Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Application of Nanotechnology for Herbal Medicine Development: A Review

Author(s): Anubhav Anand, Preety Gautam and Smriti Ojha*

Volume 21, Issue 8, 2024

Published on: 04 April, 2023

Page: [1325 - 1333] Pages: 9

DOI: 10.2174/1570180820666230308105723

Price: $65

Abstract

Background: Herbal medicines have been extensively used to treat diseases since the prehistoric era, but written records date back more than 5,000 years only. All civilizations developed their knowledge of herbal medicines in a well-ordered system, such as Ayurveda, Unani, Traditional Chinese Medicine, etc. The interest in traditional medicine declined after the discovery of modern medicine. However, in the 21st century, herbal medicines are staging a comeback as the dangers and limitations of modern medicine have become more apparent and herbal medicines are viewed as a balanced and moderate approach to healing.

Methods: This review includes the nanoformulations of phytoconstituents and extract. Advancements in analysis and clinical research prove the efficacy of nano-herbal medicines in preventing and treating diseases. This review is mostly about how nanotechnology can be used to help herbal medicines work better.

Results: The major problems with herbal medicines are their poor solubility and stability. New technological advancements are capable of removing the problems associated with herbal medicine. Novel drug delivery systems such as microemulsion, liposome, niosome, and nano-drug delivery systems are used to enhance the safety and efficacy of herbal medicines.

Conclusion: Nanotechnology has significant merit for herbal medicines, such as improving solubility, bioavailability, pharmacological activity enhancement, and stability enhancement.

Graphical Abstract

[1]
Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 210-229.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[2]
Silva, P.; Bonifácio, B.; Ramos, M.; Negri, K.; Maria Bauab, T.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine, 2013, 9, 1-15.
[http://dx.doi.org/10.2147/IJN.S52634] [PMID: 24363556]
[3]
Calixto, J.B. The role of natural products in modern drug discovery. An Acad. Bras. Cienc., 2019, 91(Suppl. 3), e20190105.
[http://dx.doi.org/10.1590/0001-3765201920190105]
[4]
Abirami, A.; Halith, S.; Pillai, K.; Anbalagan, C. Herbal nanoparticle for anticancer potential - a review. World J. Pharm. Pharm. Sci., 2014, 3, 2123-2132.
[5]
Ansari, S.H.; Sameem, M.; Islam, F. Influence of nanotechnology on herbal drugs: A Review. J. Adv. Pharm. Technol. Res., 2012, 3(3), 142-146.
[http://dx.doi.org/10.4103/2231-4040.101006] [PMID: 23057000]
[6]
Sandhiya, V.; Ubaidulla, U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Future J. Pharm. Sci., 2020, 6(1), 1-16.
[http://dx.doi.org/10.1186/s43094-020-00050-0]
[7]
Daskalova, E.; Delchev, S.; Vladimirova-Kitova, L.; Kitov, S.; Denev, P. Black chokeberry (Aronia Melanocarpa) functional beverages increase HDL-Cholesterol levels in aging rats. Foods, 2021, 10(7), 1641.
[http://dx.doi.org/10.3390/foods10071641] [PMID: 34359511]
[8]
A, N.; Kovooru, L.; Behera, A.K.; Kumar, K.P.P.; Srivastava, P. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv. Colloid Interface Sci., 2021, 287, 102318.
[http://dx.doi.org/10.1016/j.cis.2020.102318] [PMID: 33242713]
[9]
Alexander, A.; Ajazuddin; Patel, R.J.; Saraf, S.; Saraf, S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactive. J. Control. Release, 2016, 241, 110-124.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.017] [PMID: 27663228]
[10]
Fernández-Moriano, C.; González-Burgos, E.; Gómez-Serranillos, M.P. Curcumin: Current evidence of its therapeutic potential as a lead candidate for anti-inflammatory drugs-an overview. In: Discovery and Development of Anti-inflammatory Agents from Natural Products; Elsevier: Amsterdam, 2019; pp. 7-59.
[11]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[12]
Akram, M.; Ahmed, A.; Usmanghani, K.; Hannan, A.; Mohiuddin, E.; Asif, M. Curcuma longa and curcumin: A review article. Romanian J. Biol., 2010, 55, 65-70.
[13]
Abidi, A.; Gupta, S.; Agarwal, M.; Bhalla, H.L.; Saluja, M. Evaluation of efficacy of curcumin as an add-on therapy in patients of bronchial asthma. J. Clin. Diagn. Res., 2014, 8(8), HC19-HC24.
[http://dx.doi.org/10.7860/JCDR/2014/9273.4705] [PMID: 25302215]
[14]
Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[15]
Satoskar, R.R.; Shah, S.J.; Shenoy, S.G. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int. J. Clin. Pharmacol. Ther. Toxicol., 1986, 24(12), 651-654.
[PMID: 3546166]
[16]
Jayaprakasha, G.K.; Jaganmohan Rao, L.; Sakariah, K.K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem., 2006, 98(4), 720-724.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.037]
[17]
Priyadarsini, K.I.; Maity, D.K.; Naik, G.H.; Kumar, M.S.; Unnikrishnan, M.K.; Satav, J.G.; Mohan, H. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med., 2003, 35(5), 475-484.
[http://dx.doi.org/10.1016/S0891-5849(03)00325-3] [PMID: 12927597]
[18]
Forouzanfar, F.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: A review of its effects on epilepsy. Adv. Exp. Med. Biol., 2021, 1291, 363-373.
[http://dx.doi.org/10.1007/978-3-030-56153-6_21] [PMID: 34331701]
[19]
Hani, U.; Shivakumar, H.G. Solubility enhancement and delivery systems of curcumin a herbal medicine: A review. Curr. Drug Deliv., 2014, 11(6), 792-804.
[http://dx.doi.org/10.2174/1567201811666140825130003] [PMID: 25176028]
[20]
Tsai, Y.M.; Chien, C.F.; Lin, L.C.; Tsai, T.H. Curcumin and its nano-formulation: The kinetics of tissue distribution and blood–brain barrier penetration. Int. J. Pharm., 2011, 416(1), 331-338.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.030] [PMID: 21729743]
[21]
Agrawal, M.; Saraf, S.; Pradhan, M.; Patel, R.J.; Singhvi, G. Ajazuddin; Alexander, A. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed. Pharmacother., 2021, 141, 111919.
[http://dx.doi.org/10.1016/j.biopha.2021.111919] [PMID: 34328108]
[22]
Li, J.; Hwang, I.C.; Chen, X.; Park, H.J. Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility. Food Hydrocoll., 2016, 60, 138-147.
[http://dx.doi.org/10.1016/j.foodhyd.2016.03.016]
[23]
Chen, Y.; Pan, L.; Jiang, M.; Li, D.; Jin, L. Nanostructured lipid carriers enhance the bioavailability and brain cancer inhibitory efficacy of curcumin both in vitro and in vivo . Drug Deliv., 2016, 23(4), 1383-1392.
[http://dx.doi.org/10.3109/10717544.2015.1049719] [PMID: 26066035]
[24]
Lotfi-Attari, J.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Alipour, S.; Farajzadeh, R.; Javidfar, S.; Zarghami, N. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and htert gene expression in human colorectal cancer cells. Nutr. Cancer, 2017, 69(8), 1290-1299.
[http://dx.doi.org/10.1080/01635581.2017.1367932] [PMID: 29083232]
[25]
Shamsi-Goushki, A.; Mortazavi, Z.; Mirshekar, M.A.; Mohammadi, M.; Moradi-Kor, N.; Jafari-Maskouni, S.; Shahraki, M. Comparative effects of curcumin versus nano-curcumin on insulin resistance, serum levels of apelin and lipid profile in type 2 diabetic rats. Diabet. Metab. Syndr. Obes., 2020, 13, 2337-2346.
[http://dx.doi.org/10.2147/DMSO.S247351] [PMID: 32753918]
[26]
Abdel-Mageid, A.D.; Abou-Salem, M.E.S.; Salaam, N.M.H.A.; El-Garhy, H.A.S. The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats. Phytomedicine, 2018, 43, 126-134.
[http://dx.doi.org/10.1016/j.phymed.2018.04.039] [PMID: 29747745]
[27]
Frémont, L. Biological effects of resveratrol. Life Sci., 2000, 66(8), 663-673.
[http://dx.doi.org/10.1016/S0024-3205(99)00410-5] [PMID: 10680575]
[28]
King, R.E.; Bomser, J.A.; Min, D.B. Bioactivity of resveratrol. Compr. Rev. Food Sci. Food Saf., 2006, 5(3), 65-70.
[http://dx.doi.org/10.1111/j.1541-4337.2006.00001.x]
[29]
Arabzadeh, A.A.; Mortezazadeh, T.; Aryafar, T.; Gharepapagh, E.; Majdaeen, M.; Farhood, B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer Cell Int., 2021, 21, 391.
[http://dx.doi.org/10.1186/s12935-021-02099-0]
[30]
Rahal, K.; Schmiedlin-Ren, P.; Adler, J.; Dhanani, M.; Sultani, V.; Rittershaus, A.C.; Reingold, L.; Zhu, J.; McKenna, B.J.; Christman, G.M.; Zimmermann, E.M. Resveratrol has antiinflammatory and antifibrotic effects in the peptidoglycan-polysaccharide rat model of Crohnʼs disease. Inflamm. Bowel Dis., 2012, 18(4), 613-623.
[http://dx.doi.org/10.1002/ibd.21843] [PMID: 22431488]
[31]
Bhat, K.P.L.; Kosmeder, J.W., II; Pezzuto, J.M. Biological effects of resveratrol. Antioxid. Redox Signal., 2001, 3(6), 1041-1064.
[http://dx.doi.org/10.1089/152308601317203567] [PMID: 11813979]
[32]
Wenzel, E.; Somoza, V. Metabolism and bioavailability oftrans-resveratrol. Mol. Nutr. Food Res., 2005, 49(5), 472-481.
[http://dx.doi.org/10.1002/mnfr.200500010] [PMID: 15779070]
[33]
Das, S.; Das, D. Anti-inflammatory responses of resveratrol. Inflamm. Allergy Drug Targets, 2007, 6(3), 168-173.
[http://dx.doi.org/10.2174/187152807781696464] [PMID: 17897053]
[34]
de la Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans., 2007, 35(5), 1156-1160.
[http://dx.doi.org/10.1042/BST0351156] [PMID: 17956300]
[35]
Gülçin, İ. Antioxidant properties of resveratrol: A structure–activity insight. Innov. Food Sci. Emerg. Technol., 2010, 11(1), 210-218.
[http://dx.doi.org/10.1016/j.ifset.2009.07.002]
[36]
Jøraholmen, M.W.; Škalko-Basnet, N.; Acharya, G.; Basnet, P. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. Eur. J. Pharm. Sci., 2015, 79, 112-121.
[http://dx.doi.org/10.1016/j.ejps.2015.09.007] [PMID: 26360840]
[37]
Lee, C.W.; Yen, F.L.; Huang, H.W.; Wu, T.H.; Ko, H.H.; Tzeng, W.S.; Lin, C.C. Resveratrol nanoparticle system improves dissolution properties and enhances the hepatoprotective effect of resveratrol through antioxidant and anti-inflammatory pathways. J. Agric. Food Chem., 2012, 60(18), 4662-4671.
[http://dx.doi.org/10.1021/jf2050137] [PMID: 22480310]
[38]
Salem, H.F.; Kharshoum, R.M.; Abou-Taleb, H.A.; Naguib, D.M. Nanosized transferosome-based intranasal in situ gel for brain targeting of resveratrol: Formulation, optimization, in vitro evaluation, and in vivo pharmacokinetic study. AAPS Pharm. Sci. Tech., 2019, 20(5), 181.
[http://dx.doi.org/10.1208/s12249-019-1353-8] [PMID: 31049748]
[39]
Anand, A.; Arya, M.; Singh, G.; Kaithwas, G.; Saraf, S.A. Design and development of resveratrol nlcs and their role in synaptic transmission of acetylcholine in c. elegans model. Curr. Drug Ther., 2017, 12(2), 134-148.
[http://dx.doi.org/10.2174/1574885512666170529114325]
[40]
Qian, Z.M.; Ke, Y.; Huperzine, A. Is it an effective disease-modifying drug for alzheimer’s disease? Front. Aging Neurosci., 2014, 6, 216.
[http://dx.doi.org/10.3389/fnagi.2014.00216] [PMID: 25191267]
[41]
Yang, C.R.; Zhao, X.L.; Hu, H.Y.; Li, K.X.; Sun, X.; Li, L.; Chen, D.W. Preparation, optimization and characteristic of huperzine a loaded nanostructured lipid carriers. Chem. Pharm. Bull., 2010, 58(5), 656-661.
[http://dx.doi.org/10.1248/cpb.58.656] [PMID: 20460792]
[42]
Wang, L.; Sato, H.; Zhao, S.; Tooyama, I. Deposition of lactoferrin in fibrillar-type senile plaques in the brains of transgenic mouse models of Alzheimer’s disease. Neurosci. Lett., 2010, 481(3), 164-167.
[http://dx.doi.org/10.1016/j.neulet.2010.06.079] [PMID: 20599473]
[43]
Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomed., 2018, 13, 705-718.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[44]
Jiang, Y.; Liu, C.; Zhai, W.; Zhuang, N.; Han, T.; Ding, Z. The optimization design of lactoferrin loaded hupa nanoemulsion for targeted drug transport via intranasal route. Int. J. Nanomed., 2019, 14, 9217-9234.
[http://dx.doi.org/10.2147/IJN.S214657] [PMID: 31819426]
[45]
Zhang, Y.; Yang, X.; Wang, S.; Song, S. Ginsenoside Rg3 prevents cognitive impairment by improving mitochondrial dysfunction in the rat model of Alzheimer’s disease. J. Agric. Food Chem., 2019, 67(36), 10048-10058.
[http://dx.doi.org/10.1021/acs.jafc.9b03793] [PMID: 31422666]
[46]
Attele, A.S.; Wu, J.A.; Yuan, C.S. Ginseng pharmacology. Biochem. Pharmacol., 1999, 58(11), 1685-1693.
[http://dx.doi.org/10.1016/S0006-2952(99)00212-9] [PMID: 10571242]
[47]
Aalinkeel, R.; Kutscher, H.L.; Singh, A.; Cwiklinski, K.; Khechen, N.; Schwartz, S.A.; Prasad, P.N.; Mahajan, S.D. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease? J. Drug Target., 2018, 26(2), 182-193.
[http://dx.doi.org/10.1080/1061186X.2017.1354002] [PMID: 28697660]
[48]
Oh, M.; Choi, Y.H.; Choi, S.; Chung, H.; Kim, K.; Kim, S.I.; Kim, D.K.; Kim, N.D. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells. Int. J. Oncol., 1999, 14(5), 869-875.
[http://dx.doi.org/10.3892/ijo.14.5.869] [PMID: 10200336]
[49]
Zare-Zardini, H.; Alemi, A.; Taheri-Kafrani, A.; Hosseini, S.A.; Soltaninejad, H.; Hamidieh, A.A.; Haghi, K.M.; Farrokhifar, M.; Farrokhifar, M. Assessment of a new ginsenoside Rh2 nanoniosomal formulation for enhanced antitumor efficacy on prostate cancer: An in vitro study. Drug Des. Devel. Ther., 2020, 14, 3315-3324.
[http://dx.doi.org/10.2147/DDDT.S261027] [PMID: 32884236]
[50]
Wang, J.H.; Zhou, Y.J.; Bai, X.; He, P. Jolkinolide B from euphorbia fischeriana steud induces apoptosis in human leukemic U937 cells through PI3K/Akt and XIAP Pathways. Mol. Cells, 2011, 32, 451-457.
[http://dx.doi.org/10.1007/s10059-011-0137-0]
[51]
Sun, C.; Cui, H.; Yang, H.; Du, X.; Yue, L.; Liu, J.; Lin, Y. Anti-metastatic effect of jolkinolide B and the mechanism of activity in breast cancer MDA-MB-231 cells. Oncol. Lett., 2015, 10(2), 1117-1122.
[http://dx.doi.org/10.3892/ol.2015.3310] [PMID: 26622636]
[52]
Zhang, J.; Wang, Y.; Zhou, Y.; He, Q.Y. Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca2+-mitochondria dependent pathway. Oncotarget, 2017, 8(53), 91223-91237.
[http://dx.doi.org/10.18632/oncotarget.20077] [PMID: 29207638]
[53]
Zhao, Q.; Li, J.; Wu, B.; Shang, Y.; Huang, X.; Dong, H.; Liu, H.; Gui, R.; Nie, X. A Nano-traditional chinese medicine against lymphoma that regulates the level of reactive oxygen species. Front Chem., 2020, 8, 565.
[http://dx.doi.org/10.3389/fchem.2020.00565] [PMID: 32766207]
[54]
Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Nematollahi, M.H. Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast Cancer cell line: A Nano-herbal treatment for Cancer. Daru, 2018, 26(1), 11-17.
[http://dx.doi.org/10.1007/s40199-018-0207-3] [PMID: 30159762]
[55]
Adeli-Sardou, M.; Yaghoobi, M.M.; Torkzadeh-Mahani, M.; Dodel, M. Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. Int. J. Biol. Macromol., 2019, 124, 478-491.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.237] [PMID: 30500508]
[56]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[57]
Frutos, M.J.; Rincón-Frutos, L.; Valero-Cases, E. Nonvitamin and Nonmineral Nutritional Supplements; Academic Press: Cambridge, 2019, pp. 111-117.
[58]
Ravi, G.S.; Charyulu, R.N.; Dubey, A.; Prabhu, P.; Hebbar, S.; Mathias, A.C. Nano-lipid complex of rutin: Development, characterisation and in vivo investigation of hepatoprotective, antioxidant activity and bioavailability study in rats. AAPS Pharm. Sci. Tech., 2018, 19(8), 3631-3649.
[http://dx.doi.org/10.1208/s12249-018-1195-9] [PMID: 30280357]
[59]
Pandey, P.; Rahman, M.; Bhatt, P.C.; Beg, S.; Paul, B.; Hafeez, A.; Al-Abbasi, F.A.; Nadeem, M.S.; Baothman, O.; Anwar, F.; Kumar, V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 2018, 13(8), 849-870.
[http://dx.doi.org/10.2217/nnm-2017-0306] [PMID: 29565220]
[60]
Rathore, C.; Upadhyay, N.; Kaundal, R.; Dwivedi, R.P.; Rahatekar, S.; John, A.; Dua, K.; Tambuwala, M.M.; Jain, S.; Chaudari, D.; Negi, P. Enhanced oral bioavailability and hepatoprotective activity of thymoquinone in the form of phospholipidic nano-constructs. Expert Opin. Drug Deliv., 2020, 17(2), 237-253.
[http://dx.doi.org/10.1080/17425247.2020.1716728] [PMID: 32003249]
[61]
Semwal, D.; Semwal, R.; Combrinck, S.; Viljoen, A. Myricetin: A dietary molecule with diverse biological activities. Nutrients, 2016, 8(2), 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[62]
Thant, Y.; Wang, Q.; Wei, C.; Liu, J.; Zhang, K.; Bao, R.; Zhu, Q.; Weng, W.; Yu, Q.; Zhu, Y.; Xu, X.; Yu, J. TPGS conjugated pro-liposomal nano-drug delivery system potentiate the antioxidant and hepatoprotective activity of Myricetin. J. Drug Deliv. Sci. Technol., 2021, 66, 102808.
[http://dx.doi.org/10.1016/j.jddst.2021.102808]
[63]
Dutta, R.; Khalil, R.; Green, R.; Mohapatra, S.S.; Mohapatra, S. Withania Somnifera (Ashwagandha) and Withaferin A: Potential in integrative oncology. Int. J. Mol. Sci., 2019, 20(21), 5310.
[http://dx.doi.org/10.3390/ijms20215310]
[64]
Dhar, N.; Razdan, S.; Rana, S.; Bhat, W.W.; Vishwakarma, R.; Lattoo, S.K. A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera(l.) dunal: Prospects and perspectives for pathway engineering. Front. Plant Sci., 2015, 6, 1031.
[http://dx.doi.org/10.3389/fpls.2015.01031] [PMID: 26640469]
[65]
Madhu, S.; Komala, M.; Pandian, P. Formulation development and characterization of withaferin-a loaded polymeric nanoparticles for alzheimer’s disease. Bionanoscience, 2021, 11(2), 559-566.
[http://dx.doi.org/10.1007/s12668-020-00819-w]
[66]
Zhao, J.; Ohba, S.; Komiyama, Y.; Shinkai, M.; Chung, U.; Nagamune, T. Icariin: A potential osteoinductive compound for bone tissue engineering. Tissue Eng. Part A, 2010, 16(1), 233-243.
[http://dx.doi.org/10.1089/ten.tea.2009.0165] [PMID: 19698057]
[67]
Tornabene, E.; Helms, H.C.C.; Pedersen, S.F.; Brodin, B. Effects of oxygen-glucose deprivation (OGD) on barrier properties and mRNA transcript levels of selected marker proteins in brain endothelial cells/astrocyte co-cultures. PLoS One, 2019, 14(8), e0221103.
[http://dx.doi.org/10.1371/journal.pone.0221103] [PMID: 31425564]
[68]
Zheng, Y.; Lu, L.; Yan, Z.; Jiang, S.; Yang, S.; Zhang, Y.; Xu, K.; He, C.; Tao, X.; Zhang, Q. mPEG-icariin nanoparticles for treating myocardial ischaemia. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 799-809.
[http://dx.doi.org/10.1080/21691401.2018.1554579] [PMID: 30836782]
[69]
Almasian, A.; Najafi, F.; Eftekhari, M.; Shams Ardekani, M.R.; Sharifzadeh, M.; Khanavi, M. Preparation of Polyurethane/Pluronic F127 nanofibers containing peppermint extract loaded gelatin nanoparticles for diabetic wounds healing: Characterization, in vitro, and in vivo studies. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/6646702] [PMID: 34093721]
[70]
Ahluwalia, V.; Elumalai, S.; Kumar, V.; Kumar, S.; Sangwan, R.S. Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microb. Pathog., 2018, 114, 402-408.
[http://dx.doi.org/10.1016/j.micpath.2017.11.052] [PMID: 29196171]
[71]
Shen, P.T.; Chiu, S.W.; Chang, J.Y.; Chung, T.W.; Liang, C.H.; Deng, M.J.; Chou, T.H. Formation and characterization of hydrogenated soybean lecithin/TPGS nano-dispersions as a potential carrier for active herbal agents. Colloids Surf. A Physicochem. Eng. Asp., 2021, 611, 125796.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125796]
[72]
Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The artemisia L. Genus: A review of bioactive essential oils. Molecules, 2012, 17, 2542-2566.
[http://dx.doi.org/10.3390/molecules17032542]
[73]
Ekiert, H.; Pajor, J.; Klin, P.; Rzepiela, A.; Ślesak, H.; Szopa, A. Significance of Artemisia Vulgaris L. (Common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies. Molecules, 2020, 25(19), 4415.
[http://dx.doi.org/10.3390/molecules25194415] [PMID: 32992959]
[74]
Szopa, A.; Pajor, J.; Klin, P.; Rzepiela, A.; Elansary, H.O.; Al-Mana, F.A.; Mattar, M.A.; Ekiert, H. Artemisia Absinthium L.-importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants, 2020, 9(9), 1063.
[http://dx.doi.org/10.3390/plants9091063] [PMID: 32825178]
[75]
Mughees, M.; Wajid, S.; Samim, M. Cytotoxic potential of Artemisia absinthium extract loaded polymeric nanoparticles against breast cancer cells: Insight into the protein targets. Int. J. Pharm., 2020, 586, 119583.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119583] [PMID: 32603837]
[76]
Yasmin, A.; Ramesh, K.; Rajeshkumar, S. Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Converg., 2014, 1(1), 12.
[http://dx.doi.org/10.1186/s40580-014-0012-8] [PMID: 28191395]
[77]
Shahriary, M.; Veisi, H.; Hekmati, M.; Hemmati, S. In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mater. Sci. Eng. C, 2018, 90, 57-66.
[http://dx.doi.org/10.1016/j.msec.2018.04.044] [PMID: 29853127]
[78]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol., 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[79]
Ojha, S. Green synthesis of metallic nanoparticles: Advancements and future perspectives. Prog. Nucl. Energy 6 Biol. Sci., 2022, 2, 262-268.
[http://dx.doi.org/10.55006/biolsciences.2022.2305]
[80]
Bai, R.G.; Sabouni, R.; Husseini, G. Green nanotechnology-a road map to safer nanomaterials. In: Applications of Nanomaterials: Advances and Key Technologies; Woodhead Publishing, 2018; pp. 133-159.
[http://dx.doi.org/10.1016/B978-0-08-101971-9.00006-5]

© 2024 Bentham Science Publishers | Privacy Policy