Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Development and In-vitro Evaluation of Dexamethasone Enriched Nanoemulsion for Ophthalmic Indication

Author(s): Ajinkya Jadhav, Sagar Salave, Dhwani Rana and Derajram Benival*

Volume 13, Issue 3, 2023

Published on: 28 March, 2023

Page: [196 - 212] Pages: 17

DOI: 10.2174/2210303113666230309151048

Price: $65

Abstract

Background: Dexamethasone (DEX) is a glucocorticosteroid used in the treatment of steroid-responsive inflammatory conditions of the eye. The currently marketed formulations pose several issues, like poor drug residence time, resulting in frequent administration of the formulation, making them less effective.

Objective: The present study aims to provide comprehensive data encompassing the designing, optimization, development, and characterization of DEX nanoemulsion (DEX NE) for treating inflammatory conditions of the anterior segment of the eye by employing the Quality by Design (QbD) approach.

Methods: A Plackett-Burman Design (PBD) was employed to screen seven independent variables, such as oil concentration, surfactant concentration, polymer concentration, homogenization speed and time, microfluidization pressure and cycles, and their influence on critical quality attributes (CQAs), such as globule size, zeta potential, and viscosity, was evaluated. Furthermore, the Box- Behnken Design (BBD) was employed for optimization, and design space was generated to obtain the optimized DEX NE.

Results: The experimental results after DEX NE characterization reveal a globule size of 181 ± 90 nm with a zeta potential of -21.03 ± 1.68 mV and a viscosity of 19.99 cp. Furthermore, the drug release study of simulated tear fluid demonstrated prolonged and steady release for up to 48 hr. Cytotoxicity assay of DEX NE exhibited good cell viability.

Conclusion: All these findings pave the way for a better understanding of developing a robust, safe, and non-toxic formulation for ocular drug delivery.

Graphical Abstract

[1]
Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J., 2010, 12(3), 348-360.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[2]
Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol., 2013, 2(2), 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[3]
Cholkar, K.; Patel, S.P.; Vadlapudi, A.D.; Mitra, A.K. Novel strategies for anterior segment ocular drug delivery. J. Ocul. Pharmacol. Ther., 2013, 29(2), 106-123.
[http://dx.doi.org/10.1089/jop.2012.0200] [PMID: 23215539]
[4]
Cholkar, K.; Dasari, S.R.; Pal, D.; Mitra, A.K. Eye: Anatomy, physiology and barriers to drug delivery. In: Ocular Transporters and Receptors: Their Role in Drug Delivery; Woodhead Publishing Series in Biomedicine, 2013; pp. 1-36.
[http://dx.doi.org/10.1533/9781908818317.1]
[5]
Bachu, R.; Chowdhury, P.; Al-Saedi, Z.; Karla, P.; Boddu, S. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics, 2018, 10(1), 28.
[http://dx.doi.org/10.3390/pharmaceutics10010028] [PMID: 29495528]
[6]
Ali, M.; Byrne, M.E. Challenges and solutions in topical ocular drug-delivery systems. Expert Rev. Clin. Pharmacol., 2008, 1(1), 145-161.
[http://dx.doi.org/10.1586/17512433.1.1.145] [PMID: 24410518]
[7]
Gote, V.; Sikder, S.; Sicotte, J.; Pal, D. Ocular drug delivery: Present innovations and future challenges. J. Pharmacol. Exp. Ther., 2019, 370(3), 602-624.
[http://dx.doi.org/10.1124/jpet.119.256933] [PMID: 31072813]
[8]
Maharjan, P.; Cho, K.H.; Maharjan, A.; Shin, M.C.; Moon, C.; Min, K.A. Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. J. Pharm. Investig., 2019, 49(2), 215-228.
[http://dx.doi.org/10.1007/s40005-018-0404-6]
[9]
Kwon, K.A.; Diestelhorst, M.; Süverkrüp, R. Dosage problems in suspension eyedrops. Klin. Monatsbl. Augenheilkd., 1996, 209(2-3), 144-149.
[http://dx.doi.org/10.1055/s-2008-1035294] [PMID: 8992075]
[10]
Diestelhorst, M.; Kwon, K.A.; Süverkrup, R. Dose uniformity of ophthalmic suspensions. J. Cataract Refract. Surg., 1998, 24(5), 672-677.
[http://dx.doi.org/10.1016/S0886-3350(98)80264-2] [PMID: 9610452]
[11]
Deicke, A.; Süverkrüp, R. Dose uniformity and redispersibility of pharmaceutical suspensions I: Quantification and mechanical modelling of human shaking behaviour. Eur. J. Pharm. Biopharm., 1999, 48(3), 225-232.
[http://dx.doi.org/10.1016/S0939-6411(99)00045-4] [PMID: 10612033]
[12]
Bachu, R.D.; Stepanski, M.; Alzhrani, R.M.; Jung, R.; Boddu, S.H.S. Development and evaluation of a novel microemulsion of dexamethasone and tobramycin for topical ocular administration. J. Ocul. Pharmacol. Ther., 2018, 34(4), 312-324.
[http://dx.doi.org/10.1089/jop.2017.0082] [PMID: 29406793]
[13]
Fialho, S.L.; da Silva-Cunha, A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin. Exp. Ophthalmol., 2004, 32(6), 626-632.
[http://dx.doi.org/10.1111/j.1442-9071.2004.00914.x] [PMID: 15575833]
[14]
Singh, M.; Bharadwaj, S.; Lee, K.E.; Kang, S.G. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J. Control. Release, 2020, 328, 895-916.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.025] [PMID: 33069743]
[15]
Zhang, J.; Liu, Z.; Tao, C.; Lin, X.; Zhang, M.; Zeng, L.; Chen, X.; Song, H. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur. J. Pharm. Sci., 2020, 144, 105229.
[http://dx.doi.org/10.1016/j.ejps.2020.105229] [PMID: 31958581]
[16]
Jurišić D.B.; Juretić M.; Bračko, D.; Randjelović D.; Savić S.; Crespo Moral, M.; Diebold, Y.; Filipović-Grčić J.; Pepić I.; Lovrić J. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment. Int. J. Pharm., 2020, 576, 118979.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118979] [PMID: 31870964]
[17]
Shah, J.; Nair, A.B.; Jacob, S.; Patel, R.K.; Shah, H.; Shehata, T.M.; Morsy, M.A. Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits. Pharmaceutics, 2019, 11(5), 230.
[http://dx.doi.org/10.3390/pharmaceutics11050230] [PMID: 31083593]
[18]
Ismail, A.; Nasr, M.; Sammour, O. Nanoemulsion as a feasible and biocompatible carrier for ocular delivery of travoprost: Improved pharmacokinetic/pharmacodynamic properties. Int. J. Pharm., 2020, 583, 119402.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119402] [PMID: 32387308]
[19]
OZURDEX® for HCPs. Available from: https://hcp.ozurdex.com/
[20]
Gan, L.; Han, S.; Shen, J.; Zhu, J.; Zhu, C.; Zhang, X.; Gan, Y. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability. Int. J. Pharm., 2010, 396(1-2), 179-187.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.015] [PMID: 20558263]
[21]
Rana, D.; Salave, S.; Rawat, G.; Benival, D. Recent trends in drug delivery and emerging biomedical applications of gelatin for ophthalmic indications. Macromol. Res., 2022, 30(10), 687-702.
[http://dx.doi.org/10.1007/s13233-022-0078-9]
[22]
Gao, Y.; Sun, Y.; Ren, F.; Gao, S. PLGA–PEG–PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev. Ind. Pharm., 2010, 36(10), 1131-1138.
[http://dx.doi.org/10.3109/03639041003680826] [PMID: 20334543]
[23]
Agarwal, R.; Rana, D.; Salave, S.; Benival, D. Dexamethasone loaded electrospun nanocomposite ocular insert: In-vitro drug release and mechanical assessment. Curr. Nanomed., 2022, 12(2), 150-158.
[http://dx.doi.org/10.2174/2468187312666220806133901]
[24]
Sangole, S.; Salave, S.; Rana, D.; Shah, S.; Medhe, T.P.; Benival, D. Electrospun nanofiber composite for levofloxacin in ocular drug delivery. Pharm. Nanotechnol., 2022, 5(10), 393-400.
[26]
Rahman, S.N.R.; Pawde, D.M.; Katari, O.; Hmingthansanga, V.; Shunmugaperumal, T. Systematic optimization, in vitro drug release, and preliminary nonclinical toxicity assessment of nonphospholipid-based topical ophthalmic emulsions containing 0.05 or 0.1% w/w cyclosporin a for dry-eye syndrome management. AAPS PharmSciTech, 2020, 21(2), 36.
[http://dx.doi.org/10.1208/s12249-019-1587-5] [PMID: 31879832]
[27]
Rathod, V.R.; Shah, D.A.; Dave, R.H. Systematic implementation of quality-by-design (QbD) to develop NSAID-loaded nanostructured lipid carriers for ocular application: Preformulation screening studies and statistical hybrid-design for optimization of variables. Drug Dev. Ind. Pharm., 2020, 46(3), 443-455.
[http://dx.doi.org/10.1080/03639045.2020.1724135] [PMID: 32037896]
[28]
Solans, C.; García-Celma, M.J. Surfactants for microemulsions. Curr. Opin. Colloid Interface Sci., 1997, 2(5), 464-471.
[http://dx.doi.org/10.1016/S1359-0294(97)80093-3]
[29]
Talegaonkar, S.; Azeem, A.; Ahmad, F.; Khar, R.; Pathan, S.; Khan, Z. Microemulsions: A novel approach to enhanced drug delivery. Recent Pat. Drug Deliv. Formul., 2008, 2(3), 238-257.
[http://dx.doi.org/10.2174/187221108786241679] [PMID: 19075911]
[30]
Shinoda, K.; Lindman, B. Organized surfactant systems: Microemulsions. Langmuir, 1987, 3(2), 135-149.
[http://dx.doi.org/10.1021/la00074a001]
[31]
Yamaguchi, M.; Yasueda, S.; Isowaki, A.; Yamamoto, M.; Kimura, M.; Inada, K.; Ohtori, A. Formulation of an ophthalmic lipid emulsion containing an anti-inflammatory steroidal drug, difluprednate. Int. J. Pharm., 2005, 301(1-2), 121-128.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.036] [PMID: 16023810]
[32]
Unlü, N.; Ludwig, A.; Van Ooteghem, M.; Hincal, A.A. A comparative rheological study on carbopol viscous solutions and, the evaluation of their suitability as the ophthalmic vehicles and artificial tears. Pharm. Acta Helv., 1992, 67(1), 5-10.
[PMID: 1561228]
[33]
Deshpande, S.G.; Shirolkar, S. Sustained release ophthalmic formulations of pilocarpine. J. Pharm. Pharmacol., 2011, 41(3), 197-200.
[http://dx.doi.org/10.1111/j.2042-7158.1989.tb06430.x] [PMID: 2568450]
[34]
Ceulemans, J.; Ludwig, A. Optimisation of carbomer viscous eye drops: An in vitro experimental design approach using rheological techniques. Eur. J. Pharm. Biopharm., 2002, 54(1), 41-50.
[http://dx.doi.org/10.1016/S0939-6411(02)00036-X] [PMID: 12084501]
[35]
Gore, A.; Attar, M.; Pujara, C.; Neervannan, S. Ocular emulsions and dry eye: A case study of a non-biological complex drug product delivered to a complex organ to treat a complex disease. GaBi J., 2017, 6(1), 13-23.
[http://dx.doi.org/10.5639/gabij.2017.0601.004]
[36]
Rahman, Z.; Xu, X.; Katragadda, U.; Krishnaiah, Y.S.R.; Yu, L.; Khan, M.A. Quality by design approach for understanding the critical quality attributes of cyclosporine ophthalmic emulsion. Mol. Pharm., 2014, 11(3), 787-799.
[http://dx.doi.org/10.1021/mp400484g] [PMID: 24423028]
[37]
Sznitowska, M.; Janicki, S.; Dabrowska, E.; Zurowska-Pryczkowska, K. Submicron emulsions as drug carriers. Eur. J. Pharm. Sci., 2001, 12(3), 175-179.
[http://dx.doi.org/10.1016/S0928-0987(00)00115-9] [PMID: 11113636]
[38]
Fawzia, H; Shaheer, M. Review Article Ocular drug deliver and the importance of microemulsion as a potential delivery system. 2012, 1(2)
[39]
Tambe, V.; Raval, N.; Gondaliya, P.; Bhattacharya, P.; Kalia, K.; Tekade, R.K. To investigate fit-to-purpose nanocarrier for non-invasive drug delivery to posterior segment of eye. J. Drug Deliv. Sci. Technol., 2021, 61, 102222.
[http://dx.doi.org/10.1016/j.jddst.2020.102222]
[40]
Nayak, K.; Misra, M. PEGylated microemulsion for dexamethasone delivery to posterior segment of eye. J. Biomater. Sci. Polym. Ed., 2020, 31(8), 1071-1090.
[http://dx.doi.org/10.1080/09205063.2020.1740964] [PMID: 32149562]
[41]
Foo, J.B.; Ng, L.S.; Lim, J.H.; Tan, P.X.; Lor, Y.Z.; Loo, J.S.E.; Low, M.L.; Chan, L.C.; Beh, C.Y.; Leong, S.W.; Saiful Yazan, L.; Tor, Y.S.; How, C.W. Induction of cell cycle arrest and apoptosis by copper complex Cu(SBCM)2 towards oestrogen-receptor positive MCF-7 breast cancer cells. RSC Advances, 2019, 9(32), 18359-18370.
[http://dx.doi.org/10.1039/C9RA03130H] [PMID: 35515266]
[42]
Sigward, E.; Mignet, N.; Rat, P.; Dutot, M.; Muhamed, S.; Guigner, J.M.; Scherman, D.; Brossard, D.; Crauste-Manciet, S. Formulation and cytotoxicity evaluation of new self-emulsifying multiple W/O/W nanoemulsions. Int. J. Nanomedicine, 2013, 8, 611-625.
[PMID: 23403891]
[43]
Varges, P.R.; Costa, C.M.; Fonseca, B.S.; Naccache, M.F.; De Souza Mendes, P.R. Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions. Fluids., 2019, 4(1), 3.
[http://dx.doi.org/10.3390/fluids4010003]
[44]
Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic drug dosage forms: Characterisation and research methods. Sci. World J., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/861904] [PMID: 24772038]
[45]
Zignani, M.; Tabatabay, C.; Gurny, R. Topical semi-solid drug delivery: Kinetics and tolerance of ophthalmic hydrogels. Adv. Drug Deliv. Rev., 1995, 16(1), 51-60.
[http://dx.doi.org/10.1016/0169-409X(95)00015-Y]
[46]
Tiffany, J.M.; Winter, N.; Bliss, G. Tear film stability and tear surface tension. Curr. Eye Res., 1989, 8(5), 507-515.
[http://dx.doi.org/10.3109/02713688909000031] [PMID: 2736956]
[47]
Rana, D.; Salave, S.; Jain, S.; Shah, R.; Benival, D. Systematic development and optimization of teriparatide-loaded nanoliposomes employing quality by design approach for osteoporosis. J. Pharm. Innov., 2022, 1-5.
[http://dx.doi.org/10.1007/s12247-022-09663-9]
[48]
Uusitalo, H.; Kähönen, M.; Ropo, A.; Mäenpää, J.; Bjärnhall, G.; Hedenström, H.; Turjanmaa, V. Improved systemic safety and risk–benefit ratio of topical 0.1% timolol hydrogel compared with 0.5% timolol aqueous solution in the treatment of glaucoma. Graefes Arch. Clin. Exp. Ophthalmol., 2006, 244(11), 1491-1496.
[http://dx.doi.org/10.1007/s00417-006-0328-0] [PMID: 16628416]
[49]
Maïssa, C.; Guillon, M.; Simmons, P.; Vehige, J. Effect of castor oil emulsion eyedrops on tear film composition and stability. Cont. Lens Anterior Eye, 2010, 33(2), 76-82.
[http://dx.doi.org/10.1016/j.clae.2009.10.005] [PMID: 19963428]
[50]
Johnson, W. Final report on the safety assessment of Ricinus communis (castor) seed oil, hydrogenated castor oil, glyceryl ricinoleate, glyceryl ricinoleate SE, ricinoleic acid, potassium ricinoleate, sodium ricinoleate, zinc ricinoleate, cetyl ricinoleate, ethyl ricinoleate, glycol ricinoleate, isopropyl ricinoleate, methyl ricinoleate, and octyldodecyl ricinoleate. Int. J. Toxicol., 2007, 26(S3), 31-77.
[http://dx.doi.org/10.1080/10915810701663150] [PMID: 18080873]
[51]
Sandford, E.C.; Muntz, A.; Craig, J.P. Therapeutic potential of castor oil in managing blepharitis, meibomian gland dysfunction and dry eye. Clin. Exp. Optom., 2021, 104(3), 315-322.
[http://dx.doi.org/10.1111/cxo.13148] [PMID: 33037703]
[52]
Lawrence, M.J. Surfactant systems: Microemulsions and vesicles as vehicles for drug delivery. Eur. J. Drug Metab. Pharmacokinet., 1994, 19(3), 257-269.
[http://dx.doi.org/10.1007/BF03188929] [PMID: 7867669]
[53]
Dapčević Hadnađev, T.; Dokić P.; Krstonošić V.; Hadnađev, M. Influence of oil phase concentration on droplet size distribution and stability of oil‐in‐water emulsions. Eur. J. Lipid Sci. Technol., 2013, 115(3), 313-321.
[http://dx.doi.org/10.1002/ejlt.201100321]
[54]
An, Y.; Yan, X.; Li, B.; Li, Y. Microencapsulation of capsanthin by self-emulsifying nanoemulsions and stability evaluation. Eur. Food Res. Technol., 2014, 239(6), 1077-1085.
[http://dx.doi.org/10.1007/s00217-014-2328-3]
[55]
Khan, G.M.; Jiabi, Z. Formulation and in vitro evaluation of ibuprofen-carbopol® 974P-NF controlled release matrix tablets III: Influence of co-excipients on release rate of the drug. J. Control. Release, 1998, 54(2), 185-190.
[http://dx.doi.org/10.1016/S0168-3659(97)00225-3] [PMID: 9724905]
[56]
Suhail, M.; Wu, P.C.; Minhas, M.U. Using carbomer-based hydrogels for control the release rate of diclofenac sodium: Preparation and in vitro evaluation. Pharmaceuticals, 2020, 13(11), 399.
[http://dx.doi.org/10.3390/ph13110399] [PMID: 33212866]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy