Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

New Insights into the Long Non-coding RNAs Dependent Modulation of Heart Failure and Cardiac Hypertrophy: From Molecular Function to Diagnosis and Treatment

Author(s): Malihe Rezaee, Niloufar Masihipour, Yaser Eshaghi Milasi, Rohollah Mousavi Dehmordi, Željko Reiner, Sepideh Asadi, Fatemeh Mohammadi, Parisa Khalilzadeh, Mehdi Rostami, Zatollah Asemi* and Alireza Mafi*

Volume 31, Issue 11, 2024

Published on: 15 May, 2023

Page: [1404 - 1426] Pages: 23

DOI: 10.2174/0929867330666230306143351

Price: $65

Abstract

Heart failure (HF) is a public health issue that imposes high costs on healthcare systems. Despite the significant advances in therapies and prevention of HF, it remains a leading cause of morbidity and mortality worldwide. The current clinical diagnostic or prognostic biomarkers, as well as therapeutic strategies, have some limitations. Genetic and epigenetic factors have been identified to be central to the pathogenesis of HF. Therefore, they might provide promising novel diagnostic and therapeutic approaches for HF. Long non-coding RNAs (lncRNAs) belong to a group of RNAs that are produced by RNA polymerase II. These molecules play an important role in the functioning of different cell biological processes, such as transcription and regulation of gene expression. LncRNAs can affect different signaling pathways by targeting biological molecules or a variety of different cellular mechanisms. The alteration in their expression has been reported in different types of cardiovascular diseases, including HF, supporting the theory that they are important in the development and progression of heart diseases. Therefore, these molecules can be introduced as diagnostic, prognostic, and therapeutic biomarkers in HF. In this review, we summarize different lncRNAs as diagnostic, prognostic, and therapeutic biomarkers in HF. Moreover, we highlight various molecular mechanisms dysregulated by different lncRNAs in HF.

« Previous
[1]
Hoffman, T.M. Chronic heart failure. Pediatr. Crit. Care Med., 2016, 17(8), S119-S123.
[http://dx.doi.org/10.1097/PCC.0000000000000755] [PMID: 27490589]
[2]
McMurray, J.J.V. Clinical practice. Systolic heart failure. N. Engl. J. Med., 2010, 362(3), 228-238.
[http://dx.doi.org/10.1056/NEJMcp0909392] [PMID: 20089973]
[3]
Khatibzadeh, S.; Farzadfar, F.; Oliver, J.; Ezzati, M.; Moran, A. Worldwide risk factors for heart failure: A systematic review and pooled analysis. Int. J. Cardiol., 2013, 168(2), 1186-1194.
[http://dx.doi.org/10.1016/j.ijcard.2012.11.065] [PMID: 23201083]
[4]
Yang, J.; Xu, W.W.; Hu, S.J. Heart failure: Advanced development in genetics and epigenetics. Biomed Res Int, 2015, 2015, 352734.
[http://dx.doi.org/10.1155/2015/352734] [PMID: 25949994]
[5]
Segura, A.M.; Frazier, O.H.; Buja, L.M. Fibrosis and heart failure. Heart Fail. Rev., 2014, 19(2), 173-185.
[http://dx.doi.org/10.1007/s10741-012-9365-4] [PMID: 23124941]
[6]
Oremus, M.; McKelvie, R.; Don-Wauchope, A.; Santaguida, P.L.; Ali, U.; Balion, C.; Hill, S.; Booth, R.; Brown, J.A.; Bustamam, A.; Sohel, N.; Raina, P. A systematic review of BNP and NT-proBNP in the management of heart failure: Overview and methods. Heart Fail. Rev., 2014, 19(4), 413-419.
[http://dx.doi.org/10.1007/s10741-014-9440-0] [PMID: 24953975]
[7]
Sato, Y.; Fujiwara, H.; Takatsu, Y. Cardiac troponin and heart failure in the era of high-sensitivity assays. J. Cardiol., 2012, 60(3), 160-167.
[http://dx.doi.org/10.1016/j.jjcc.2012.06.007] [PMID: 22867801]
[8]
Henriksen, J.H.; Gøtze, J.P.; Fuglsang, S.; Christensen, E.; Bendtsen, F.; Møller, S. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: Relation to cardiovascular dysfunction and severity of disease. Gut, 2003, 52(10), 1511-1517.
[http://dx.doi.org/10.1136/gut.52.10.1511] [PMID: 12970147]
[9]
Burke, M.A.; Cotts, W.G. Interpretation of B-type natriuretic peptide in cardiac disease and other comorbid conditions. Heart Fail. Rev., 2007, 12(1), 23-36.
[http://dx.doi.org/10.1007/s10741-007-9002-9] [PMID: 17345160]
[10]
Fonseca, C. Diagnosis of heart failure in primary care. Heart Fail. Rev., 2006, 11(2), 95-107.
[http://dx.doi.org/10.1007/s10741-006-9481-0] [PMID: 16937029]
[11]
McNally, E.M.; Barefield, D.Y.; Puckelwartz, M.J. The genetic landscape of cardiomyopathy and its role in heart failure. Cell Metab., 2015, 21(2), 174-182.
[http://dx.doi.org/10.1016/j.cmet.2015.01.013] [PMID: 25651172]
[12]
Han, P.; Li, W.; Lin, C.H.; Yang, J.; Shang, C.; Nurnberg, S.T.; Jin, K.K.; Xu, W.; Lin, C.Y.; Lin, C.J.; Xiong, Y.; Chien, H.C.; Zhou, B.; Ashley, E.; Bernstein, D.; Chen, P.S.; Chen, H.S.V.; Quertermous, T.; Chang, C.P. A long noncoding RNA protects the heart from pathological hypertrophy. Nature, 2014, 514(7520), 102-106.
[http://dx.doi.org/10.1038/nature13596] [PMID: 25119045]
[13]
Dirkx, E.; da Costa Martins, P.A.; De Windt, L.J. Regulation of fetal gene expression in heart failure. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(12), 2414-2424.
[http://dx.doi.org/10.1016/j.bbadis.2013.07.023]
[14]
Greco, S.; Zaccagnini, G.; Perfetti, A.; Fuschi, P.; Valaperta, R.; Voellenkle, C.; Castelvecchio, S.; Gaetano, C.; Finato, N.; Beltrami, A.P.; Menicanti, L.; Martelli, F. Long noncoding RNA dysregulation in ischemic heart failure. J. Transl. Med., 2016, 14(1), 183.
[http://dx.doi.org/10.1186/s12967-016-0926-5] [PMID: 27317124]
[15]
Dick, S.A.; Epelman, S. Chronic heart failure and inflammation: What do we really know? Circ. Res., 2016, 119(1), 159-176.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308030] [PMID: 27340274]
[16]
Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(6), H2181-H2190.
[http://dx.doi.org/10.1152/ajpheart.00554.2011] [PMID: 21949114]
[17]
Costa, S.; Reina-Couto, M.; Albino-Teixeira, A.; Sousa, T. Statins and oxidative stress in chronic heart failure. Rev. Port. Cardiol., 2016, 35(1), 41-57.
[http://dx.doi.org/10.1016/j.repc.2015.09.006] [PMID: 26763895]
[18]
Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol., 2021, 220(2), e202009045.
[http://dx.doi.org/10.1083/jcb.202009045] [PMID: 33464299]
[19]
Engreitz, J.M.; Pandya-Jones, A.; McDonel, P.; Shishkin, A.; Sirokman, K.; Surka, C.; Kadri, S.; Xing, J.; Goren, A.; Lander, E.S.; Plath, K.; Guttman, M. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science, 2013, 341(6147), 1237973.
[http://dx.doi.org/10.1126/science.1237973] [PMID: 23828888]
[20]
Khorkova, O.; Hsiao, J.; Wahlestedt, C. Basic biology and therapeutic implications of lncRNA. Adv. Drug Deliv. Rev., 2015, 87, 15-24.
[http://dx.doi.org/10.1016/j.addr.2015.05.012] [PMID: 26024979]
[21]
Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17(1), 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[22]
Archer, K.; Broskova, Z.; Bayoumi, A.; Teoh, J.; Davila, A.; Tang, Y.; Su, H.; Kim, I. Long non-coding RNAs as master regulators in cardiovascular diseases. Int. J. Mol. Sci., 2015, 16(10), 23651-23667.
[http://dx.doi.org/10.3390/ijms161023651] [PMID: 26445043]
[23]
Greco, S.; Salgado Somoza, A.; Devaux, Y.; Martelli, F. Long noncoding RNAs and cardiac disease. Antioxid. Redox Signal., 2018, 29(9), 880-901.
[http://dx.doi.org/10.1089/ars.2017.7126] [PMID: 28699361]
[24]
Uchida, S.; Dimmeler, S. Long noncoding RNAs in cardiovascular diseases. Circ. Res., 2015, 116(4), 737-750.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.302521] [PMID: 25677520]
[25]
Yan, Y.; Song, D.; Song, X.; Song, C. The role of lncRNA MALAT1 in cardiovascular disease. IUBMB Life, 2020, 72(3), 334-342.
[http://dx.doi.org/10.1002/iub.2210] [PMID: 31856403]
[26]
Liu, L.; An, X.; Li, Z.; Song, Y.; Li, L.; Zuo, S.; Liu, N.; Yang, G.; Wang, H.; Cheng, X.; Zhang, Y.; Yang, X.; Wang, J. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc. Res., 2016, 111(1), 56-65.
[http://dx.doi.org/10.1093/cvr/cvw078] [PMID: 27084844]
[27]
Wang, K.; Liu, C.Y.; Zhou, L.Y.; Wang, J.X.; Wang, M.; Zhao, B.; Zhao, W.K.; Xu, S.J.; Fan, L.H.; Zhang, X.J.; Feng, C.; Wang, C.Q.; Zhao, Y.F.; Li, P.F. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat. Commun., 2015, 6(1), 6779.
[http://dx.doi.org/10.1038/ncomms7779] [PMID: 25858075]
[28]
Ismail, N.; Abdullah, N.; Abdul Murad, N.A.; Jamal, R.; Sulaiman, S.A. Long non-coding RNAs (lncRNAs) in cardiovascular disease complication of type 2 diabetes. Diagnostics, 2021, 11(1), 145.
[http://dx.doi.org/10.3390/diagnostics11010145] [PMID: 33478141]
[29]
Bunch, H. Gene regulation of mammalian long non-coding RNA. Mol. Genet. Genomics, 2018, 293(1), 1-15.
[http://dx.doi.org/10.1007/s00438-017-1370-9] [PMID: 28894972]
[30]
Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[31]
Moran, V.A.; Perera, R.J.; Khalil, A.M. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res., 2012, 40(14), 6391-6400.
[http://dx.doi.org/10.1093/nar/gks296] [PMID: 22492512]
[32]
Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; Herzog, M.; Schreyer, L.; Papavasileiou, P.; Ivanov, A.; Öhman, M.; Refojo, D.; Kadener, S.; Rajewsky, N. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 2015, 58(5), 870-885.
[http://dx.doi.org/10.1016/j.molcel.2015.03.027] [PMID: 25921068]
[33]
Yin, Q.F.; Yang, L.; Zhang, Y.; Xiang, J.F.; Wu, Y.W.; Carmichael, G.G.; Chen, L.L. Long noncoding RNAs with snoRNA ends. Mol. Cell, 2012, 48(2), 219-230.
[http://dx.doi.org/10.1016/j.molcel.2012.07.033] [PMID: 22959273]
[34]
Zhang, H.; Liu, B.; Shi, X.; Sun, X. Long noncoding RNAs: Potential therapeutic targets in cardiocerebrovascular diseases. Pharmacol. Ther., 2021, 221, 107744.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107744] [PMID: 33181193]
[35]
Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet., 2009, 10(1), 57-63.
[http://dx.doi.org/10.1038/nrg2484] [PMID: 19015660]
[36]
Jarroux, J.; Morillon, A.; Pinskaya, M. History, discovery, and classification of lncRNAs. Adv. Exp. Med. Biol., 2017, 1008, 1-46.
[http://dx.doi.org/10.1007/978-981-10-5203-3_1] [PMID: 28815535]
[37]
Mattick, J.S.; Rinn, J.L. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol., 2015, 22(1), 5-7.
[http://dx.doi.org/10.1038/nsmb.2942] [PMID: 25565026]
[38]
Wong, L.S.; Wong, C.M. Decoding the roles of long noncoding RNAs in hepatocellular carcinoma. Int. J. Mol. Sci., 2021, 22(6), 3137.
[http://dx.doi.org/10.3390/ijms22063137] [PMID: 33808647]
[39]
Cabili, M.N.; Dunagin, M.C.; McClanahan, P.D.; Biaesch, A.; Padovan-Merhar, O.; Regev, A.; Rinn, J.L.; Raj, A. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol., 2015, 16(1), 20.
[http://dx.doi.org/10.1186/s13059-015-0586-4] [PMID: 25630241]
[40]
He, X.; Ou, C.; Xiao, Y.; Han, Q.; Li, H.; Zhou, S. LncRNAs: Key players and novel insights into diabetes mellitus. Oncotarget, 2017, 8(41), 71325-71341.
[http://dx.doi.org/10.18632/oncotarget.19921] [PMID: 29050364]
[41]
Bermúdez, M.; Aguilar-Medina, M.; Lizárraga-Verdugo, E.; Avendaño-Félix, M.; Silva-Benítez, E.; López-Camarillo, C.; Ramos-Payán, R. LncRNAs as regulators of autophagy and drug resistance in colorectal cancer. Front. Oncol., 2019, 9, 1008.
[http://dx.doi.org/10.3389/fonc.2019.01008] [PMID: 31632922]
[42]
Xu, Q.; Song, Z.; Zhu, C.; Tao, C.; Kang, L.; Liu, W.; He, F.; Yan, J.; Sang, T. Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change. BMC Plant Biol., 2017, 17(1), 42.
[http://dx.doi.org/10.1186/s12870-017-0984-8] [PMID: 28193161]
[43]
Liu, H.; Wan, J.; Chu, J. Long non-coding RNAs and endometrial cancer. Biomed. Pharmacother., 2019, 119, 109396.
[http://dx.doi.org/10.1016/j.biopha.2019.109396] [PMID: 31505425]
[44]
Jiang, M-C.; Ni, J-J.; Cui, W-Y.; Wang, B-Y.; Zhuo, W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res., 2019, 9(7), 1354-1366.
[PMID: 31392074]
[45]
Begolli, R.; Sideris, N.; Giakountis, A. LncRNAs as chromatin regulators in cancer: From molecular function to clinical potential. Cancers, 2019, 11(10), 1524.
[http://dx.doi.org/10.3390/cancers11101524] [PMID: 31658672]
[46]
Martens-Uzunova, E.S.; Böttcher, R.; Croce, C.M.; Jenster, G.; Visakorpi, T.; Calin, G.A. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol., 2014, 65(6), 1140-1151.
[http://dx.doi.org/10.1016/j.eururo.2013.12.003] [PMID: 24373479]
[47]
Liu, Y.; Ding, W.; Yu, W.; Zhang, Y.; Ao, X.; Wang, J. Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer. Mol. Ther. Oncolytics, 2021, 23, 458-476.
[http://dx.doi.org/10.1016/j.omto.2021.11.005] [PMID: 34901389]
[48]
Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci., 2016, 73(13), 2491-2509.
[http://dx.doi.org/10.1007/s00018-016-2174-5] [PMID: 27007508]
[49]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[50]
Flynn, R.A.; Chang, H.Y. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell, 2014, 14(6), 752-761.
[http://dx.doi.org/10.1016/j.stem.2014.05.014] [PMID: 24905165]
[51]
Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev., 2011, 25(18), 1915-1927.
[http://dx.doi.org/10.1101/gad.17446611] [PMID: 21890647]
[52]
Pandey, R.R.; Mondal, T.; Mohammad, F.; Enroth, S.; Redrup, L.; Komorowski, J.; Nagano, T.; Mancini-DiNardo, D.; Kanduri, C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell, 2008, 32(2), 232-246.
[http://dx.doi.org/10.1016/j.molcel.2008.08.022] [PMID: 18951091]
[53]
Gong, C.; Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature, 2011, 470(7333), 284-288.
[http://dx.doi.org/10.1038/nature09701] [PMID: 21307942]
[54]
Ørom, U.A.; Derrien, T.; Beringer, M.; Gumireddy, K.; Gardini, A.; Bussotti, G.; Lai, F.; Zytnicki, M.; Notredame, C.; Huang, Q.; Guigo, R.; Shiekhattar, R. Long noncoding RNAs with enhancer-like function in human cells. Cell, 2010, 143(1), 46-58.
[http://dx.doi.org/10.1016/j.cell.2010.09.001] [PMID: 20887892]
[55]
Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; Cabili, M.N.; Jaenisch, R.; Mikkelsen, T.S.; Jacks, T.; Hacohen, N.; Bernstein, B.E.; Kellis, M.; Regev, A.; Rinn, J.L.; Lander, E.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235), 223-227.
[http://dx.doi.org/10.1038/nature07672] [PMID: 19182780]
[56]
Pontier, D.B.; Gribnau, J. Xist regulation and function eXplored. Hum. Genet., 2011, 130(2), 223-236.
[http://dx.doi.org/10.1007/s00439-011-1008-7] [PMID: 21626138]
[57]
Tsagakis, I.; Douka, K.; Birds, I.; Aspden, J.L. Long non-coding RNAs in development and disease: Conservation to mechanisms. J. Pathol., 2020, 250(5), 480-495.
[http://dx.doi.org/10.1002/path.5405] [PMID: 32100288]
[58]
Chen, Y.; Li, Z.; Chen, X.; Zhang, S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B, 2021, 11(2), 340-354.
[http://dx.doi.org/10.1016/j.apsb.2020.10.001] [PMID: 33643816]
[59]
DiStefano, J.K.; Gerhard, G.S. Long noncoding RNAs and human liver disease. Annu. Rev. Pathol., 2022, 17(1), 1-21.
[http://dx.doi.org/10.1146/annurev-pathol-042320-115255] [PMID: 34416820]
[60]
Azzalin, C.M.; Reichenbach, P.; Khoriauli, L.; Giulotto, E.; Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007, 318(5851), 798-801.
[http://dx.doi.org/10.1126/science.1147182] [PMID: 17916692]
[61]
Guenther, M.G.; Levine, S.S.; Boyer, L.A.; Jaenisch, R.; Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 2007, 130(1), 77-88.
[http://dx.doi.org/10.1016/j.cell.2007.05.042] [PMID: 17632057]
[62]
Redon, S.; Reichenbach, P.; Lingner, J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res., 2010, 38(17), 5797-5806.
[http://dx.doi.org/10.1093/nar/gkq296] [PMID: 20460456]
[63]
Kino, T.; Hurt, D.E.; Ichijo, T.; Nader, N.; Chrousos, G.P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal., 2010, 3(107), ra8-ra8.
[http://dx.doi.org/10.1126/scisignal.2000568] [PMID: 20124551]
[64]
Sun, Q.; Hao, Q.; Prasanth, K.V. Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet., 2018, 34(2), 142-157.
[http://dx.doi.org/10.1016/j.tig.2017.11.005] [PMID: 29249332]
[65]
Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; Blencowe, B.J.; Prasanth, S.G.; Prasanth, K.V. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 2010, 39(6), 925-938.
[http://dx.doi.org/10.1016/j.molcel.2010.08.011] [PMID: 20797886]
[66]
Hung, T.; Chang, H.Y. Long noncoding RNA in genome regulation. RNA Biol., 2010, 7(5), 582-585.
[http://dx.doi.org/10.4161/rna.7.5.13216] [PMID: 20930520]
[67]
Wang, K.C.; Yang, Y.W.; Liu, B.; Sanyal, A.; Corces-Zimmerman, R.; Chen, Y.; Lajoie, B.R.; Protacio, A.; Flynn, R.A.; Gupta, R.A.; Wysocka, J.; Lei, M.; Dekker, J.; Helms, J.A.; Chang, H.Y. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011, 472(7341), 120-124.
[http://dx.doi.org/10.1038/nature09819] [PMID: 21423168]
[68]
Wang, Y.; Dang, Y.; Liu, J.; Ouyang, X. The function of homeobox genes and lncRNAs in cancer. Oncol. Lett., 2016, 12(3), 1635-1641.
[http://dx.doi.org/10.3892/ol.2016.4901] [PMID: 27588114]
[69]
Sun, Y.; Zhou, Y.; Bai, Y.; Wang, Q.; Bao, J.; Luo, Y.; Guo, Y.; Guo, L. A long non-coding RNA HOTTIP expression is associated with disease progression and predicts outcome in small cell lung cancer patients. Mol. Cancer, 2017, 16(1), 162.
[http://dx.doi.org/10.1186/s12943-017-0729-1] [PMID: 29041935]
[70]
Spitale, R.C.; Tsai, M.C.; Chang, H.Y. RNA templating the epigenome. Epigenetics, 2011, 6(5), 539-543.
[http://dx.doi.org/10.4161/epi.6.5.15221] [PMID: 21393997]
[71]
Collins, K. Physiological assembly and activity of human telomerase complexes. Mech. Ageing Dev., 2008, 129(1-2), 91-98.
[http://dx.doi.org/10.1016/j.mad.2007.10.008] [PMID: 18054989]
[72]
Zheng, M.; Zhao, L.; Yang, X. Expression profiles of long noncoding RNA and mRNA in epicardial adipose tissue in patients with heart failure. Biomed Res Int, 2019, 2019, 3945475.
[http://dx.doi.org/10.1155/2019/3945475]
[73]
Gao, W.; Wang, Z.M.; Zhu, M.; Lian, X.Q.; Zhao, H.; Zhao, D.; Yang, Z.J.; Lu, X.; Wang, L.S. Altered long noncoding RNA expression profiles in the myocardium of rats with ischemic heart failure. J. Cardiovasc. Med., 2015, 16(7), 473-479.
[http://dx.doi.org/10.2459/JCM.0b013e32836499cd] [PMID: 26002832]
[74]
Cao, Y.; Yang, Y.; Wang, L.; Li, L.; Zhang, J.; Gao, X.; Dai, S.; Zhang, Y.; Guo, Q.; Peng, Y.G.; Wang, E. Analyses of long non-coding RNA and mRNA profiles in right ventricle myocardium of acute right heart failure in pulmonary arterial hypertension rats. Biomed. Pharmacother., 2018, 106, 1108-1115.
[http://dx.doi.org/10.1016/j.biopha.2018.07.057] [PMID: 30119177]
[75]
Di Salvo, T.G.; Guo, Y.; Su, Y.R.; Clark, T.; Brittain, E.; Absi, T.; Maltais, S.; Hemnes, A. Right ventricular long noncoding RNA expression in human heart failure. Pulm. Circ., 2015, 5(1), 135-161.
[http://dx.doi.org/10.1086/679721] [PMID: 25992278]
[76]
Tavener, S.A.; Long, E.M.; Robbins, S.M.; McRae, K.M.; Van Remmen, H.; Kubes, P. Immune cell toll-like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ. Res., 2004, 95(7), 700-707.
[http://dx.doi.org/10.1161/01.RES.0000144175.70140.8c] [PMID: 15358664]
[77]
Wang, K.; Long, B.; Zhou, L.Y.; Liu, F.; Zhou, Q.Y.; Liu, C.Y.; Fan, Y.Y.; Li, P.F. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat. Commun., 2014, 5(1), 3596.
[http://dx.doi.org/10.1038/ncomms4596] [PMID: 24710105]
[78]
Yu, C.J.; Liang, C.; Li, Y.X.; Hu, Q.Q.; Zheng, W.W.; Niu, N.; Yang, X.; Wang, Z.R.; Yu, X.D.; Zhang, B.L.; Song, B.L.; Zhang, Z.R. ZNF307 (Zinc Finger Protein 307) acts as a negative regulator of pressure overload–induced cardiac hypertrophy. Hypertension, 2017, 69(4), 615-624.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08500] [PMID: 28223477]
[79]
Ghafouri-Fard, S.; Taheri, M. Nuclear enriched abundant transcript 1 (NEAT1): A long non-coding RNA with diverse functions in tumorigenesis. Biomed. Pharmacother., 2019, 111, 51-59.
[http://dx.doi.org/10.1016/j.biopha.2018.12.070] [PMID: 30576934]
[80]
Chen, J.; Zhang, J.; Gao, Y.; Li, Y.; Feng, C.; Song, C.; Ning, Z.; Zhou, X.; Zhao, J.; Feng, M.; Zhang, Y.; Wei, L.; Pan, Q.; Jiang, Y.; Qian, F.; Han, J.; Yang, Y.; Wang, Q.; Li, C. LncSEA: A platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res., 2021, 49(D1), D969-D980.
[http://dx.doi.org/10.1093/nar/gkaa806] [PMID: 33045741]
[81]
Huang, W.; Huang, F.; Zhang, R.; Luo, H. LncRNA Neat1 expedites the progression of liver fibrosis in mice through targeting miR-148a-3p and miR-22-3p to upregulate Cyth3. Cell Cycle, 2021, 20(5-6), 490-507.
[http://dx.doi.org/10.1080/15384101.2021.1875665] [PMID: 33550894]
[82]
Li, C.; Liu, Y.F.; Huang, C.; Chen, Y.X.; Xu, C.Y.; Chen, Y. Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I. Am. J. Physiol. Renal Physiol., 2020, 319(1), F93-F105.
[http://dx.doi.org/10.1152/ajprenal.00552.2019] [PMID: 32475133]
[83]
Ge, Z.; Yin, C.; Li, Y.; Tian, D.; Xiang, Y.; Li, Q.; Tang, Y.; Zhang, Y. Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region. J. Transl. Med., 2022, 20(1), 7.
[http://dx.doi.org/10.1186/s12967-021-03211-8] [PMID: 34980170]
[84]
Wei, Q.; Zhou, H.Y.; Shi, X.D.; Cao, H.Y.; Qin, L. Long noncoding RNA NEAT1 promotes myocardiocyte apoptosis and suppresses proliferation through regulation of miR-129-5p. J. Cardiovasc. Pharmacol., 2019, 74(6), 535-541.
[http://dx.doi.org/10.1097/FJC.0000000000000741] [PMID: 31815867]
[85]
Xiao, N.; Zhang, J.; Chen, C.; Wan, Y.; Wang, N.; Yang, J. miR-129-5p improves cardiac function in rats with chronic heart failure through targeting HMGB1. Mamm. Genome, 2019, 30(9-10), 276-288.
[http://dx.doi.org/10.1007/s00335-019-09817-0] [PMID: 31646380]
[86]
Zhang, H.; Zhang, N.; Jiang, W.; Lun, X. Clinical significance of the long non-coding RNA NEAT1/miR-129-5p axis in the diagnosis and prognosis for patients with chronic heart failure. Exp. Ther. Med., 2021, 21(5), 512.
[http://dx.doi.org/10.3892/etm.2021.9943] [PMID: 33791021]
[87]
Sun, Y.; Ma, L. New insights into long non-coding RNA MALAT1 in cancer and metastasis. Cancers, 2019, 11(2), 216.
[http://dx.doi.org/10.3390/cancers11020216] [PMID: 30781877]
[88]
Liu, L.; Tan, L.; Yao, J.; Yang, L. Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 2020, 21(4), 1761-1770.
[http://dx.doi.org/10.3892/mmr.2020.10987] [PMID: 32319624]
[89]
Zhao, P.; Wang, Y.; Zhang, L.; Zhang, J.; Liu, N.; Wang, H. Mechanism of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 in lipid metabolism and inflammation in heart failure. Int. J. Mol. Med., 2021, 47(3), 1-1.
[PMID: 33448307]
[90]
Hu, L.; Xu, Y.N.; Wang, Q.; Liu, M.J.; Zhang, P.; Zhao, L.T.; Liu, F.; Zhao, D.Y.; Pei, H.N.; Yao, X.B.; Hu, H.G. Aerobic exercise improves cardiac function in rats with chronic heart failure through inhibition of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). Ann. Transl. Med., 2021, 9(4), 340.
[http://dx.doi.org/10.21037/atm-20-8250] [PMID: 33708967]
[91]
Kumarswamy, R.; Bauters, C.; Volkmann, I.; Maury, F.; Fetisch, J.; Holzmann, A.; Lemesle, G.; de Groote, P.; Pinet, F.; Thum, T. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res., 2014, 114(10), 1569-1575.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303915] [PMID: 24663402]
[92]
Santer, L.; López, B.; Ravassa, S.; Baer, C.; Riedel, I.; Chatterjee, S.; Moreno, M.U.; González, A.; Querejeta, R.; Pinet, F.; Thum, T.; Díez, J. Circulating long noncoding RNA LIPCAR predicts heart failure outcomes in patients without chronic kidney disease. Hypertension, 2019, 73(4), 820-828.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.12261] [PMID: 30686085]
[93]
Wang, H.; Song, T.; Zhao, Y.; Zhao, J.; Wang, X.; Fu, X. Long non-coding RNA LICPAR regulates atrial fibrosis via TGF-β/Smad pathway in atrial fibrillation. Tissue Cell, 2020, 67, 101440.
[http://dx.doi.org/10.1016/j.tice.2020.101440] [PMID: 32971457]
[94]
Shahryari, A.; Jazi, M.S.; Samaei, N.M.; Mowla, S.J. Long non-coding RNA SOX2OT: Expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis. Front. Genet., 2015, 6, 196.
[http://dx.doi.org/10.3389/fgene.2015.00196] [PMID: 26136768]
[95]
Tu, J.; Ma, L.; Zhang, M.; Zhang, J. Long non-coding RNA SOX2 overlapping transcript aggravates H9c2 cell injury via the miR-215-5p/ZEB2 axis and promotes ischemic heart failure in a rat model. Tohoku J. Exp. Med., 2021, 254(3), 221-231.
[http://dx.doi.org/10.1620/tjem.254.221] [PMID: 34321385]
[96]
Jahan, F.; Landry, N.; Rattan, S.; Dixon, I.; Wigle, J. The functional role of zinc finger E box-binding homeobox 2 (Zeb2) in promoting cardiac fibroblast activation. Int. J. Mol. Sci., 2018, 19(10), 3207.
[http://dx.doi.org/10.3390/ijms19103207] [PMID: 30336567]
[97]
Sun, Y.; Jin, S.D.; Zhu, Q.; Han, L.; Feng, J.; Lu, X.Y.; Wang, W.; Wang, F.; Guo, R.H. Long non-coding RNA LUCAT1 is associated with poor prognosis in human non-small cell lung cancer and regulates cell proliferation via epigenetically repressing p21 and p57 expression. Oncotarget, 2017, 8(17), 28297-28311.
[http://dx.doi.org/10.18632/oncotarget.16044] [PMID: 28423699]
[98]
Zheng, A.; Song, X.; Zhang, L.; Zhao, L.; Mao, X.; Wei, M.; Jin, F. Long non-coding RNA LUCAT1/miR- 5582-3p/TCF7L2 axis regulates breast cancer stemness via Wnt/β-catenin pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 305.
[http://dx.doi.org/10.1186/s13046-019-1315-8] [PMID: 31300015]
[99]
Lou, Y.; Yu, Y.; Xu, X.; Zhou, S.; Shen, H.; Fan, T.; Wu, D.; Yin, J.; Li, G. Long non-coding RNA LUCAT1 promotes tumourigenesis by inhibiting ANXA2 phosphorylation in hepatocellular carcinoma. J. Cell. Mol. Med., 2019, 23(3), 1873-1884.
[http://dx.doi.org/10.1111/jcmm.14088] [PMID: 30588744]
[100]
Zheng, Z.; Zhao, F.; Zhu, D.; Han, J.; Chen, H.; Cai, Y.; Chen, Z.; Xie, W. Long non-coding RNA LUCAT1 promotes proliferation and invasion in clear cell renal cell carcinoma through AKT/GSK-3β signaling pathway. Cell. Physiol. Biochem., 2018, 48(3), 891-904.
[http://dx.doi.org/10.1159/000491957] [PMID: 30032137]
[101]
Li, T.; Qian, D.; Guoyan, J.; Lei, Z. Downregulated long noncoding RNA LUCAT1 inhibited proliferation and promoted apoptosis of cardiomyocyte via miR-612/HOXA13 pathway in chronic heart failure. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(1), 385-395.
[PMID: 31957853]
[102]
Zhou, J.; Zhang, H.; Zou, D.; Zhou, Z.; Wang, W.; Luo, Y.; Liu, T. Clinicopathologic and prognostic roles of circular RNA plasmacytoma variant translocation 1 in various cancers. Expert Rev. Mol. Diagn., 2021, 21(10), 1095-1104.
[http://dx.doi.org/10.1080/14737159.2021.1964959] [PMID: 34346262]
[103]
Yu, Y-H.; Hu, Z-Y.; Li, M-H.; Li, B.; Wang, Z-M.; Chen, S-L. Cardiac hypertrophy is positively regulated by long non-coding RNA PVT1. Int. J. Clin. Exp. Pathol., 2015, 8(3), 2582-2589.
[PMID: 26045764]
[104]
Cao, F.; Li, Z.; Ding, W.; Yan, L.; Zhao, Q. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation. Mol. Med., 2019, 25(1), 7.
[http://dx.doi.org/10.1186/s10020-019-0074-5] [PMID: 30616543]
[105]
Zheng, J.; Hu, L.; Cheng, J.; Xu, J.; Zhong, Z.; Yang, Y.; Yuan, Z. lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR-26b to activate CTGF/ANGPT2. Int. J. Mol. Med., 2018, 42(1), 489-496.
[http://dx.doi.org/10.3892/ijmm.2018.3595] [PMID: 29620147]
[106]
Sun, B.; Meng, M.; Wei, J.; Wang, S. Long noncoding RNA PVT1 contributes to vascular endothelial cell proliferation via inhibition of miR-190a-5p in diagnostic biomarker evaluation of chronic heart failure. Exp. Ther. Med., 2020, 19(5), 3348-3354.
[http://dx.doi.org/10.3892/etm.2020.8599] [PMID: 32266032]
[107]
Zhang, Z.; Fu, C.; Xu, Q.; Wei, X. Long non-coding RNA CASC7 inhibits the proliferation and migration of colon cancer cells via inhibiting microRNA-21. Biomed. Pharmacother., 2017, 95, 1644-1653.
[http://dx.doi.org/10.1016/j.biopha.2017.09.052] [PMID: 28954383]
[108]
Wang, G.; Duan, P.; Liu, F.; Wei, Z. Long non-coding RNA CASC7 suppresses malignant behaviors of breast cancer by regulating miR-21-5p/FASLG axis. Bioengineered, 2021, 12(2), 11555-11566.
[http://dx.doi.org/10.1080/21655979.2021.2010372] [PMID: 34889164]
[109]
Xu, Y.; Liu, Y.; Cai, R.; He, S.; Dai, R.; Yang, X.; Kong, B.; Qin, Z.; Su, Q. Long non-coding RNA CASC7 is associated with the pathogenesis of heart failure via modulating the expression of miR-30c. J. Cell. Mol. Med., 2020, 24(19), 11500-11511.
[http://dx.doi.org/10.1111/jcmm.15764] [PMID: 32860492]
[110]
Boeckel, J.N.; Perret, M.F.; Glaser, S.F.; Seeger, T.; Heumüller, A.W.; Chen, W.; John, D.; Kokot, K.E.; Katus, H.A.; Haas, J.; Lackner, M.K.; Kayvanpour, E.; Grabe, N.; Dieterich, C.; von Haehling, S.; Ebner, N.; Hünecke, S.; Leuschner, F.; Fichtlscherer, S.; Meder, B.; Zeiher, A.M.; Dimmeler, S.; Keller, T. Identification and regulation of the long non-coding RNA Heat2 in heart failure. J. Mol. Cell. Cardiol., 2019, 126, 13-22.
[http://dx.doi.org/10.1016/j.yjmcc.2018.11.004] [PMID: 30445017]
[111]
Faghihi, M.A.; Modarresi, F.; Khalil, A.M.; Wood, D.E.; Sahagan, B.G.; Morgan, T.E.; Finch, C.E.; St Laurent, G., III; Kenny, P.J.; Wahlestedt, C. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med., 2008, 14(7), 723-730.
[http://dx.doi.org/10.1038/nm1784] [PMID: 18587408]
[112]
Li, F.; Wang, Y.; Yang, H.; Xu, Y.; Zhou, X.; Zhang, X.; Xie, Z.; Bi, J. The effect of BACE1-AS on β-amyloid generation by regulating BACE1 mRNA expression. BMC Mol. Biol., 2019, 20(1), 23.
[http://dx.doi.org/10.1186/s12867-019-0140-0] [PMID: 31570097]
[113]
Greco, S.; Zaccagnini, G.; Fuschi, P.; Voellenkle, C.; Carrara, M.; Sadeghi, I.; Bearzi, C.; Maimone, B.; Castelvecchio, S.; Stellos, K.; Gaetano, C.; Menicanti, L.; Martelli, F. Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovasc. Res., 2017, 113(5), 453-463.
[http://dx.doi.org/10.1093/cvr/cvx013] [PMID: 28158647]
[114]
Shah, A.K.; Bhullar, S.K.; Elimban, V.; Dhalla, N.S. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants, 2021, 10(6), 931.
[http://dx.doi.org/10.3390/antiox10060931] [PMID: 34201261]
[115]
Song, C.; Zhang, J.; Liu, Y.; Pan, H.; Qi, H.; Cao, Y.; Zhao, J.; Li, S.; Guo, J.; Sun, H.; Li, C. Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy. Oncotarget, 2016, 7(10), 10827-10840.
[http://dx.doi.org/10.18632/oncotarget.7312] [PMID: 26872060]
[116]
Gao, H.; Li, X.; Zhan, G.; Zhu, Y.; Yu, J.; Wang, J.; Li, L.; Wu, W.; Liu, N.; Guo, X. RETRACTED ARTICLE: Long noncoding RNA MAGI1-IT1 promoted invasion and metastasis of epithelial ovarian cancer via the miR-200a/ZEB axis. Cell Cycle, 2019, 18(12), 1393-1406.
[http://dx.doi.org/10.1080/15384101.2019.1618121] [PMID: 31122127]
[117]
Zhang, G.; Chen, H.X.; Yang, S.N.; Zhao, J. MAGI1-IT1 stimulates proliferation in non-small cell lung cancer by upregulating AKT1 as a ceRNA. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 691-698.
[PMID: 32016970]
[118]
Zhang, Q.; Wang, F.; Wang, F.; Wu, N. Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J. Cell. Physiol., 2020, 235(1), 245-253.
[http://dx.doi.org/10.1002/jcp.28964] [PMID: 31222747]
[119]
Marinou, K.; Christodoulides, C.; Antoniades, C.; Koutsilieris, M. Wnt signaling in cardiovascular physiology. Trends Endocrinol. Metab., 2012, 23(12), 628-636.
[http://dx.doi.org/10.1016/j.tem.2012.06.001] [PMID: 22902904]
[120]
Bergmann, M.W. WNT signaling in adult cardiac hypertrophy and remodeling: Lessons learned from cardiac development. Circ. Res., 2010, 107(10), 1198-1208.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223768] [PMID: 21071717]
[121]
Yu, J.; Yang, Y.; Xu, Z.; Lan, C.; Chen, C.; Li, C.; Chen, Z.; Yu, C.; Xia, X.; Liao, Q. Long noncoding RNA ahit protects against cardiac hypertrophy through SUZ12-mediated downregulation of MEF2A. Circ. Heart Fail., 2020, 13(1), e006525.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.119.006525] [PMID: 31957467]
[122]
McCalmon, S.A.; Desjardins, D.M.; Ahmad, S.; Davidoff, K.S.; Snyder, C.M.; Sato, K.; Ohashi, K.; Kielbasa, O.M.; Mathew, M.; Ewen, E.P.; Walsh, K.; Gavras, H.; Naya, F.J. Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2. Circ. Res., 2010, 106(5), 952-960.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.209007] [PMID: 20093629]
[123]
Gholami, A.; Farhadi, K.; Sayyadipour, F.; Soleimani, M.; Saba, F. Long noncoding RNAs (lncRNAs) in human lymphomas. Genes Dis., 2022, 9(4), 900-914.
[http://dx.doi.org/10.1016/j.gendis.2021.02.001] [PMID: 35685474]
[124]
Cruz-Miranda, G.; Hidalgo-Miranda, A.; Bárcenas-López, D.; Núñez-Enríquez, J.; Ramírez-Bello, J.; Mejía-Aranguré, J.; Jiménez-Morales, S. Long non-coding RNA and acute leukemia. Int. J. Mol. Sci., 2019, 20(3), 735.
[http://dx.doi.org/10.3390/ijms20030735] [PMID: 30744139]
[125]
Zhang, M.; Jiang, Y.; Guo, X.; Zhang, B.; Wu, J.; Sun, J.; Liang, H.; Shan, H.; Zhang, Y.; Liu, J.; Wang, Y.; Wang, L.; Zhang, R.; Yang, B.; Xu, C. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J. Cell. Mol. Med., 2019, 23(11), 7685-7698.
[http://dx.doi.org/10.1111/jcmm.14641] [PMID: 31465630]
[126]
Ke, Z.P.; Xu, P.; Shi, Y.; Gao, A.M. MicroRNA-93 inhibits ischemia-reperfusion induced cardiomyocyte apoptosis by targeting PTEN. Oncotarget, 2016, 7(20), 28796-28805.
[http://dx.doi.org/10.18632/oncotarget.8941] [PMID: 27119510]
[127]
Roe, N.D.; Xu, X.; Kandadi, M.R.; Hu, N.; Pang, J.; Weiser-Evans, M.C.M.; Ren, J. Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1–AMPK signaling and autophagy. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(2), 290-298.
[http://dx.doi.org/10.1016/j.bbadis.2014.09.002] [PMID: 25229693]
[128]
Yang, X.; Qin, Y.; Shao, S.; Yu, Y.; Zhang, C.; Dong, H.; Lv, G.; Dong, S. MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosis via the phosphatase and tensin homolog (PTEN). Int. Heart J., 2016, 57(2), 247-250.
[http://dx.doi.org/10.1536/ihj.15-293] [PMID: 26973267]
[129]
Yu, L.; Li, F.; Zhao, G.; Yang, Y.; Jin, Z.; Zhai, M.; Yu, W.; Zhao, L.; Chen, W.; Duan, W.; Yu, S. Protective effect of berberine against myocardial ischemia reperfusion injury: Role of Notch1/Hes1-PTEN/Akt signaling. Apoptosis, 2015, 20(6), 796-810.
[http://dx.doi.org/10.1007/s10495-015-1122-4] [PMID: 25824534]
[130]
Braz, J.C.; Gill, R.M.; Corbly, A.K.; Jones, B.D.; Jin, N.; Vlahos, C.J.; Wu, Q.; Shen, W. Selective activation of PI3Kα/Akt/GSK-3β signalling and cardiac compensatory hypertrophy during recovery from heart failure. Eur. J. Heart Fail., 2009, 11(8), 739-748.
[http://dx.doi.org/10.1093/eurjhf/hfp094] [PMID: 19633101]
[131]
Zeng, R.; Xiong, Y.; Zhu, F.; Ma, Z.; Liao, W.; He, Y.; He, J.; Li, W.; Yang, J.; Lu, Q.; Xu, G.; Yao, Y. Fenofibrate attenuated glucose-induced mesangial cells proliferation and extracellular matrix synthesis via PI3K/AKT and ERK1/2. PLoS One, 2013, 8(10), e76836.
[http://dx.doi.org/10.1371/journal.pone.0076836] [PMID: 24130796]
[132]
Wei, F.; Wang, Y.; Zhou, Y.; Li, Y. Long noncoding RNA CYTOR triggers gastric cancer progression by targeting miR-103/RAB10. Acta Biochim. Biophys. Sin., 2021, 53(8), 1044-1054.
[http://dx.doi.org/10.1093/abbs/gmab071] [PMID: 34110382]
[133]
Zhang, J.; Li, W. Long noncoding RNA CYTOR sponges miR-195 to modulate proliferation, migration, invasion and radiosensitivity in nonsmall cell lung cancer cells. Biosci. Rep., 2018, 38(6), BSR20181599.
[http://dx.doi.org/10.1042/BSR20181599] [PMID: 30487160]
[134]
Wang, X.; Yu, H.; Sun, W.; Kong, J.; Zhang, L.; Tang, J.; Wang, J.; Xu, E.; Lai, M.; Zhang, H. The long non-coding RNA CYTOR drives colorectal cancer progression by interacting with NCL and Sam68. Mol. Cancer, 2018, 17(1), 110.
[http://dx.doi.org/10.1186/s12943-018-0860-7] [PMID: 30064438]
[135]
Yuan, Y.; Wang, J.; Chen, Q.; Wu, Q.; Deng, W.; Zhou, H.; Shen, D. Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1421-1427.
[http://dx.doi.org/10.1016/j.bbadis.2019.02.014] [PMID: 30794866]
[136]
Dai, J.; Shen, D.F.; Bian, Z.Y.; Zhou, H.; Gan, H.W.; Zong, J.; Deng, W.; Yuan, Y.; Li, F.; Wu, Q.Q.; Gao, L.; Zhang, R.; Ma, Z.G.; Li, H.L.; Tang, Q.Z. IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS One, 2013, 8(1), e53412.
[http://dx.doi.org/10.1371/journal.pone.0053412] [PMID: 23349709]
[137]
Seok, H.Y.; Chen, J.; Kataoka, M.; Huang, Z.P.; Ding, J.; Yan, J.; Hu, X.; Wang, D.Z. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res., 2014, 114(10), 1585-1595.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303784] [PMID: 24657879]
[138]
Wang, K.; Liu, F.; Zhou, L.Y.; Long, B.; Yuan, S.M.; Wang, Y.; Liu, C.Y.; Sun, T.; Zhang, X.J.; Li, P.F. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res., 2014, 114(9), 1377-1388.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302476] [PMID: 24557880]
[139]
Feng, Y.; Zou, L.; Si, R.; Nagasaka, Y.; Chao, W. Bone marrow MyD88 signaling modulates neutrophil function and ischemic myocardial injury. Am. J. Physiol. Cell Physiol., 2010, 299(4), C760-C769.
[http://dx.doi.org/10.1152/ajpcell.00155.2010] [PMID: 20631245]
[140]
Ha, T.; Hua, F.; Li, Y.; Ma, J.; Gao, X.; Kelley, J.; Zhao, A.; Haddad, G.E.; Williams, D.L.; Browder, I.W.; Kao, R.L.; Li, C. Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(3), H985-H994.
[http://dx.doi.org/10.1152/ajpheart.00720.2005] [PMID: 16199478]
[141]
Wo, Y.; Guo, J.; Li, P.; Yang, H.; Wo, J. Long non-coding RNA CHRF facilitates cardiac hypertrophy through regulating Akt3 via miR-93. Cardiovasc. Pathol., 2018, 35, 29-36.
[http://dx.doi.org/10.1016/j.carpath.2018.04.003] [PMID: 29747050]
[142]
van Rooij, E.; Sutherland, L.B.; Liu, N.; Williams, A.H.; McAnally, J.; Gerard, R.D.; Richardson, J.A.; Olson, E.N. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA, 2006, 103(48), 18255-18260.
[http://dx.doi.org/10.1073/pnas.0608791103] [PMID: 17108080]
[143]
Heineke, J.; Molkentin, J.D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol., 2006, 7(8), 589-600.
[http://dx.doi.org/10.1038/nrm1983] [PMID: 16936699]
[144]
Dorn, G.W., II; Force, T. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest., 2005, 115(3), 527-537.
[http://dx.doi.org/10.1172/JCI24178] [PMID: 15765134]
[145]
Taniyama, Y.; Ito, M.; Sato, K.; Kuester, C.; Veit, K.; Tremp, G.; Liao, R.; Colucci, W.; Ivashchenko, Y.; Walsh, K.; Shiojima, I. Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J. Mol. Cell. Cardiol., 2005, 38(2), 375-385.
[http://dx.doi.org/10.1016/j.yjmcc.2004.12.002] [PMID: 15698844]
[146]
Liao, J.; He, Q.; Li, M.; Chen, Y.; Liu, Y.; Wang, J. LncRNA MIAT: Myocardial infarction associated and more. Gene, 2016, 578(2), 158-161.
[http://dx.doi.org/10.1016/j.gene.2015.12.032] [PMID: 26707210]
[147]
Ishii, N.; Ozaki, K.; Sato, H.; Mizuno, H.; Susumu Saito; Takahashi, A.; Miyamoto, Y.; Ikegawa, S.; Kamatani, N.; Hori, M.; Satoshi, S; Nakamura, Y.; Tanaka, T. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet., 2006, 51(12), 1087-1099.
[http://dx.doi.org/10.1007/s10038-006-0070-9] [PMID: 17066261]
[148]
Shen, Y.; Dong, L.F.; Zhou, R.M.; Yao, J.; Song, Y.C.; Yang, H.; Jiang, Q.; Yan, B. Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: A clinical and in vitro study. J. Cell. Mol. Med., 2016, 20(3), 537-548.
[http://dx.doi.org/10.1111/jcmm.12755] [PMID: 26818536]
[149]
Yan, B.; Yao, J.; Liu, J.Y.; Li, X.M.; Wang, X.Q.; Li, Y.J.; Tao, Z.F.; Song, Y.C.; Chen, Q.; Jiang, Q. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ. Res., 2015, 116(7), 1143-1156.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305510] [PMID: 25587098]
[150]
Liu, W.; Liu, Y.; Zhang, Y.; Zhu, X.; Zhang, R.; Guan, L.; Tang, Q.; Jiang, H.; Huang, C.; Huang, H. MicroRNA-150 protects against pressure overload-induced cardiac hypertrophy. J. Cell. Biochem., 2015, 116(10), 2166-2176.
[http://dx.doi.org/10.1002/jcb.25057] [PMID: 25639779]
[151]
Li, Z.; Liu, Y.; Guo, X.; Sun, G.; Ma, Q.; Dai, Y.; Zhu, G.; Sun, Y. Long noncoding RNA myocardial infarction-associated transcript is associated with the microRNA-150-5p/P300 pathway in cardiac hypertrophy. Int. J. Mol. Med., 2018, 42(3), 1265-1272.
[http://dx.doi.org/10.3892/ijmm.2018.3700] [PMID: 29786749]
[152]
Duan, Y.; Zhou, B.; Su, H.; Liu, Y.; Du, C. miR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300. Exp. Cell Res., 2013, 319(3), 173-184.
[http://dx.doi.org/10.1016/j.yexcr.2012.11.015] [PMID: 23211718]
[153]
Li, Y.; Wang, J.; Sun, L.; Zhu, S. LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur. J. Pharmacol., 2018, 818, 508-517.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.031] [PMID: 29157986]
[154]
Baumgarten, G.; Knuefermann, P.; Nozaki, N.; Sivasubramanian, N.; Mann, D.L.; Vallejo, J.G. In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: The role of toll-like receptor-4. J. Infect. Dis., 2001, 183(11), 1617-1624.
[http://dx.doi.org/10.1086/320712] [PMID: 11343210]
[155]
Dange, R.B.; Agarwal, D.; Masson, G.S.; Vila, J.; Wilson, B.; Nair, A.; Francis, J. Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovasc. Res., 2014, 103(1), 17-27.
[http://dx.doi.org/10.1093/cvr/cvu067] [PMID: 24667851]
[156]
Ji, Y.; Liu, J.; Wang, Z.; Liu, N. Angiotensin II induces inflammatory response partly via toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells. Cell. Physiol. Biochem., 2009, 23(4-6), 265-276.
[http://dx.doi.org/10.1159/000218173] [PMID: 19471094]
[157]
Ha, T.; Li, Y.; Hua, F.; Ma, J.; Gao, X.; Kelley, J.; Zhao, A.; Haddad, G.; Williams, D.; Williambrowder, I.; Kao, R.L.; Li, C. Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc. Res., 2005, 68(2), 224-234.
[http://dx.doi.org/10.1016/j.cardiores.2005.05.025] [PMID: 15967420]
[158]
Loewer, S.; Cabili, M.N.; Guttman, M.; Loh, Y.H.; Thomas, K.; Park, I.H.; Garber, M.; Curran, M.; Onder, T.; Agarwal, S.; Manos, P.D.; Datta, S.; Lander, E.S.; Schlaeger, T.M.; Daley, G.Q.; Rinn, J.L. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet., 2010, 42(12), 1113-1117.
[http://dx.doi.org/10.1038/ng.710] [PMID: 21057500]
[159]
Lu, R.; Chen, J.; Kong, L.; Zhu, H. Prognostic value of lncRNA ROR expression in various cancers: A meta-analysis. Biosci. Rep., 2018, 38(5), BSR20181095.
[http://dx.doi.org/10.1042/BSR20181095] [PMID: 30076198]
[160]
Jiang, F.; Zhou, X.; Huang, J. Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS One, 2016, 11(4), e0152767.
[http://dx.doi.org/10.1371/journal.pone.0152767] [PMID: 27082978]
[161]
Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.L.; Segnalini, P.; Gu, Y.; Dalton, N.D.; Elia, L.; Latronico, M.V.G.; Høydal, M.; Autore, C.; Russo, M.A.; Dorn, G.W., II; Ellingsen, Ø.; Ruiz-Lozano, P.; Peterson, K.L.; Croce, C.M.; Peschle, C.; Condorelli, G. MicroRNA-133 controls cardiac hypertrophy. Nat. Med., 2007, 13(5), 613-618.
[http://dx.doi.org/10.1038/nm1582] [PMID: 17468766]
[162]
Xu, L.; Wang, H.; Jiang, F.; Sun, H.; Zhang, D. LncRNA AK045171 protects the heart from cardiac hypertrophy by regulating the SP1/MG53 signalling pathway. Aging, 2020, 12(4), 3126-3139.
[http://dx.doi.org/10.18632/aging.102668] [PMID: 32087602]
[163]
Azakie, A.; Fineman, J.R.; He, Y. Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(2), H600-H611.
[http://dx.doi.org/10.1152/ajpheart.01305.2005] [PMID: 16617124]
[164]
Liu, W.; Wang, G.; Zhang, C.; Ding, W.; Cheng, W.; Luo, Y.; Wei, C.; Liu, J. MG53, a novel regulator of KChIP2 and Ito,f, plays a critical role in electrophysiological remodeling in cardiac hypertrophy. Circulation, 2019, 139(18), 2142-2156.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.029413] [PMID: 30760025]
[165]
Dhingra, R.; Vasan, R.S. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers. Trends Cardiovasc. Med., 2017, 27(2), 123-133.
[http://dx.doi.org/10.1016/j.tcm.2016.07.005] [PMID: 27576060]
[166]
Villacorta, H.; Maisel, A.S. Soluble ST2 testing: A promising biomarker in the management of heart failure. Arq. Bras. Cardiol., 2016, 106(2), 145-152.
[PMID: 26761075]
[167]
Paul, T.K.; Mukherjee, D. Silent myocardial infarction and risk of heart failure. Ann. Transl. Med., 2018, 6(S1), S35.
[http://dx.doi.org/10.21037/atm.2018.09.45] [PMID: 30613610]
[168]
Luo, F.; Wang, T.; Zeng, L.; Zhu, S.; Cao, W.; Wu, W.; Wu, H.; Zou, T. Diagnostic potential of circulating LncRNAs in human cardiovascular disease: A meta-analysis. Biosci. Rep., 2018, 38(6), BSR20181610.
[http://dx.doi.org/10.1042/BSR20181610] [PMID: 30361292]
[169]
Terracciano, D.; Ferro, M.; Terreri, S.; Lucarelli, G.; D’Elia, C.; Musi, G.; de Cobelli, O.; Mirone, V.; Cimmino, A. Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: New architects in cancer prognostic biomarkers. Transl. Res., 2017, 184, 108-117.
[http://dx.doi.org/10.1016/j.trsl.2017.03.005] [PMID: 28438520]
[170]
Martignano, F.; Rossi, L.; Maugeri, A.; Gallà, V.; Conteduca, V.; De Giorgi, U.; Casadio, V.; Schepisi, G. Urinary RNA-based biomarkers for prostate cancer detection. Clin. Chim. Acta, 2017, 473, 96-105.
[http://dx.doi.org/10.1016/j.cca.2017.08.009] [PMID: 28807541]
[171]
Zhou, X.; Yin, C.; Dang, Y.; Ye, F.; Zhang, G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci. Rep., 2015, 5(1), 11516.
[http://dx.doi.org/10.1038/srep11516] [PMID: 26096073]
[172]
Viereck, J.; Thum, T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ. Res., 2017, 120(2), 381-399.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308434] [PMID: 28104771]
[173]
Li, Q.; Shao, Y.; Zhang, X.; Zheng, T.; Miao, M.; Qin, L.; Wang, B.; Ye, G.; Xiao, B.; Guo, J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol., 2015, 36(3), 2007-2012.
[http://dx.doi.org/10.1007/s13277-014-2807-y] [PMID: 25391424]
[174]
Fritz, J.V.; Heintz-Buschart, A.; Ghosal, A.; Wampach, L.; Etheridge, A.; Galas, D.; Wilmes, P. Sources and functions of extracellular small RNAs in human circulation. Annu. Rev. Nutr., 2016, 36(1), 301-336.
[http://dx.doi.org/10.1146/annurev-nutr-071715-050711] [PMID: 27215587]
[175]
Xuan, L.; Sun, L.; Zhang, Y.; Huang, Y.; Hou, Y.; Li, Q.; Guo, Y.; Feng, B.; Cui, L.; Wang, X.; Wang, Z.; Tian, Y.; Yu, B.; Wang, S.; Xu, C.; Zhang, M.; Du, Z.; Lu, Y.; Yang, B.F. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure. J. Cell. Mol. Med., 2017, 21(9), 1803-1814.
[http://dx.doi.org/10.1111/jcmm.13101] [PMID: 28296001]
[176]
Abu el Maaty, M.A.; Hanafi, R.S.; El-Badawy, S.; Gad, M.Z. Interplay of vitamin D and nitric oxide in post-menopausal knee osteoarthritis. Aging Clin. Exp. Res., 2014, 26(4), 363-368.
[http://dx.doi.org/10.1007/s40520-013-0192-9] [PMID: 24374888]
[177]
Zhang, L.; Wu, Y-J.; Zhang, S-L. Circulating lncRNA MHRT predicts survival of patients with chronic heart failure. J. Geriatr. Cardiol., 2019, 16(11), 818-821.
[PMID: 31853247]
[178]
Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.M.; Moher, D.; Rennie, D.; de Vet, H.C.; Lijmer, J.G. The STARD statement for reporting studies of diagnostic accuracy: Explanation and elaboration. Ann. Intern. Med., 2003, 138(1), W1-12.
[http://dx.doi.org/10.7326/0003-4819-138-1-200301070-00010] [PMID: 12513067]
[179]
Adams, B.D.; Parsons, C.; Walker, L.; Zhang, W.C.; Slack, F.J. Targeting noncoding RNAs in disease. J. Clin. Invest., 2017, 127(3), 761-771.
[http://dx.doi.org/10.1172/JCI84424] [PMID: 28248199]
[180]
Collins, L.; Binder, P.; Chen, H.; Wang, X. Regulation of long non-coding RNAs and microRNAs in heart disease: Insight into mechanisms and therapeutic approaches. Front. Physiol., 2020, 11, 798.
[http://dx.doi.org/10.3389/fphys.2020.00798] [PMID: 32754048]
[181]
Rincon, M.Y.; VandenDriessche, T.; Chuah, M.K. Gene therapy for cardiovascular disease: Advances in vector development, targeting, and delivery for clinical translation. Cardiovasc. Res., 2015, 108(1), 4-20.
[http://dx.doi.org/10.1093/cvr/cvv205] [PMID: 26239654]
[182]
Wang, K.; Sun, T.; Li, N.; Wang, Y.; Wang, J.X.; Zhou, L.Y.; Long, B.; Liu, C.Y.; Liu, F.; Li, P.F. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361. PLoS Genet., 2014, 10(7), e1004467.
[http://dx.doi.org/10.1371/journal.pgen.1004467] [PMID: 25057983]
[183]
Aparicio-Prat, E.; Arnan, C.; Sala, I.; Bosch, N.; Guigó, R.; Johnson, R. DECKO: Single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics, 2015, 16(1), 846.
[http://dx.doi.org/10.1186/s12864-015-2086-z] [PMID: 26493208]
[184]
Liu, S.J.; Horlbeck, M.A.; Cho, S.W.; Birk, H.S.; Malatesta, M.; He, D.; Attenello, F.J.; Villalta, J.E.; Cho, M.Y.; Chen, Y.; Mandegar, M.A.; Olvera, M.P.; Gilbert, L.A.; Conklin, B.R.; Chang, H.Y.; Weissman, J.S.; Lim, D.A. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017, 355(6320), eaah7111.
[http://dx.doi.org/10.1126/science.aah7111] [PMID: 27980086]
[185]
Fazil, M.H.U.T.; Ong, S.T.; Chalasani, M.L.S.; Low, J.H.; Kizhakeyil, A.; Mamidi, A.; Lim, C.F.H.; Wright, G.D.; Lakshminarayanan, R.; Kelleher, D.; Verma, N.K. GapmeR cellular internalization by macropinocytosis induces sequence-specific gene silencing in human primary T-cells. Sci. Rep., 2016, 6(1), 37721.
[http://dx.doi.org/10.1038/srep37721] [PMID: 27883055]
[186]
Swayze, E.E.; Siwkowski, A.M.; Wancewicz, E.V.; Migawa, M.T.; Wyrzykiewicz, T.K.; Hung, G.; Monia, B.P.; Bennett, C.F. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res., 2007, 35(2), 687-700.
[http://dx.doi.org/10.1093/nar/gkl1071] [PMID: 17182632]
[187]
Micheletti, R.; Plaisance, I.; Abraham, B.J.; Sarre, A.; Ting, C.C.; Alexanian, M.; Maric, D.; Maison, D.; Nemir, M.; Young, R.A.; Schroen, B.; González, A.; Ounzain, S.; Pedrazzini, T. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci. Transl. Med., 2017, 9(395), eaai9118.
[http://dx.doi.org/10.1126/scitranslmed.aai9118] [PMID: 28637928]
[188]
Piccoli, M.T.; Gupta, S.K.; Viereck, J.; Foinquinos, A.; Samolovac, S.; Kramer, F.L.; Garg, A.; Remke, J.; Zimmer, K.; Batkai, S.; Thum, T. Inhibition of the cardiac fibroblast–enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res., 2017, 121(5), 575-583.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310624] [PMID: 28630135]
[189]
Viereck, J.; Kumarswamy, R.; Foinquinos, A.; Xiao, K.; Avramopoulos, P.; Kunz, M.; Dittrich, M.; Maetzig, T.; Zimmer, K.; Remke, J.; Just, A.; Fendrich, J.; Scherf, K.; Bolesani, E.; Schambach, A.; Weidemann, F.; Zweigerdt, R.; de Windt, L.J.; Engelhardt, S.; Dandekar, T.; Batkai, S.; Thum, T. Long noncoding RNA Chast promotes cardiac remodeling. Sci. Transl. Med., 2016, 8(326), 326ra22.
[http://dx.doi.org/10.1126/scitranslmed.aaf1475] [PMID: 26888430]
[190]
Burdick, A.D.; Sciabola, S.; Mantena, S.R.; Hollingshead, B.D.; Stanton, R.; Warneke, J.A.; Zeng, M.; Martsen, E.; Medvedev, A.; Makarov, S.S.; Reed, L.A.; Davis, J.W., II; Whiteley, L.O. Sequence motifs associated with hepatotoxicity of locked nucleic acid—modified antisense oligonucleotides. Nucleic Acids Res., 2014, 42(8), 4882-4891.
[http://dx.doi.org/10.1093/nar/gku142] [PMID: 24550163]
[191]
Ounzain, S.; Micheletti, R.; Arnan, C.; Plaisance, I.; Cecchi, D.; Schroen, B.; Reverter, F.; Alexanian, M.; Gonzales, C.; Ng, S.Y.; Bussotti, G.; Pezzuto, I.; Notredame, C.; Heymans, S.; Guigó, R.; Johnson, R.; Pedrazzini, T. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J. Mol. Cell. Cardiol., 2015, 89(Pt A), 98-112.
[http://dx.doi.org/10.1016/j.yjmcc.2015.09.016]
[192]
Poller, W.; Dimmeler, S.; Heymans, S.; Zeller, T.; Haas, J.; Karakas, M.; Leistner, D.M.; Jakob, P.; Nakagawa, S.; Blankenberg, S.; Engelhardt, S.; Thum, T.; Weber, C.; Meder, B.; Hajjar, R.; Landmesser, U. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. Heart J., 2018, 39(29), 2704-2716.
[http://dx.doi.org/10.1093/eurheartj/ehx165] [PMID: 28430919]
[193]
Kemp, C.D.; Conte, J.V. The pathophysiology of heart failure. Cardiovasc. Pathol., 2012, 21(5), 365-371.
[http://dx.doi.org/10.1016/j.carpath.2011.11.007] [PMID: 22227365]
[194]
Frey, N.; Olson, E.N. Cardiac hypertrophy: The good, the bad, and the ugly. Annu. Rev. Physiol., 2003, 65(1), 45-79.
[http://dx.doi.org/10.1146/annurev.physiol.65.092101.142243] [PMID: 12524460]
[195]
Vaduganathan, M.; Greene, S.J.; Butler, J.; Sabbah, H.N.; Shantsila, E.; Lip, G.Y.H.; Gheorghiade, M. The immunological axis in heart failure: Importance of the leukocyte differential. Heart Fail. Rev., 2013, 18(6), 835-845.
[http://dx.doi.org/10.1007/s10741-012-9352-9] [PMID: 23054221]
[196]
Kumar, A.; Supowit, S.; Potts, J.D.; DiPette, D.J. Alpha-calcitonin gene-related peptide prevents pressure-overload induced heart failure: Role of apoptosis and oxidative stress. Physiol. Rep., 2019, 7(21), e14269.
[http://dx.doi.org/10.14814/phy2.14269] [PMID: 31724338]
[197]
van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail., 2019, 21(4), 425-435.
[http://dx.doi.org/10.1002/ejhf.1320] [PMID: 30338885]
[198]
Sui, Y.B.; Wang, Y.; Liu, L.; Liu, F.; Zhang, Y.Q. Astragaloside IV alleviates heart failure by promoting angiogenesis through the JAK-STAT3 pathway. Pharm. Biol., 2019, 57(1), 48-54.
[http://dx.doi.org/10.1080/13880209.2019.1569697] [PMID: 30905241]
[199]
Ghosh, R.; Pattison, J.S. Macroautophagy and chaperone-mediated autophagy in heart failure: The known and the unknown. Oxid Med Cell Longev, 2018, 2018, 8602041.
[http://dx.doi.org/10.1155/2018/8602041]
[200]
Rosik, J.; Szostak, B.; Machaj, F.; Pawlik, A. Potential targets of gene therapy in the treatment of heart failure. Expert Opin. Ther. Targets, 2018, 22(9), 811-816.
[http://dx.doi.org/10.1080/14728222.2018.1514012] [PMID: 30124081]
[201]
Creemers, E.E.; Wilde, A.A.; Pinto, Y.M. Heart failure: advances through genomics. Nat. Rev. Genet., 2011, 12(5), 357-362.
[http://dx.doi.org/10.1038/nrg2983] [PMID: 21423240]
[202]
Yu, X.; Zou, T.; Zou, L.; Jin, J.; Xiao, F.; Yang, J. Plasma long noncoding RNA urothelial carcinoma associated 1 predicts poor prognosis in chronic heart failure patients. Med. Sci. Monit., 2017, 23, 2226-2231.
[http://dx.doi.org/10.12659/MSM.904113] [PMID: 28490726]
[203]
Zhuang, A.; Calkin, A.C.; Lau, S.; Kiriazis, H.; Donner, D.G.; Liu, Y.; Bond, S.T.; Moody, S.C.; Gould, E.A.M.; Colgan, T.D.; Carmona, S.R.; Inouye, M.; de Aguiar Vallim, T.Q.; Tarling, E.J.; Quaife-Ryan, G.A.; Hudson, J.E.; Porrello, E.R.; Gregorevic, P.; Gao, X.M.; Du, X.J.; McMullen, J.R.; Drew, B.G. Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. iScience, 2021, 24(6), 102537.
[http://dx.doi.org/10.1016/j.isci.2021.102537] [PMID: 34142046]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy