Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Direct Catalytic Conversion of Aldehydes to Nitriles

Author(s): Fathiy Mutalabisin, Mohd Rafie Johan and Nader Ghaffari Khaligh*

Volume 21, Issue 5, 2024

Published on: 27 April, 2023

Page: [505 - 513] Pages: 9

DOI: 10.2174/1570193X20666230310092812

Price: $65

Abstract

Nitriles are employed in many academic and industrial fields, especially organic synthesis. They are crucial precursors to synthesize aldehydes, amines, amides, carboxylic acids, and tetrazoles. There are many routes to synthesize nitriles from various species such as aldehydes, alcohols and amines. This review summarized the recently developed direct conversion of aldehydes to nitriles, focusing on the simple and efficient reaction.

Graphical Abstract

[1]
Larock, R.C. Comprehensive organic transformations: a guide to functional group preparations; Wiley-VCH, 1999.
[2]
Yan, G.; Zhang, Y.; Wang, J. Recent advances in the synthesis of aryl nitrile compounds. Adv. Synth. Catal., 2017, 359(23), 4068-4105.
[http://dx.doi.org/10.1002/adsc.201700875]
[3]
Fatiadi, A.J. Preparation and synthetic applications of cyano compounds. In: The chemistry of functional groups; John Wiley & Sons, 1983; pp. 1057-1290.
[http://dx.doi.org/10.1002/9780470771709.ch9]
[4]
Akhtar, R.; Zahoor, A.F.; Rasool, N.; Ahmad, M.; Ali, K.G. Recent trends in the chemistry of Sandmeyer reaction: A review. Mol. Divers., 2022, 26(3), 1837-1873.
[http://dx.doi.org/10.1007/s11030-021-10295-3] [PMID: 34417715]
[5]
Koelsch, C.F.; Whitney, A.G. The rosenmund-von braun nitrile synthesis. J. Org. Chem., 1941, 6(6), 795-803.
[http://dx.doi.org/10.1021/jo01206a002]
[6]
Baxendale, I.R.; Ley, S.V.; Sneddon, H.F. A clean conversion of aldehydes to nitriles using a solid-supported hydrazine. Synlett, 2002, 2002(5), 0775-0777.
[http://dx.doi.org/10.1055/s-2002-25333]
[7]
Friedman, L.; Shechter, H. Preparation of nitriles from halides and sodium cyanide. an advantageous nucleophilic displacement in dimethyl sulfoxide. J. Org. Chem., 1960, 25(6), 877-879.
[http://dx.doi.org/10.1021/jo01076a001]
[8]
Kim, J.N.; Chung, K.H.; Ryu, E.K. Improved dehydration method of aldoximes to nitriles: Use of acetonitrile to triphenylphosphine/carbon tetrachloride system. Synth. Commun., 1990, 20(18), 2785-2788.
[http://dx.doi.org/10.1080/00397919008051490]
[9]
Lin, H.; Zhou, Z.; Ma, X.; Chen, Q.; Han, H.; Wang, X.; Qi, J.; Yang, Y. One pot synthesis of aryl nitriles from aromatic aldehydes in a water environment. RSC Advances, 2021, 11(39), 24232-24237.
[http://dx.doi.org/10.1039/D1RA03559B] [PMID: 35479036]
[10]
Rao, M.N.; Kumar, P.; Garyali, K. A new method for the conversion of aldoximes into nitriles with zeolites. Org. Prep. Proced. Int., 1989, 21(2), 230-232.
[http://dx.doi.org/10.1080/00304948909356370]
[11]
Song, Y.; Shen, D.; Zhang, Q.; Chen, B.; Xu, G. Ac2O/K2CO3/DMSO: An efficient and practical reagent system for the synthesis of nitriles from aldoximes. Tetrahedron Lett., 2014, 55(3), 639-641.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.079]
[12]
Tambara, K.; Pantoş, G.D. Conversion of aldoximes into nitriles and amides under mild conditions. Org. Biomol. Chem., 2013, 11(15), 2466-2472.
[http://dx.doi.org/10.1039/c3ob27362h] [PMID: 23429549]
[13]
Patil, U.D.; Kuwar, A.S.; Nikum, A.P.; Desale, K.R.M.; Pramod, P. Effective and facile synthesis of nitriles from aldoximes by using SnCl4. Int. J. Chemtech Res., 2013, 5(1), 24-27.
[14]
Veisi, H.; Ghorbani-Vaghei, R. Recent progress in the application of N-halo reagents in the synthesis of heterocyclic compounds. Tetrahedron, 2010, 66(38), 7445-7463.
[http://dx.doi.org/10.1016/j.tet.2010.07.015]
[15]
Iida, S.; Togo, H. Direct oxidative conversion of alkyl halides into nitriles with molecular iodine in aqueous ammonia. Synlett, 2008, 11, 1639-1642.
[16]
Hajjami, M.; Ghorbani-Choghamarani, A.; Zolfigol, M.A.; Gholamian, F. An efficient and versatile synthesis of aromatic nitriles from aldehydes. Chin. Chem. Lett., 2012, 23(12), 1323-1326.
[http://dx.doi.org/10.1016/j.cclet.2012.10.006]
[17]
Misono, A.; Osa, T.; Koda, S.; Sato, Y. The synthesis of nitriles from aldehydes. Bull. Chem. Soc. Jpn., 1966, 39(4), 854.
[http://dx.doi.org/10.1246/bcsj.39.854]
[18]
Iida, S.; Ohmura, R.; Togo, H. Direct oxidative conversion of alkyl halides into nitriles with molecular iodine and 1,3-diiodo-5,5-dimethylhydantoin in aq ammonia. Tetrahedron, 2009, 65(31), 6257-6262.
[http://dx.doi.org/10.1016/j.tet.2009.05.001]
[19]
Iida, S.; Togo, H. Direct oxidative conversion of alcohols and amines to nitriles with molecular iodine and DIH in aq NH3. Tetrahedron, 2007, 63(34), 8274-8281.
[http://dx.doi.org/10.1016/j.tet.2007.05.106]
[20]
Veisi, H. Direct oxidative conversion of alcohols, amines, aldehydes, and benzyl halides into the corresponding nitriles with trichloroisocyanuric acid in aqueous ammonia. Synthesis, 2010, 2010(15), 2631-2635.
[http://dx.doi.org/10.1055/s-0029-1218827]
[21]
Kim, J.; Stahl, S.S. Cu/nitroxyl catalyzed aerobic oxidation of primary amines into nitriles at room temperature. ACS Catal., 2013, 3(7), 1652-1656.
[http://dx.doi.org/10.1021/cs400360e] [PMID: 24015373]
[22]
He, J.; Yamaguchi, K.; Mizuno, N. Aerobic oxidative transformation of primary azides to nitriles by ruthenium hydroxide catalyst. J. Org. Chem., 2011, 76(11), 4606-4610.
[http://dx.doi.org/10.1021/jo2004956] [PMID: 21534533]
[23]
Ye, J.Q.; Zhang, Z.L.; Zha, Z.G.; Wang, Z.Y. A green and efficient access to aryl nitriles via an electrochemical anodic oxidation. Chin. Chem. Lett., 2014, 25(8), 1112-1114.
[http://dx.doi.org/10.1016/j.cclet.2014.04.024]
[24]
Chandra, P.; Choudhary, N.; Lahiri, G.K.; Maiti, D.; Mobin, S.M. Copper mediated chemo‐ and stereoselective cyanation reactions. Asian J. Org. Chem., 2021, 10(8), 1897-1937.
[http://dx.doi.org/10.1002/ajoc.202100182]
[25]
León Sandoval, A.; Politano, F.; Witko, M.L.; Leadbeater, N.E. Preparation of nitriles from aldehydes using ammonium persulfate by means of a nitroxide-catalysed oxidative functionalisation reaction. Org. Biomol. Chem., 2022, 20(3), 667-671.
[http://dx.doi.org/10.1039/D1OB02187G] [PMID: 34989384]
[26]
Laulhé, S.; Gori, S.S.; Nantz, M.H. A chemoselective, one-pot transformation of aldehydes to nitriles. J. Org. Chem., 2012, 77(20), 9334-9337.
[http://dx.doi.org/10.1021/jo301133y] [PMID: 22928794]
[27]
Sabir, S.; Kumar, G.; Jat, J.L. O -Substituted hydroxyl amine reagents: An overview of recent synthetic advances. Org. Biomol. Chem., 2018, 16(18), 3314-3327.
[http://dx.doi.org/10.1039/C8OB00146D] [PMID: 29645045]
[28]
An, X.D.; Yu, S. Direct synthesis of nitriles from aldehydes using an O-benzoyl hydroxylamine (BHA) as the nitrogen source. Org. Lett., 2015, 17(20), 5064-5067.
[http://dx.doi.org/10.1021/acs.orglett.5b02547] [PMID: 26418564]
[29]
Rao, W.H.; Li, Q.; Jiang, L.L.; Deng, X.W.; Xu, P.; Chen, F.Y.; Li, M.; Zou, G.D. Copper-catalyzed intermolecular C(sp2)-H amination with electrophilic O-benzoyl hydroxylamines. J. Org. Chem., 2021, 86(15), 10580-10590.
[http://dx.doi.org/10.1021/acs.joc.1c01229] [PMID: 34314188]
[30]
An, X.D.; Yu, S. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine. Org. Lett., 2015, 17(11), 2692-2695.
[http://dx.doi.org/10.1021/acs.orglett.5b01096] [PMID: 25964987]
[31]
Quinn, D.J.; Haun, G.J.; Moura-Letts, G. Direct synthesis of nitriles from aldehydes with hydroxylamine-O-sulfonic acid in acidic water. Tetrahedron Lett., 2016, 57(34), 3844-3847.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.047]
[32]
Yi, J.C.; Wu, Z.J.; You, S.L. Rh-catalyzed aminative dearomatization of naphthols with hydroxylamine-O-sulfonic acid (HOSA). Eur. J. Org. Chem., 2019, 2019(33), 5736-5739.
[http://dx.doi.org/10.1002/ejoc.201900917]
[33]
Kim, M.J.; Mun, J.; Kim, J. Oxoammonium salt-mediated oxidative nitriles synthesis from aldehydes with ammonium acetate. Tetrahedron Lett., 2017, 58(50), 4695-4698.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.002]
[34]
Kaetzel, D.N. Oxidation of aldehydes to nitriles with an oxoammonium salt: Preparation of piperonylonitrile. Org. Synth., 2020, 97, 294-313.
[http://dx.doi.org/10.15227/orgsyn.097.0294]
[35]
Miller, S.A.; Bobbitt, J.M.; Leadbeater, N.E. Oxidation of terminal diols using an oxoammonium salt: A systematic study. Org. Biomol. Chem., 2017, 15(13), 2817-2822.
[http://dx.doi.org/10.1039/C7OB00039A] [PMID: 28281712]
[36]
Hayashi, M.; Shibuya, M.; Iwabuchi, Y. Oxidative conversion of silyl enol ethers to r,β-unsaturated ketones employing oxoammonium salts. Org. Lett., 2012, 14(1), 154-157.
[http://dx.doi.org/10.1021/ol2029417]
[37]
Wertz, S.; Kodama, S.; Studer, A. Amination of benzoxazoles and 1,3,4-oxadiazoles using 2,2,6,6-tetramethylpiperidine-N-oxoammonium tetrafluoroborate as an organic oxidant. Angew. Chem. Int. Ed., 2011, 50(48), 11511-11515.
[http://dx.doi.org/10.1002/anie.201104735] [PMID: 21990072]
[38]
Bagherzade, G.; Zali, A.; Shokrolahi, A. Preparation of aromatic nitriles via direct oxidative conversion of benzyl alcohols, aldehydes and amines with pentylpyridinium tribromide in aqueous NH4OAc. Chin. Chem. Lett., 2015, 26(5), 603-606.
[http://dx.doi.org/10.1016/j.cclet.2015.01.009]
[39]
Kazemnejadi, M.; Nikookar, M.; Mohammadi, M.; Shakeri, A.; Esmaeilpour, M. Melamine-Schiff base/manganese complex with denritic structure: An efficient catalyst for oxidation of alcohols and one-pot synthesis of nitriles. J. Colloid Interface Sci., 2018, 527, 298-314.
[http://dx.doi.org/10.1016/j.jcis.2018.05.045] [PMID: 29800879]
[40]
Arote, N.D.; Bhalerao, D.S.; Akamanchi, K.G. Direct oxidative conversion of aldehydes to nitriles using IBX in aqueous ammonia. Tetrahedron Lett., 2007, 48(21), 3651-3653.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.137]
[41]
Hati, S.; Sen, S. Cerium chloride catalyzed, 2-iodoxybenzoic acid mediated oxidative dehydrogenation of multiple heterocycles at room temperature. Eur. J. Org. Chem., 2017, 2017(9), 1277-1280.
[http://dx.doi.org/10.1002/ejoc.201601419]
[42]
Jiang, H.; Sun, T.Y.; Wang, X.; Xie, Y.; Zhang, X.; Wu, Y.D.; Schaefer, H.F., III A twist of the twist mechanism, 2-iodoxybenzoic acid (IBX)-mediated oxidation of alcohol revisited: Theory and experiment. Org. Lett., 2017, 19(24), 6502-6505.
[http://dx.doi.org/10.1021/acs.orglett.7b03167] [PMID: 29166031]
[43]
Chen, H.; Sun, S.; Xi, H.; Hu, K.; Zhang, N.; Qu, J.; Zhou, Y. Catalytic oxidative conversion of aldehydes into nitriles using NH3·H2O/FeCl2/NaI/Na2S2O8: A practical approach to febuxostat. Tetrahedron Lett., 2019, 60(21), 1434-1436.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.043]
[44]
Das, A.K.; Nandy, S.; Bhar, S. Cu(OAc) 2 catalysed aerobic oxidation of aldehydes to nitriles under ligand-free conditions. RSC Advances, 2022, 12(8), 4605-4614.
[http://dx.doi.org/10.1039/D1RA07701E] [PMID: 35425513]
[45]
Kim, J.; Park, S.; Kim, H.; Kim, J. CuCl2-promoted decomposition of sulfonyl hydrazides for the synthesis of thiosulfonates. Tetrahedron Lett., 2020, 61(29), 152112.
[http://dx.doi.org/10.1016/j.tetlet.2020.152112]
[46]
Taboonpong, P.; Chavasiri, W. CuCl2/[hmim]Br: A new recyclable catalytic system for aromatization of cyclic dienes. Catal. Commun., 2018, 104, 9-12.
[http://dx.doi.org/10.1016/j.catcom.2017.10.009]
[47]
Albalawi, M.O.; Falivene, L.; Jedidi, A.; Osman, O.I.; Elroby, S.A.; Cavallo, L. Influence of the anionic ligands on properties and reactivity of Hoveyda-Grubbs catalysts. Mol Catal, 2021, 509, 111612.
[http://dx.doi.org/10.1016/j.mcat.2021.111612]
[48]
Patra, S.G.; Das, N.K. Recent advancement on the mechanism of olefin metathesis by Grubbs catalysts: A computational perspective. Polyhedron, 2021, 200, 115096.
[http://dx.doi.org/10.1016/j.poly.2021.115096]
[49]
Swart, M.R.; Bezuidenhoudt, B.C.B.; Marais, C.; Erasmus, E. NMR data of a Grubbs 2nd generation catalyst p-cresolate derivative. Data Brief, 2021, 34, 106634.
[http://dx.doi.org/10.1016/j.dib.2020.106634] [PMID: 33354608]
[50]
Utsumi, T.; Noda, K.; Kawauchi, D.; Ueda, H.; Tokuyama, H. Nitrile synthesis by aerobic oxidation of primary amines and in situ generated imines from aldehydes and ammonium salt with Grubbs catalyst. Adv. Synth. Catal., 2020, 362(17), 3583-3588.
[http://dx.doi.org/10.1002/adsc.202000663]
[51]
Francke, R.; Little, R.D. Redox catalysis in organic electrosynthesis: Basic principles and recent developments. Chem. Soc. Rev., 2014, 43(8), 2492-2521.
[http://dx.doi.org/10.1039/c3cs60464k] [PMID: 24500279]
[52]
Yang, X.; Fan, Z.; Shen, Z.; Li, M. Electrocatalytic synthesis of nitriles from aldehydes with ammonium acetate as the nitrogen source. Electrochim. Acta, 2017, 226, 53-59.
[http://dx.doi.org/10.1016/j.electacta.2016.12.168]
[53]
Ovoshchnikov, D.S.; Donoeva, B.G.; Golovko, V.B. Visible-light-driven aerobic oxidation of amines to nitriles over hydrous ruthenium oxide supported on TiO2. ACS Catal., 2015, 5(1), 34-38.
[http://dx.doi.org/10.1021/cs501186n]
[54]
Ren, R.; Wu, Z.; Huan, L.; Zhu, C. Synergistic strategies of cyano migration and photocatalysis for difunctionalization of unactivated alkenes: Synthesis of di- and mono-fluorinated alkyl nitriles. Adv. Synth. Catal., 2017, 359(17), 3052-3056.
[http://dx.doi.org/10.1002/adsc.201700591]
[55]
Verma, F.; Shukla, P.; Bhardiya, S.R.; Singh, M.; Rai, A.; Rai, V.K. Visible light-induced direct conversion of aldehydes into nitriles in aqueous medium using Co@g-C3N4 as photocatalyst. Catal. Commun., 2019, 119, 76-81.
[http://dx.doi.org/10.1016/j.catcom.2018.10.031]
[56]
Nandi, J.; Leadbeater, N.E. Visible-light-driven catalytic oxidation of aldehydes and alcohols to nitriles by 4-acetamido-TEMPO using ammonium carbamate as a nitrogen source. Org. Biomol. Chem., 2019, 17(41), 9182-9186.
[http://dx.doi.org/10.1039/C9OB01918A] [PMID: 31595927]
[57]
Fang, W.Y.; Qin, H.L. Cascade process for direct transformation of aldehydes (RCHO) to nitriles (RCN) using inorganic reagents NH2OH/Na2CO3/SO2F2 in DMSO. J. Org. Chem., 2019, 84(9), 5803-5812.
[http://dx.doi.org/10.1021/acs.joc.8b03164] [PMID: 30868885]
[58]
Gurjar, J.; Bater, J.; Fokin, V.V. Sulfuryl fluoride mediated conversion of aldehydes to nitriles. Chemistry, 2019, 25(8), 1906-1909.
[http://dx.doi.org/10.1002/chem.201805175] [PMID: 30346050]
[59]
Leggio, A.; Belsito, E.L.; Gallo, S.; Liguori, A. One-pot conversion of aldehydes to nitriles mediated by TiCl 4. Tetrahedron Lett., 2017, 58(15), 1512-1514.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.007]
[60]
Di Gioia, M.L.; Belsito, E.L.; Leggio, A.; Leotta, V.; Romio, E.; Siciliano, C.; Liguori, A. Reduction of amide carbonyl group and formation of modified amino acids and dipeptides. Tetrahedron Lett., 2015, 56(16), 2062-2066.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.074]
[61]
Gioia, M.; Leggio, A.; Pera, A.; Liguori, A.; Pitrelli, A.; Siciliano, C. A convenient method for the stereoselective conversion of aryl peptidyl ketones into the corresponding aryl aminomethin derivatives, a novel class of modified peptides. Protein Pept. Lett., 2005, 12(4), 357-362.
[http://dx.doi.org/10.2174/0929866053765725] [PMID: 15907181]
[62]
Betke, T.; Higuchi, J.; Rommelmann, P.; Oike, K.; Nomura, T.; Kato, Y.; Asano, Y.; Gröger, H. Bio-catalytic synthesis of nitriles through dehydration of aldoximes: the substrate scope of aldoxime dehydratases. ChemBioChem, 2018, 19(8), 768-779.
[http://dx.doi.org/10.1002/cbic.201700571] [PMID: 29333684]
[63]
Hinzmann, A.; Betke, T.; Asano, Y.; Gröger, H. Synthetic processes toward nitriles without the use of cyanide: A biocatalytic concept based on dehydration of aldoximes in water. Chemistry, 2021, 27(17), 5313-5321.
[http://dx.doi.org/10.1002/chem.202001647] [PMID: 33112445]
[64]
Ma, D.Z.; Li, Y.; Hao, Z.Q. Bis(phenoxy-imine) ruthenium(II) carbonyl complexes: Syntheses, structures and their catalytic activities for conversion of aldehydes to nitriles. J. Coord. Chem., 2020, 73(12), 1848-1859.
[http://dx.doi.org/10.1080/00958972.2020.1795646]
[65]
Mudshinge, S.R.; Potnis, C.S.; Xu, B.; Hammond, G.B. HCl·DMPU-assisted one-pot and metal-free conversion of aldehydes to nitriles. Green Chem., 2020, 22(13), 4161-4164.
[http://dx.doi.org/10.1039/D0GC00757A] [PMID: 33795972]
[66]
Cheewawisuttichai, T.; Hurst, R.D.; Brichacek, M. Transformation of aldehydes into nitriles in an aqueous medium using O-phenylhydroxylamine as the nitrogen source. Carbohydr. Res., 2021, 502, 108282.
[http://dx.doi.org/10.1016/j.carres.2021.108282] [PMID: 33761407]
[67]
Telvekar, V.N.; Rane, R.A. A novel system for the synthesis of nitriles from carboxylic acids. Tetrahedron Lett., 2007, 48(34), 6051-6053.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.108]
[68]
Cheng, Z.; Xia, Y.; Zhou, Z. Recent advances and promises in nitrile hydratase: From mechanism to industrial applications. Front. Bioeng. Biotechnol., 2020, 8, 352.
[http://dx.doi.org/10.3389/fbioe.2020.00352] [PMID: 32391348]
[69]
Mouselmani, R.; Hachem, A.; Alaaeddine, A.; Métay, E.; Lemaire, M. Reduction of aromatic nitriles into aldehydes using calcium hypophosphite and a nickel precursor. Org. Biomol. Chem., 2018, 16(35), 6600-6605.
[http://dx.doi.org/10.1039/C8OB01751D] [PMID: 30175348]
[70]
Toogood, H.S.; Mansell, D.; Gardiner, J.M.; Scrutton, N.S. 7.11 Reduction: Enantioselective bioreduction of C–C double bonds. In: Comprehensive Chirality; Elsevier Science, 2012; pp. 216-255.
[71]
Ishikawa, T. 6.7 C–C bond formation: cyanation; Comprehensive Chirality, 2012, pp. 194-213.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy