
[48]
Tiffany, S.T.; Conklin, C.A. A cognitive processing model of alcohol craving and compulsive alcohol use. Addiction, 2000, 95(8), 145-153.
[http://dx.doi.org/10.1080/09652140050111717] [PMID: 11002909]
[49]
Naqvi, N.H.; Bechara, A. The insula and drug addiction: An interoceptive view of pleasure, urges, and decision-making. Brain Struct. Funct., 2010, 214(5-6), 435-450.
[http://dx.doi.org/10.1007/s00429-010-0268-7] [PMID: 20512364]
[50]
Kiverstein, J.; Miller, M.; Rietveld, E. The feeling of grip: Novelty, error dynamics, and the predictive brain. Synthese, 2019, 196(7), 2847-2869.
[http://dx.doi.org/10.1007/s11229-017-1583-9]
[51]
Paulus, M.P.; Tapert, S.F.; Schulteis, G. The role of interoception and alliesthesia in addiction. Pharmacol. Biochem. Behav., 2009, 94(1), 1-7.
[http://dx.doi.org/10.1016/j.pbb.2009.08.005] [PMID: 19698739]
[52]
Pezzulo, G.; Rigoli, F.; Friston, K.J. Hierarchical active inference: A theory of motivated control. Trends Cogn. Sci., 2018, 22(4), 294-306.
[http://dx.doi.org/10.1016/j.tics.2018.01.009] [PMID: 29475638]
[53]
Van de Cruys, S. Affective value in the predictive mind. Philosophy and Predictive Processing: 24; Metzinger, T; Wiese, W., Ed.; MIND Group: Frankfurt am Main, 2017.
[http://dx.doi.org/10.15502/9783958573253]
[54]
Joffily, M.; Coricelli, G. Emotional valence and the free-energy principle. PLOS Comput. Biol., 2013, 9(6), e1003094.
[http://dx.doi.org/10.1371/journal.pcbi.1003094] [PMID: 23785269]
[55]
Muela, I.; Navas, J.F.; Ventura-Lucena, J.M.; Perales, J.C. How to pin a compulsive behavior down: A systematic review and conceptual synthesis of compulsivity-sensitive items in measures of behavioral addiction. Addict. Behav., 2022, 134, 107410.
[http://dx.doi.org/10.1016/j.addbeh.2022.107410] [PMID: 35780595]
[56]
Naqvi, N.H.; Bechara, A. The hidden island of addiction: The insula. Trends Neurosci., 2009, 32(1), 56-67.
[http://dx.doi.org/10.1016/j.tins.2008.09.009] [PMID: 18986715]
[57]
Paulus, M.P. Neural basis of reward and craving-a homeostatic point of view. Dialogues Clin. Neurosci., 2007, 9(4), 379-387.
[http://dx.doi.org/10.31887/DCNS.2007.9.4/mpaulus] [PMID: 18286798]
[58]
Paulus, M.P. Decision-making dysfunctions in psychiatry-altered homeostatic processing? Science, 2007, 318(5850), 602-606.
[http://dx.doi.org/10.1126/science.1142997] [PMID: 17962553]
[59]
Brody, A.L.; Mandelkern, M.A.; London, E.D.; Childress, A.R.; Lee, G.S.; Bota, R.G.; Ho, M.L.; Saxena, S.; Baxter, L.R., Jr; Madsen, D.; Jarvik, M.E. Brain metabolic changes during cigarette craving. Arch. Gen. Psychiatry, 2002, 59(12), 1162-1172.
[http://dx.doi.org/10.1001/archpsyc.59.12.1162] [PMID: 12470133]
[60]
Kilts, C.D.; Gross, R.E.; Ely, T.D.; Drexler, K.P.G. The neural correlates of cue-induced craving in cocaine-dependent women. Am. J. Psychiatry, 2004, 161(2), 233-241.
[http://dx.doi.org/10.1176/appi.ajp.161.2.233] [PMID: 14754771]
[61]
Kilts, C.D.; Schweitzer, J.B.; Quinn, C.K.; Gross, R.E.; Faber, T.L.; Muhammad, F.; Ely, T.D.; Hoffman, J.M.; Drexler, K.P.G. Neural activity related to drug craving in cocaine addiction. Arch. Gen. Psychiatry, 2001, 58(4), 334-341.
[http://dx.doi.org/10.1001/archpsyc.58.4.334] [PMID: 11296093]
[62]
Wang, G.J.; Volkow, N.D.; Fowler, J.S.; Cervany, P.; Hitzemann, R.J.; Pappas, N.R.; Wong, C.T.; Felder, C. Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci., 1999, 64(9), 775-784.
[http://dx.doi.org/10.1016/S0024-3205(98)00619-5] [PMID: 10075110]
[63]
Gaznick, N.; Tranel, D.; McNutt, A.; Bechara, A. Basal ganglia plus insula damage yields stronger disruption of smoking addiction than basal ganglia damage alone. Nicotine Tob. Res., 2014, 16(4), 445-453.
[http://dx.doi.org/10.1093/ntr/ntt172] [PMID: 24169814]
[64]
Naqvi, N.H.; Rudrauf, D.; Damasio, H.; Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science, 2007, 315(5811), 531-534.
[http://dx.doi.org/10.1126/science.1135926] [PMID: 17255515]
[65]
Suñer-Soler, R.; Grau, A.; Gras, M.E.; Font-Mayolas, S.; Silva, Y.; Dávalos, A.; Cruz, V.; Rodrigo, J.; Serena, J. Smoking cessation 1 year poststroke and damage to the insular cortex. Stroke, 2012, 43(1), 131-136.
[http://dx.doi.org/10.1161/STROKEAHA.111.630004] [PMID: 22052507]
[66]
Bienkowski, P.; Zatorski, P.; Baranowska, A.; Ryglewicz, D.; Sienkiewicz-Jarosz, H. Insular lesions and smoking cessation after first-ever ischemic stroke: A 3-month follow-up. Neurosci. Lett., 2010, 478(3), 161-164.
[http://dx.doi.org/10.1016/j.neulet.2010.05.008] [PMID: 20470864]
[67]
Joutsa, J.; Moussawi, K.; Siddiqi, S.H.; Abdolahi, A.; Drew, W.; Cohen, A.L.; Ross, T.J.; Deshpande, H.U.; Wang, H.Z.; Bruss, J.; Stein, E.A.; Volkow, N.D.; Grafman, J.H.; van Wijngaarden, E.; Boes, A.D.; Fox, M.D. Brain lesions disrupting addiction map to a common human brain circuit. Nat. Med., 2022, 28(6), 1249-1255.
[http://dx.doi.org/10.1038/s41591-022-01834-y] [PMID: 35697842]
[68]
Craig, A.D. How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. Neurosci., 2002, 3(8), 655-666.
[http://dx.doi.org/10.1038/nrn894] [PMID: 12154366]
[69]
Craig, A.D. How do you feel--now? The anterior insula and human awareness. Nat. Rev. Neurosci., 2009, 10(1), 59-70.
[http://dx.doi.org/10.1038/nrn2555] [PMID: 19096369]
[70]
Gogolla, N. The insular cortex. Curr. Biol., 2017, 27(12), R580-R586.
[http://dx.doi.org/10.1016/j.cub.2017.05.010] [PMID: 28633023]
[71]
Nieuwenhuys, R. The insular cortex Prog. Brain Res; , 2012, 195, pp. 123-163.
[http://dx.doi.org/10.1016/B978-0-444-53860-4.00007-6] [PMID: 22230626]
[72]
Noël, X.; Brevers, D.; Bechara, A. A neurocognitive approach to understanding the neurobiology of addiction. Curr. Opin. Neurobiol., 2013, 23(4), 632-638.
[http://dx.doi.org/10.1016/j.conb.2013.01.018] [PMID: 23395462]
[73]
Noël, X.; Brevers, D.; Bechara, A. A triadic neurocognitive approach to addiction for clinical interventions. Front. Psychiatry, 2013, 4, 179.
[http://dx.doi.org/10.3389/fpsyt.2013.00179] [PMID: 24409155]
[74]
Chang, L.J.; Yarkoni, T.; Khaw, M.W.; Sanfey, A.G. Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cereb. Cortex, 2013, 23(3), 739-749.
[http://dx.doi.org/10.1093/cercor/bhs065] [PMID: 22437053]
[75]
Deen, B.; Pitskel, N.B.; Pelphrey, K.A. Three systems of insular functional connectivity identified with cluster analysis. Cereb. Cortex, 2011, 21(7), 1498-1506.
[http://dx.doi.org/10.1093/cercor/bhq186] [PMID: 21097516]
[76]
Droutman, V.; Bechara, A.; Read, S.J. Roles of the different sub-regions of the insular cortex in various phases of the decision-making process. Front. Behav. Neurosci., 2015, 9, 309.
[http://dx.doi.org/10.3389/fnbeh.2015.00309] [PMID: 26635559]
[77]
Droutman, V.; Read, S.J.; Bechara, A. Revisiting the role of the insula in addiction. Trends Cogn. Sci., 2015, 19(7), 414-420.
[http://dx.doi.org/10.1016/j.tics.2015.05.005] [PMID: 26066588]
[78]
Fermin, A.S.R.; Friston, K.; Yamawaki, S. An insula hierarchical network architecture for active interoceptive inference. R. Soc. Open Sci., 2022, 9(6), 220226.
[http://dx.doi.org/10.1098/rsos.220226] [PMID: 35774133]
[79]
Molnar-Szakacs, I.; Uddin, L.Q. Anterior insula as a gatekeeper of executive control. Neurosci. Biobehav. Rev., 2022, 139, 104736.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104736] [PMID: 35700753]
[80]
Uddin, L.Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci., 2015, 16(1), 55-61.
[http://dx.doi.org/10.1038/nrn3857] [PMID: 25406711]
[81]
Uddin, L.Q.; Kinnison, J.; Pessoa, L.; Anderson, M.L. Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J. Cogn. Neurosci., 2014, 26(1), 16-27.
[http://dx.doi.org/10.1162/jocn_a_00462] [PMID: 23937691]
[82]
Paulus, M.P.; Feinstein, J.S.; Khalsa, S.S. An active inference approach to interoceptive psychopathology. Annu. Rev. Clin. Psychol., 2019, 15(1), 97-122.
[http://dx.doi.org/10.1146/annurev-clinpsy-050718-095617] [PMID: 31067416]
[83]
Wilson, S.J. Constructing Craving: Applying the theory of constructed emotion to urge states. Curr. Dir. Psychol. Sci., 2022, 31(4), 347-354.
[http://dx.doi.org/10.1177/09637214221098055] [PMID: 36213317]
[84]
Gray, M.A.; Critchley, H.D. Interoceptive basis to craving. Neuron, 2007, 54(2), 183-186.
[http://dx.doi.org/10.1016/j.neuron.2007.03.024] [PMID: 17442239]
[85]
Janes, A.C.; Krantz, N.L.; Nickerson, L.D.; Frederick, B.B.; Lukas, S.E. Craving and Cue reactivity in nicotine-dependent tobacco smokers is associated with different insula networks. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2020, 5(1), 76-83.
[http://dx.doi.org/10.1016/j.bpsc.2019.09.005] [PMID: 31706906]
[86]
Tiffany, S.T. Evaluating relationships between craving and drug use. Addiction, 2000, 95(7), 1106-1107.
[http://dx.doi.org/10.1046/j.1360-0443.2000.957110613.x] [PMID: 10962776]
[87]
Koob, G.F. Drug addiction: The yin and yang of hedonic homeostasis. Neuron, 1996, 16(5), 893-896.
[http://dx.doi.org/10.1016/S0896-6273(00)80109-9] [PMID: 8630244]
[88]
Tatum, A.L.; Seevers, M.H. Theories of drug addiction. Physiol. Rev., 1931, 11(2), 107-121.
[http://dx.doi.org/10.1152/physrev.1931.11.2.107]
[89]
Wise, R.A.; Koob, G.F. The development and maintenance of drug addiction. Neuropsychopharmacol., 2014, 39(2), 254-262.
[http://dx.doi.org/10.1038/npp.2013.261] [PMID: 24121188]
[90]
Baumeister, R.F. Addiction, cigarette smoking, and voluntary control of action: Do cigarette smokers lose their free will? Addict. Behav. Rep., 2017, 5, 67-84.
[http://dx.doi.org/10.1016/j.abrep.2017.01.003] [PMID: 29450229]
[91]
Brevers, D.; Sescousse, G.; Maurage, P.; Billieux, J. Examining neural reactivity to gambling cues in the age of online betting. Curr. Behav. Neurosci. Rep., 2019, 6(3), 59-71.
[http://dx.doi.org/10.1007/s40473-019-00177-2] [PMID: 31396472]
[92]
Devoto, F.; Zapparoli, L.; Spinelli, G.; Scotti, G.; Paulesu, E. How the harm of drugs and their availability affect brain reactions to drug cues: A meta-analysis of 64 neuroimaging activation studies. Transl. Psychiatry, 2020, 10(1), 429.
[http://dx.doi.org/10.1038/s41398-020-01115-7] [PMID: 33318467]
[93]
Ekhtiari, H.; Zare-Bidoky, M.; Sangchooli, A.; Janes, A.C.; Kaufman, M.J.; Oliver, J.A.; Prisciandaro, J.J.; Wüstenberg, T.; Anton, R.F.; Bach, P.; Baldacchino, A.; Beck, A.; Bjork, J.M.; Brewer, J.; Childress, A.R.; Claus, E.D.; Courtney, K.E.; Ebrahimi, M.; Filbey, F.M.; Ghahremani, D.G.; Azbari, P.G.; Goldstein, R.Z.; Goudriaan, A.E.; Grodin, E.N.; Hamilton, J.P.; Hanlon, C.A.; Hassani-Abharian, P.; Heinz, A.; Joseph, J.E.; Kiefer, F.; Zonoozi, A.K.; Kober, H.; Kuplicki, R.; Li, Q.; London, E.D.; McClernon, J.; Noori, H.R.; Owens, M.M.; Paulus, M.P.; Perini, I.; Potenza, M.; Potvin, S.; Ray, L.; Schacht, J.P.; Seo, D.; Sinha, R.; Smolka, M.N.; Spanagel, R.; Steele, V.R.; Stein, E.A.; Steins-Loeber, S.; Tapert, S.F.; Verdejo-Garcia, A.; Vollstädt-Klein, S.; Wetherill, R.R.; Wilson, S.J.; Witkiewitz, K.; Yuan, K.; Zhang, X.; Zilverstand, A. A methodological checklist for fMRI drug cue reactivity studies: Development and expert consensus. Nat. Protoc., 2022, 17(3), 567-595.
[http://dx.doi.org/10.1038/s41596-021-00649-4] [PMID: 35121856]
[94]
Wilson, S.J.; Creswell, K.G.; Sayette, M.A.; Fiez, J.A. Ambivalence about smoking and cue-elicited neural activity in quitting-motivated smokers faced with an opportunity to smoke. Addict. Behav., 2013, 38(2), 1541-1549.
[http://dx.doi.org/10.1016/j.addbeh.2012.03.020] [PMID: 22483100]
[95]
Field, M.; Di Lemma, L.; Christiansen, P.; Dickson, J. Automatic avoidance tendencies for alcohol cues predict drinking after detoxification treatment in alcohol dependence. Psychol. Addict. Behav., 2017, 31(2), 171-179.
[http://dx.doi.org/10.1037/adb0000232] [PMID: 27935726]
[96]
Spruyt, A.; De Houwer, J.; Tibboel, H.; Verschuere, B.; Crombez, G.; Verbanck, P.; Hanak, C.; Brevers, D.; Noël, X. On the predictive validity of automatically activated approach/avoidance tendencies in abstaining alcohol-dependent patients. Drug Alcohol Depend., 2013, 127(1-3), 81-86.
[http://dx.doi.org/10.1016/j.drugalcdep.2012.06.019] [PMID: 22776440]
[97]
Townshend, J.M.; Duka, T. Avoidance of alcohol-related stimuli in alcohol-dependent inpatients. Alcohol. Clin. Exp. Res., 2007, 31(8), 1349-1357.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00429.x] [PMID: 17550367]
[98]
Bollen, Z.; Field, M.; Billaux, P.; Maurage, P. Attentional bias in alcohol drinkers: A systematic review of its link with consumption variables. Neurosci. Biobehav. Rev., 2022, 139, 104703.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104703] [PMID: 35643118]
[99]
Lambert, L.; Serre, F.; Thirioux, B.; Jaafari, N.; Roux, P.; Jauffret-Roustide, M.; Lalanne, L.; Daulouède, J.P.; Auriacombe, M. Link between perception of treatment need and craving reports in addiction. Front. Psychiatry, 2022, 12, 790203.
[http://dx.doi.org/10.3389/fpsyt.2021.790203] [PMID: 35173637]
[100]
Moeller, S.J.; Konova, A.B.; Goldstein, R.Z. Multiple ambiguities in the measurement of drug craving. Addiction, 2015, 110(2), 205-206.
[http://dx.doi.org/10.1111/add.12726] [PMID: 25602040]
[101]
Sayette, M.A.; Martin, C.S.; Wertz, J.M.; Perrott, M.A.; Peters, A.R. The effects of alcohol on cigarette craving in heavy smokers and tobacco chippers. Psychol. Addict. Behav., 2005, 19(3), 263-270.
[http://dx.doi.org/10.1037/0893-164X.19.3.263] [PMID: 16187804]
[102]
Shiffman, S.; Engberg, J.B.; Paty, J.A.; Perz, W.G.; Gnys, M.; Kassel, J.D.; Hickcox, M. A day at a time: Predicting smoking lapse from daily urge. J. Abnorm. Psychol., 1997, 106(1), 104-116.
[http://dx.doi.org/10.1037/0021-843X.106.1.104] [PMID: 9103722]
[103]
Wertz, J.M.; Sayette, M.A. A review of the effects of perceived drug use opportunity on self-reported urge. Exp. Clin. Psychopharmacol., 2001, 9(1), 3-13.
[http://dx.doi.org/10.1037/1064-1297.9.1.3] [PMID: 11519632]
[104]
Gwaltney, C.J.; Shiffman, S.; Balabanis, M.H.; Paty, J.A. Dynamic self-efficacy and outcome expectancies: Prediction of smoking lapse and relapse. J. Abnorm. Psychol., 2005, 114(4), 661-675.
[http://dx.doi.org/10.1037/0021-843X.114.4.661] [PMID: 16351387]
[105]
Gwaltney, C.J.; Shiffman, S.; Sayette, M.A. Situational correlates of abstinence self-efficacy. J. Abnorm. Psychol., 2005, 114(4), 649-660.
[http://dx.doi.org/10.1037/0021-843X.114.4.649] [PMID: 16351386]
[106]
Duncan, E.; Boshoven, W.; Harenski, K.; Duncan, E.; Boshoven, W.; Harenski, K.; Fiallos, A.; Duncan, E.; Boshoven, W.; Harenski, K.; Fiallos, A.; Tracy, H.; Duncan, E.; Boshoven, W.; Harenski, K.; Fiallos, A.; Tracy, H.; Jovanovic, T.; Hu, X.; Drexler, K.; Kilts, C. An fMRI study of the interaction of stress and cocaine cues on cocaine craving in cocaine-dependent men. Am. J. Addict., 2007, 16(3), 174-182.
[http://dx.doi.org/10.1080/10550490701375285] [PMID: 17612820]
[107]
Sinha, R. How does stress lead to risk of alcohol relapse? Alcohol Res., 2012, 34(4), 432-440.
[PMID: 23584109]
[108]
Brevers, D.; Bechara, A.; Kilts, C.D.; Antoniali, V.; Bruylant, A.; Verbanck, P.; Kornreich, C.; Noël, X. Competing Motivations: Proactive response inhibition toward addiction-related stimuli in quitting-motivated individuals. J. Gambl. Stud., 2018, 34(3), 785-806.
[http://dx.doi.org/10.1007/s10899-017-9722-2] [PMID: 29067545]
[109]
Breese, G.R.; Chu, K.; Dayas, C.V.; Funk, D.; Knapp, D.J.; Koob, G.F.; Lê, D.A.; O’Dell, L.E.; Overstreet, D.H.; Roberts, A.J.; Sinha, R.; Valdez, G.R.; Weiss, F. Stress enhancement of craving during sobriety: A risk for relapse. Alcohol. Clin. Exp. Res., 2005, 29(2), 185-195.
[http://dx.doi.org/10.1097/01.ALC.0000153544.83656.3C] [PMID: 15714042]
[110]
Sinha, R.; Garcia, M.; Paliwal, P.; Kreek, M.J.; Rounsaville, B.J. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch. Gen. Psychiatry, 2006, 63(3), 324-331.
[http://dx.doi.org/10.1001/archpsyc.63.3.324] [PMID: 16520439]
[111]
Sinha, R. How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berl.), 2001, 158(4), 343-359.
[http://dx.doi.org/10.1007/s002130100917] [PMID: 11797055]
[112]
Sinha, R. The role of stress in addiction relapse. Curr. Psychiatry Rep., 2007, 9(5), 388-395.
[http://dx.doi.org/10.1007/s11920-007-0050-6] [PMID: 17915078]
[113]
Sinha, R. Modeling stress and drug craving in the laboratory: Implications for addiction treatment development. Addict. Biol., 2009, 14(1), 84-98.
[http://dx.doi.org/10.1111/j.1369-1600.2008.00134.x] [PMID: 18945295]
[114]
Abbiss, C.R.; Peiffer, J.J.; Meeusen, R.; Skorski, S. Role of ratings of perceived exertion during self-paced exercise: What are we actually measuring? Sports Med., 2015, 45(9), 1235-1243.
[http://dx.doi.org/10.1007/s40279-015-0344-5] [PMID: 26054383]
[115]
Goodwin, G.M.; McCloskey, D.I.; Mitchell, J.H. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J. Physiol., 1972, 226(1), 173-190.
[http://dx.doi.org/10.1113/jphysiol.1972.sp009979] [PMID: 4263680]
[116]
Johansson, J.E. On the influence of muscular activity on respiration and cardiac activity. Skand. Arch. Physiol., 1894, 5(1), 20-66.
[http://dx.doi.org/10.1111/j.1748-1716.1894.tb00192.x]
[117]
Zuntz, N.; Geppert, J. On the nature of normal respiratory stimuli and the site of their action. Pflugers Arch., 1886, 38(1), 337-338.
[http://dx.doi.org/10.1007/BF01654665]
[118]
Williamson, J.W.; Fadel, P.J.; Mitchell, J.H. New insights into central cardiovascular control during exercise in humans: A central command update. Exp. Physiol., 2006, 91(1), 51-58.
[http://dx.doi.org/10.1113/expphysiol.2005.032037] [PMID: 16239250]
[119]
Borg, G.A. Perceived exertion as an indicator of somatic stress. Scand. J. Reh. Med., 1970, 2(2), 92-98.
[120]
Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc., 1982, 14(5), 377-381.
[http://dx.doi.org/10.1249/00005768-198205000-00012] [PMID: 7154893]
[121]
Morree, H.M.; Klein, C.; Marcora, S.M. Perception of effort reflects central motor command during movement execution. Psychophysiology, 2012, 49(9), 1242-1253.
[http://dx.doi.org/10.1111/j.1469-8986.2012.01399.x] [PMID: 22725828]
[122]
Duncan, M.J.; Al-Nakeeb, Y.; Scurr, J. Perceived exertion is related to muscle activity during leg extension exercise. Res. Sports Med., 2006, 14(3), 179-189.
[http://dx.doi.org/10.1080/15438620600854728] [PMID: 16967770]
[123]
Lagally, K.M.; Robertson, R.J.; Gallagher, K.; Goss, F.L.; Jakicic, J.M.; Lephart, S.M.; McCAW, S.T.; Goodpaster, B. Perceived exertion, electromyography, and blood lactate during acute bouts of resistance exercise. Med. Sci. Sports Exerc., 2002, 34(3), 552-559.
[http://dx.doi.org/10.1097/00005768-200203000-00025] [PMID: 11880823]
[124]
Asmussen, E.; Johansen, S.H.; Jørgensen, M.; Nielsen, M. On the nervous factors controlling respiration and circulation during exercise. Experiments with Curarization. Acta Physiol. Scand., 1965, 63(3), 343-350.
[http://dx.doi.org/10.1111/j.1748-1716.1965.tb04073.x] [PMID: 14324070]
[125]
Leonard, B.; Mitchell, J.H.; Mizuno, M.; Rube, N.; Saltin, B.; Secher, N.H. Partial neuromuscular blockade and cardiovascular responses to static exercise in man. J. Physiol., 1985, 359(1), 365-379.
[http://dx.doi.org/10.1113/jphysiol.1985.sp015590] [PMID: 3999043]
[126]
Gallagher, K.M.; Fadel, P.J.; Smith, S.A.; Norton, K.H.; Querry, R.G.; Olivencia-Yurvati, A.; Raven, P.B. Increases in intramuscular pressure raise arterial blood pressure during dynamic exercise. J. Appl. Physiol., 2001, 91(5), 2351-2358.
[http://dx.doi.org/10.1152/jappl.2001.91.5.2351] [PMID: 11641380]
[127]
Gandevia, S.C.; Killian, K.; McKenzie, D.K.; Crawford, M.; Allen, G.M.; Gorman, R.B.; Hales, J.P. Respiratory sensations, cardiovascular control, kinaesthesia and transcranial stimulation during paralysis in humans. J. Physiol., 1993, 470(1), 85-107.
[http://dx.doi.org/10.1113/jphysiol.1993.sp019849] [PMID: 8308755]
[128]
Williamson, J.W.; McColl, R.; Mathews, D.; Mitchell, J.H.; Raven, P.B.; Morgan, W.P. Hypnotic manipulation of effort sense during dynamic exercise: Cardiovascular responses and brain activation. J. Appl. Physiol., 2001, 90(4), 1392-1399.
[http://dx.doi.org/10.1152/jappl.2001.90.4.1392] [PMID: 11247939]
[129]
Williamson, J.W.; McColl, R.; Mathews, D.; Mitchell, J.H.; Raven, P.B.; Morgan, W.P. Brain activation by central command during actual and imagined handgrip under hypnosis. J. Appl. Physiol., 2002, 92(3), 1317-1324.
[http://dx.doi.org/10.1152/japplphysiol.00939.2001] [PMID: 11842073]
[130]
St Clair Gibson, A.; Lambert, E.V.; Rauch, L.H.G.; Tucker, R.; Baden, D.A.; Foster, C.; Noakes, T.D. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med., 2006, 36(8), 705-722.
[http://dx.doi.org/10.2165/00007256-200636080-00006] [PMID: 16869711]
[131]
Noakes, T.D.; St Clair Gibson, A.; Lambert, E.V. From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans. Br. J. Sports Med., 2004, 38(4), 511-514.
[http://dx.doi.org/10.1136/bjsm.2003.009860] [PMID: 15273198]
[132]
Hampson, D.B.; Gibson, A.S.; Lambert, M.I.; Noakes, T.D. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med., 2001, 31(13), 935-952.
[http://dx.doi.org/10.2165/00007256-200131130-00004] [PMID: 11708402]
[133]
Vieira, J.G.; Sardeli, A.V.; Dias, M.R.; Filho, J.E.; Campos, Y.; Sant’Ana, L.; Leitão, L.; Reis, V.; Wilk, M.; Novaes, J.; Vianna, J. Effects of resistance training to muscle failure on acute fatigue: A systematic review and meta-analysis. Sports Med., 2022, 52(5), 1103-1125.
[http://dx.doi.org/10.1007/s40279-021-01602-x] [PMID: 34881412]
[134]
Robertson, R.J.; Noble, B.J. Perception of physical exertion: Methods, mediators, and applications. Exerc. Sport Sci. Rev., 1997, 25, 407-452.
[http://dx.doi.org/10.1249/00003677-199700250-00017] [PMID: 9213100]
[135]
Pageaux, B. Perception of effort in exercise science: Definition, measurement and perspectives. Eur. J. Sport Sci., 2016, 16(8), 885-894.
[http://dx.doi.org/10.1080/17461391.2016.1188992] [PMID: 27240002]
[136]
Mauger, L. Factors affecting the regulation of pacing: Current perspectives. Open Access J. Sports Med., 2014, 5, 209-214.
[http://dx.doi.org/10.2147/OAJSM.S38599] [PMID: 25228823]
[137]
Wallman-Jones, A.; Perakakis, P.; Tsakiris, M.; Schmidt, M. Physical activity and interoceptive processing: Theoretical considerations for future research. Int. J. Psychophysiol., 2021, 166, 38-49.
[http://dx.doi.org/10.1016/j.ijpsycho.2021.05.002] [PMID: 33965423]
[138]
Eston, R.; Faulkner, J.; St Clair Gibson, A.; Noakes, T.; Parfitt, G. The effect of antecedent fatiguing activity on the relationship between perceived exertion and physiological activity during a constant load exercise task. Psychophysiology, 2007, 44(5), 779-786.
[http://dx.doi.org/10.1111/j.1469-8986.2007.00558.x] [PMID: 17617170]
[139]
Joseph, T.; Johnson, B.; Battista, R.A.; Wright, G.; Dodge, C.; Porcari, J.P.; De Koning, J.J.; Foster, C. Perception of fatigue during simulated competition. Med. Sci. Sports Exerc., 2008, 40(2), 381-386.
[http://dx.doi.org/10.1249/mss.0b013e31815a83f6] [PMID: 18202562]
[140]
Horstman, D.H.; Morgan, W.P.; Cymerman, A.; Stokes, J. Perception of effort during constant work to self-imposed exhaustion. Percept. Mot. Skills, 1979, 48(3_s)(Suppl.), 1111-1126.
[http://dx.doi.org/10.2466/pms.1979.48.3c.1111] [PMID: 492879]
[141]
Tucker, R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br. J. Sports Med., 2009, 43(6), 392-400.
[http://dx.doi.org/10.1136/bjsm.2008.050799] [PMID: 19224911]
[142]
Tucker, R.; Noakes, T.D. The physiological regulation of pacing strategy during exercise: A critical review. Br. J. Sports Med., 2009, 43(6), e1.
[http://dx.doi.org/10.1136/bjsm.2009.057562] [PMID: 19224909]
[143]
Albertus, Y.; Tucker, R.; Gibson, A.S.C.; Lambert, E.; Hampson, D.B.; Noakes, T.D. Effect of distance feedback on pacing strategy and perceived exertion during cycling. Med. Sci. Sports Exerc., 2005, 37(3), 461-468.
[http://dx.doi.org/10.1249/01.MSS.0000155700.72702.76] [PMID: 15741846]
[144]
Barrett, L.F.; Simmons, W.K. Interoceptive predictions in the brain. Nat. Rev. Neurosci., 2015, 16(7), 419-429.
[http://dx.doi.org/10.1038/nrn3950] [PMID: 26016744]
[145]
Paulus, M.P.; Stein, M.B. Interoception in anxiety and depression. Brain Struct. Funct., 2010, 214(5-6), 451-463.
[http://dx.doi.org/10.1007/s00429-010-0258-9] [PMID: 20490545]
[146]
Pezzulo, G.; Barca, L.; Friston, K.J. Active inference and cognitive-emotional interactions in the brain. Behav. Brain Sci., 2015, 38, e85.
[http://dx.doi.org/10.1017/S0140525X14001009] [PMID: 26786300]
[147]
Pezzulo, G.; Rigoli, F.; Friston, K. Active inference, homeostatic regulation and adaptive behavioural control. Prog. Neurobiol., 2015, 134, 17-35.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.001] [PMID: 26365173]
[148]
Stephan, K.E.; Manjaly, Z.M.; Mathys, C.D.; Weber, L.A.E.; Paliwal, S.; Gard, T.; Tittgemeyer, M.; Fleming, S.M.; Haker, H.; Seth, A.K.; Petzschner, F.H. Allostatic Self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression. Front. Hum. Neurosci., 2016, 10, 550.
[http://dx.doi.org/10.3389/fnhum.2016.00550] [PMID: 27895566]
[149]
Seth, A.K.; Friston, K.J. Active interoceptive inference and the emotional brain., Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1708), 20160007.
[http://dx.doi.org/10.1098/rstb.2016.0007] [PMID: 28080966]
[150]
Friston, K. Hierarchical models in the brain. PLOS Comput. Biol., 2008, 4(11), e1000211.
[http://dx.doi.org/10.1371/journal.pcbi.1000211] [PMID: 18989391]
[151]
Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci., 2010, 11(2), 127-138.
[http://dx.doi.org/10.1038/nrn2787] [PMID: 20068583]
[152]
Friston, K.J.; Daunizeau, J.; Kiebel, S.J. Reinforcement learning or active inference? PLoS One, 2009, 4(7), e6421.
[http://dx.doi.org/10.1371/journal.pone.0006421] [PMID: 19641614]
[153]
Friston, K.; Schwartenbeck, P.; FitzGerald, T.; Moutoussis, M.; Behrens, T.; Dolan, R.J. The anatomy of choice: Active inference and agency. Front. Hum. Neurosci., 2013, 7, 598.
[http://dx.doi.org/10.3389/fnhum.2013.00598] [PMID: 24093015]
[154]
Baden, D.A.; McLean, T.L.; Tucker, R.; Noakes, T.D.; St Clair Gibson, A. Effect of anticipation during unknown or unexpected exercise duration on rating of perceived exertion, affect, and physiological function * Commentary. Br. J. Sports Med., 2005, 39(10), 742-746.
[http://dx.doi.org/10.1136/bjsm.2004.016980] [PMID: 16183771]
[155]
Williamson, J.W.; Nobrega, A.C.L.; McColl, R.; Mathews, D.; Winchester, P.; Friberg, L.; Mitchell, J.H. Activation of the insular cortex during dynamic exercise in humans. J. Physiol., 1997, 503(2), 277-283.
[http://dx.doi.org/10.1111/j.1469-7793.1997.277bh.x] [PMID: 9306272]
[156]
Williamson, J.W.; McColl, R.; Mathews, D.; Ginsburg, M.; Mitchell, J.H. Activation of the insular cortex is affected by the intensity of exercise. J. Appl. Physiol., 1999, 87(3), 1213-1219.
[http://dx.doi.org/10.1152/jappl.1999.87.3.1213] [PMID: 10484598]
[157]
Fontes, E.B.; Okano, A.H.; De Guio, F.; Schabort, E.J.; Min, L.L.; Basset, F.A.; Stein, D.J.; Noakes, T.D. Brain activity and perceived exertion during cycling exercise: An fMRI study. Br. J. Sports Med., 2015, 49(8), 556-560.
[http://dx.doi.org/10.1136/bjsports-2012-091924] [PMID: 23729175]
[158]
Hilty, L.; Langer, N.; Pascual-Marqui, R.; Boutellier, U.; Lutz, K. Fatigue-induced increase in intracortical communication between mid/anterior insular and motor cortex during cycling exercise. Eur. J. Neurosci., 2011, 34(12), 2035-2042.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07909.x] [PMID: 22097899]
[159]
Hilty, L.; Jäncke, L.; Luechinger, R.; Boutellier, U.; Lutz, K. Limitation of physical performance in a muscle fatiguing handgrip exercise is mediated by thalamo-insular activity. Hum. Brain Mapp., 2011, 32(12), 2151-2160.
[http://dx.doi.org/10.1002/hbm.21177] [PMID: 21154789]
[160]
Rauch, H.G.L.; Schönbächler, G.; Noakes, T.D. Neural correlates of motor vigour and motor urgency during exercise. Sports Med., 2013, 43(4), 227-241.
[http://dx.doi.org/10.1007/s40279-013-0025-1] [PMID: 23456492]
[161]
Lutz, K. Functional brain anatomy of exercise regulation. Prog. Brain Res., 2028, 240, 341-352.
[http://dx.doi.org/10.1016/bs.pbr.2018.07.006]
[162]
Saper, C.B. Convergence of autonomic and limbic connections in the insular cortex of the rat. J. Comp. Neurol., 1982, 210(2), 163-173.
[http://dx.doi.org/10.1002/cne.902100207] [PMID: 7130477]
[163]
Cechetto, D.R.; Saper, C.B. Role of the cerebral cortex in autonomic function. Central Regulation of Autonomic Functions; Loewy, A.D; Spyer, K.M., Ed.; Oxford University Press: Oxford, UK, 1990, pp. 208-223.
[164]
Haile, L.; Gallagher, M. Perceived exertion laboratory manual: From standard practice to contemporary application. (Springer Science + Business Media,)2015,
[http://dx.doi.org/10.1007/978-1-4939-1917-8]
[165]
Marcora, S. Counterpoint: Afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance. J. Appl. Physiol., 2010, 108(2), 454-456.
[http://dx.doi.org/10.1152/japplphysiol.00976.2009a] [PMID: 20118347]
[166]
Marcora, S.M.; Staiano, W. The limit to exercise tolerance in humans: Mind over muscle? Eur. J. Appl. Physiol., 2010, 109(4), 763-770.
[http://dx.doi.org/10.1007/s00421-010-1418-6] [PMID: 20221773]
[167]
Marcora, S.M.; Staiano, W.; Manning, V. Mental fatigue impairs physical performance in humans. J. Appl. Physiol., 2009, 106(3), 857-864.
[http://dx.doi.org/10.1152/japplphysiol.91324.2008] [PMID: 19131473]
[168]
Nowak, M.; Holm, S.; Biering-Sørensen, F.; Secher, N.H.; Friberg, L. Central command” and insular activation during attempted foot lifting in paraplegic humans. Hum. Brain Mapp., 2005, 25(2), 259-265.
[http://dx.doi.org/10.1002/hbm.20097] [PMID: 15849712]
[169]
Nowak, M.; Olsen, K.S.; Law, I.; Holm, S.; Paulson, O.B.; Secher, N.H. Command-related distribution of regional cerebral blood flow during attempted handgrip. J. Appl. Physiol., 1999, 86(3), 819-824.
[http://dx.doi.org/10.1152/jappl.1999.86.3.819] [PMID: 10066691]
[170]
Haile, L.; Ledezma, C.M.; Koch, K.A.; Shouey, L.B.; Aaron, D.J.; Goss, F.L.; Robertson, R.J. Predicted, actual and session muscle pain and perceived exertion during cycle exercise in young men. Med. Sci. Sports Exerc., 2008, 40(S301), 208.
[http://dx.doi.org/10.1249/01.mss.0000323631.85365.e1]
[171]
Kane, I.; Robertson, R.J.; Fertman, C.; McConnaha, W.R.; Nagle, E.F.; Rabin, B.S.; Rubinstein, E.N. Predicted and actual exercise discomfort in middle school children. Med. Sci. Sports Exerc., 2010, 42(5), 1013-1021.
[http://dx.doi.org/10.1249/MSS.0b013e3181c3aa62] [PMID: 19996994]
[172]
Poulton, R.; Trevena, J.; Reeder, A.I.; Richards, R. Physical health correlates of overprediction of physical discomfort during exercise. Behav. Res. Ther., 2002, 40(4), 401-414.
[http://dx.doi.org/10.1016/S0005-7967(01)00019-5] [PMID: 12002897]
[173]
Stanley, D.M.; Cumming, J. Are we having fun yet? Testing the effects of imagery use on the affective and enjoyment responses to acute moderate exercise. Psychol. Sport Exerc., 2010, 11(6), 582-590.
[http://dx.doi.org/10.1016/j.psychsport.2010.06.010]
[174]
Hardy, C.J.; Rejeski, W.J. Not what, but how one feels: The measurement of affect during exercise. J. Sport Exerc. Psychol., 1989, 11(3), 304-317.
[http://dx.doi.org/10.1123/jsep.11.3.304]
[175]
Ekkekakis, P.; Lind, E. Exercise does not feel the same when you are overweight: The impact of self-selected and imposed intensity on affect and exertion. Int. J. Obes., 2006, 30(4), 652-660.
[http://dx.doi.org/10.1038/sj.ijo.0803052] [PMID: 16130028]
[176]
Parfitt, G.; Rose, E.A.; Burgess, W.M. The psychological and physiological responses of sedentary individuals to prescribed and preferred intensity exercise. Br. J. Health Psychol., 2006, 11(1), 39-53.
[http://dx.doi.org/10.1348/135910705X43606] [PMID: 16480554]
[177]
Wankel, L. The importance of enjoyment to adherence and psychological benefits from physical activity. Int. J. Sport Psychol., 1993, 24(2), 151-169.
[178]
Schacter, D.L. Adaptive constructive processes and the future of memory. Am. Psychol., 2012, 67(8), 603-613.
[http://dx.doi.org/10.1037/a0029869] [PMID: 23163437]
[179]
D’Argembeau, A.; Mathy, A. Tracking the construction of episodic future thoughts. J. Exp. Psychol. Gen., 2011, 140(2), 258-271.
[http://dx.doi.org/10.1037/a0022581] [PMID: 21401291]
[180]
D’Argembeau, A.; Salmon, E. The neural basis of semantic and episodic forms of self-knowledge: Insights from functional neuroimaging. Adv. Exp. Med. Biol., 2012, 739, 276-290.
[http://dx.doi.org/10.1007/978-1-4614-1704-0_18] [PMID: 22399409]
[181]
Szpunar, K.K. Episodic future thought. Perspect. Psychol. Sci., 2010, 5(2), 142-162.
[http://dx.doi.org/10.1177/1745691610362350] [PMID: 26162121]
[182]
Demblon, J.; D’Argembeau, A. The organization of prospective thinking: Evidence of event clusters in freely generated future thoughts. Conscious. Cogn., 2014, 24, 75-83.
[http://dx.doi.org/10.1016/j.concog.2014.01.002] [PMID: 24491433]
[183]
Schacter, D.L.; Benoit, R.G.; Szpunar, K.K. Episodic future thinking: Mechanisms and functions. Curr. Opin. Behav. Sci., 2017, 17, 41-50.
[http://dx.doi.org/10.1016/j.cobeha.2017.06.002] [PMID: 29130061]
[184]
Dolan, R.J.; Fletcher, P.C. Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature, 1997, 388(6642), 582-585.
[http://dx.doi.org/10.1038/41561] [PMID: 9252188]
[185]
Wu, J.Q.; Szpunar, K.K.; Godovich, S.A.; Schacter, D.L.; Hofmann, S.G. Episodic future thinking in generalized anxiety disorder. J. Anxiety Disord., 2015, 36, 1-8.
[http://dx.doi.org/10.1016/j.janxdis.2015.09.005] [PMID: 26398003]
[186]
Benoit, R.G.; Anderson, M.C. Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron, 2012, 76(2), 450-460.
[http://dx.doi.org/10.1016/j.neuron.2012.07.025] [PMID: 23083745]
[187]
Benoit, R.G.; Gilbert, S.J.; Frith, C.D.; Burgess, P.W. Rostral prefrontal cortex and the focus of attention in prospective memory. Cereb. Cortex, 2012, 22(8), 1876-1886.
[http://dx.doi.org/10.1093/cercor/bhr264] [PMID: 21976356]
[188]
Benoit, R.G.; Szpunar, K.K.; Schacter, D.L. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge. Proc. Natl. Acad. Sci. USA, 2014, 111(46), 16550-16555.
[http://dx.doi.org/10.1073/pnas.1419274111] [PMID: 25368170]
[189]
Bandura, A. The assessment and predictive generality of self-percepts of efficacy. J. Behav. Ther. Exp. Psychiatry, 1982, 13(3), 195-199.
[http://dx.doi.org/10.1016/0005-7916(82)90004-0] [PMID: 7142408]
[190]
Abrantes, A.M.; Battle, C.L.; Strong, D.R.; Ing, E.; Dubreuil, M.E.; Gordon, A.; Brown, R.A. Exercise preferences of patients in substance abuse treatment. Ment. Health Phys. Act., 2011, 4(2), 79-87.
[http://dx.doi.org/10.1016/j.mhpa.2011.08.002] [PMID: 22125581]
[191]
Lind, E.; Welch, A.S.; Ekkekakis, P. Do ‘mind over muscle’ strategies work? Examining the effects of attentional association and dissociation on exertional, affective and physiological responses to exercise. Sports Med., 2009, 39(9), 743-764.
[http://dx.doi.org/10.2165/11315120-000000000-00000] [PMID: 19691364]
[192]
Gallagher, S. How the Body Shapes the Mind; Oxford University Press: New York, 2005.
[http://dx.doi.org/10.1093/0199271941.001.0001]
[193]
Gallagher, S. Interpretations of Embodied Cognition.The Implications of Embodiment: Cognition and Communication; Tschacher, W; Bergomi, C., Ed.; Imprint Academic: Exeter, UK, 2011, pp. 59-70.
[194]
Gallagher, S. Enactivist Interventions: Rethinking the Mind; Oxford University Press: Oxford, 2017.
[http://dx.doi.org/10.1093/oso/9780198794325.001.0001]
[195]
Brevers, D.; Baeken, C.; Maurage, P.; Sescousse, G.; Vögele, C.; Billieux, J. Brain mechanisms underlying prospective thinking of sustainable behaviours. Nat. Sustain., 2021, 4(5), 433-439.
[http://dx.doi.org/10.1038/s41893-020-00658-3]
[196]
Cisek, P.; Kalaska, J.F. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci., 2010, 33(1), 269-298.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135409] [PMID: 20345247]
[197]
Gibson, J.J. The Ecological Approach to Visual Perception; Houghton Mifflin: Boston, 1979.
[198]
Kimmel, M.; Rogler, C.R. Affordances in interaction: The case of Aikido. Ecol. Psychol., 2018, 30(3), 195-223.
[http://dx.doi.org/10.1080/10407413.2017.1409589]
[199]
Smits, B.L.M.; Pepping, G.J.; Hettinga, F.J. Pacing and decision making in sport and exercise: The roles of perception and action in the regulation of exercise intensity. Sports Med., 2014, 44(6), 763-775.
[http://dx.doi.org/10.1007/s40279-014-0163-0] [PMID: 24706362]
[200]
Araújo, D.; Davids, K.; Hristovski, R. The ecological dynamics of decision making in sport. Psychol. Sport Exerc., 2006, 7(6), 653-676.
[http://dx.doi.org/10.1016/j.psychsport.2006.07.002]
[201]
Araújo, D.; Travassos, B.; Vilar, L. Tactical skills are not verbal skills: A comment on Kannekens and colleagues. Percept. Mot. Skills, 2010, 110(3_s)(Suppl.), 1086-1088.
[http://dx.doi.org/10.2466/pms.110.C.1086-1088] [PMID: 20865996]
[202]
Araújo, D.; Davids, M.; McGivern, P. The irreducible embeddedness of action choice in sport. Handbook of embodied cognition and sport psychology; Cappuccio, M.L., Ed.; The MIT Press: Cambridge, MA, 2019, pp. 537-556.
[http://dx.doi.org/10.7551/mitpress/10764.003.0030]
[203]
Carvalho, H.; Correia, C.; Araujo, D. A constraints led approach to skill enhancement in tennis. ITF Coaching Sport Sci. Rev., 2013, 60, 10-11.
[204]
Correia, V.; Araújo, D.; Cummins, A.; Craig, C.M. Perceiving and acting upon spaces in a VR rugby task: Expertise effects in affordance detection and task achievement. J. Sport Exerc. Psychol., 2012, 34(3), 305-321.
[http://dx.doi.org/10.1123/jsep.34.3.305] [PMID: 22691396]
[205]
Withagen, R.; Michaels, C.F. The role of feedback information for calibration and attunement in perceiving length by dynamic touch. J. Exp. Psychol. Hum. Percept. Perform., 2005, 31(6), 1379-1390.
[http://dx.doi.org/10.1037/0096-1523.31.6.1379] [PMID: 16366796]
[206]
Venhorst, A.; Micklewright, D.P.; Noakes, T.D. Modelling perception-action coupling in the phenomenological experience of “hitting the wall” during long-distance running with exercise-induced muscle damage in highly trained runners. Sports Med. Open, 2018, 4(1), 30.
[http://dx.doi.org/10.1186/s40798-018-0144-1] [PMID: 29987475]
[207]
Buman, M.P.; Omli, J.W.; Giacobbi, P.R., Jr; Brewer, B.W. Experiences and coping responses of “Hitting the Wall” for recreational marathon runners. J. Appl. Sport Psychol., 2008, 20(3), 282-300.
[http://dx.doi.org/10.1080/10413200802078267]
[208]
Brandstätter, V.; Herrmann, M.; Schüler, J. The struggle of giving up personal goals: Affective, physiological, and cognitive consequences of an action crisis. Pers. Soc. Psychol. Bull., 2013, 39(12), 1668-1682.
[http://dx.doi.org/10.1177/0146167213500151] [PMID: 23976776]
[209]
Brandstätter, V.; Schüler, J. Action crisis and cost–benefit thinking: A cognitive analysis of a goal-disengagement phase. J. Exp. Soc. Psychol., 2013, 49(3), 543-553.
[http://dx.doi.org/10.1016/j.jesp.2012.10.004]
[210]
Brick, N.E.; MacIntyre, T.E.; Campbell, M.J. Thinking and action: A cognitive perspective on self-regulation during endurance performance. Front. Physiol., 2016, 7, 159.
[http://dx.doi.org/10.3389/fphys.2016.00159] [PMID: 27199774]
[211]
Gollwitzer, P.M. Mindset theory of action phases.Handbook of theories of social psychology; Sage Publications Ltd, 2012, Vol. 1, pp. 526-545.
[http://dx.doi.org/10.4135/9781446249215.n26]
[212]
Rhoden, C.L.; West, J.; Renfree, A.; Corbett, M.; St Clair Gibson, A. Adaptive self-regulation in cycle time trials: Goal pursuit, goal disengagement and the affective experience. J. Sci. Cycl., 2015, 4(3), 44-52.
[213]
Gillman, A.S.; Bryan, A.D. Mindfulness versus distraction to improve affective response and promote cardiovascular exercise behavior. Ann. Behav. Med., 2020, 54(6), 423-435.
[http://dx.doi.org/10.1093/abm/kaz059] [PMID: 31859347]
[214]
Moran, A.P. The Psychology of Concentration in Sport Performers: A Cognitive Analysis, 1st ed; Psychology Press, 1996.
[http://dx.doi.org/10.4324/9781315784946]
[215]
Moran, A.P. Cognitive style constructs in sport: Explanatory and attentional processes in athletes. Int. J. Educ. Res., 1998, 29(3), 277-286.
[http://dx.doi.org/10.1016/S0883-0355(98)00031-7]
[216]
Okwumabua, T.M.; Meyers, A.W.; Schleser, R.; Cooke, C.J. Cognitive strategies and running performance: An exploratory study. Cognit. Ther. Res., 1983, 7(4), 363-369.
[http://dx.doi.org/10.1007/BF01177558]
[217]
Schomer, H.H. The relationship between cognitive strategies and perceived effort of marathon runners. S. Afr. J. Res. Sport Ph., 1987, 10(1), 37-64.
[218]
Schomer, H.H. A cognitive strategy training programme for marathon runners: Ten case studies. S. Afr. J. Res. Sport Ph., 1990, 13(2), 47-78.
[219]
Verdejo-Garcia, A. Executive Dysfunction in Addiction.Executive Functions in Health and Disease; Goldberg, E., Ed.; Academic Press, 2017, pp. 395-403.
[http://dx.doi.org/10.1016/B978-0-12-803676-1.00016-7]
[220]
Spink, K.S. Cognitive strategies and swimming performances: An exploratory study. Aust. J. Sci. Med. Sport, 1982, 18(2), 9-13.
[221]
Hardy, L.; Nelson, D. Self-regulation training in sport and work. Ergonomics, 1988, 31(11), 1573-1583.
[http://dx.doi.org/10.1080/00140138808966807] [PMID: 3068052]
[222]
Arch, J.J.; Craske, M.G. Mechanisms of mindfulness: Emotion regulation following a focused breathing induction. Behav. Res. Ther., 2006, 44(12), 1849-1858.
[http://dx.doi.org/10.1016/j.brat.2005.12.007] [PMID: 16460668]
[223]
Kabat-Zinn, J.; Hanh, T.N. Full Catastrophe Living: Using the Wisdom of Your Body and Mind to Face Stress, Pain, and Illness; Random House Publishing Group: New York, NY, 2009.
[224]
Farb, N.; Daubenmier, J.; Price, C.J.; Gard, T.; Kerr, C.; Dunn, B.D.; Klein, A.C.; Paulus, M.P.; Mehling, W.E. Interoception, contemplative practice, and health. Front. Psychol., 2015, 6, 763.
[http://dx.doi.org/10.3389/fpsyg.2015.00763] [PMID: 26106345]
[225]
Haase, L.; May, A.C.; Falahpour, M.; Isakovic, S.; Simmons, A.N.; Hickman, S.D.; Liu, T.T.; Paulus, M.P. A pilot study investigating changes in neural processing after mindfulness training in elite athletes. Front. Behav. Neurosci., 2015, 9, 229.
[http://dx.doi.org/10.3389/fnbeh.2015.00229] [PMID: 26379521]
[226]
Haase, L.; Stewart, J.L.; Youssef, B.; May, A.C.; Isakovic, S.; Simmons, A.N.; Johnson, D.C.; Potterat, E.G.; Paulus, M.P. When the brain does not adequately feel the body: Links between low resilience and interoception. Biol. Psychol., 2016, 113, 37-45.
[http://dx.doi.org/10.1016/j.biopsycho.2015.11.004] [PMID: 26607442]
[227]
Haase, L.; Thom, N.J.; Shukla, A.; Davenport, P.W.; Simmons, A.N.; Stanley, E.A.; Paulus, M.P.; Johnson, D.C. Mindfulness-based training attenuates insula response to an aversive interoceptive challenge. Soc. Cogn. Affect. Neurosci., 2016, 11(1), 182-190.
[http://dx.doi.org/10.1093/scan/nsu042] [PMID: 24714209]
[228]
Araújo, D.; Davids, K. Ecological approaches to cognition and action in sport and exercise: Ask not only what you do, but where you do it. Int. J. Sport Psychol., 2009, 40(1), 5-37.
[229]
Araújo, D.; Davids, K.; Passos, P. Ecological Validity, Representative Design, and Correspondence Between Experimental Task Constraints and Behavioral Setting: Comment on Rogers, Kadar, and Costall (2005). Ecol. Psychol., 2007, 19(1), 69-78.
[http://dx.doi.org/10.1080/10407410709336951]
[230]
da Silva, W.Q.A.; Cabral, D.A.R.; Bigliassi, M.; Bortolotti, H.; Hussey, E.; Ward, N.; Fontes, E.B. The mediating role of inhibitory control in the relationship between prefrontal cortex hemodynamics and exercise performance in adults with overweight or obesity. Physiol. Behav., 2022, 257, 113966.
[http://dx.doi.org/10.1016/j.physbeh.2022.113966] [PMID: 36150475]
[231]
Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N. Applications of Functional Near-Infrared Spectroscopy (fNIRS) neuroimaging in exercise-cognition science: A systematic, methodology-focused review. J. Clin. Med., 2018, 7(12), 466.
[http://dx.doi.org/10.3390/jcm7120466] [PMID: 30469482]
[232]
Yanagisawa, H.; Dan, I.; Tsuzuki, D.; Kato, M.; Okamoto, M.; Kyutoku, Y.; Soya, H. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage, 2010, 50(4), 1702-1710.
[http://dx.doi.org/10.1016/j.neuroimage.2009.12.023] [PMID: 20006719]
[233]
Kovacsova, Z.; Bale, G.; Mitra, S.; de Roever, I.; Meek, J.; Robertson, N.; Tachtsidis, I. Investigation of confounding factors in measuring tissue saturation with NIRS spatially resolved spectroscopy. Adv. Exp. Med. Biol., 2018, 1072, 307-312.
[http://dx.doi.org/10.1007/978-3-319-91287-5_49] [PMID: 30178363]
[234]
Noël, X.; Jaafari, N.; Bechara, A. Addictive behaviors: Why and how impaired mental time matters? Prog. Brain Res; , 2017, 235, pp. 219-223.
[http://dx.doi.org/10.1016/bs.pbr.2017.07.011] [PMID: 29054290]
[235]
Ploner, M.; Lee, M.C.; Wiech, K.; Bingel, U.; Tracey, I. Flexible cerebral connectivity patterns subserve contextual modulations of pain. Cereb. Cortex, 2011, 21(3), 719-726.
[http://dx.doi.org/10.1093/cercor/bhq146] [PMID: 20713505]
[236]
Shipp, S. The importance of being agranular: A comparative account of visual and motor cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2005, 360(1456), 797-814.
[http://dx.doi.org/10.1098/rstb.2005.1630] [PMID: 15937013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy