Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Recent Advances in the Development of RET Inhibitors

Author(s): Peng Lu*, Hui Qin, Jiawei Ye, Puzhou Chen, Jiuxiang Li, Jing Ren, Yan Wang and Yinsheng Zhang*

Volume 21, Issue 8, 2024

Published on: 31 March, 2023

Page: [1302 - 1315] Pages: 14

DOI: 10.2174/1570180820666230306113551

Price: $65

Abstract

Background: Rearranged during transfection (RET) is a receptor tyrosine kinase and a bona fide oncogene that drives various cancers. Oncogenic RET induces abnormal activation of RET kinase, causing tumorigenesis. RET can be abnormally activated through RET point mutations and RET fusions. Although RET kinase has been discovered in tumors more than 30 years ago, patients with RET-altered tumors gain limited benefits from multikinase inhibitors (MKIs). In 2020, pralsetinib and selpercatinib were approved by FDA for the treatment of RET-altered tumors.

Objective: Recently reported RET inhibitors were reviewed to provide an overview of the development of novel RET inhibitors.

Methods: Literatures, patents, and conference proceedings published in the past five years were collected. Only RET inhibitors with novel scaffolds or in vivo efficacy were discussed in this review. The enzymebased and cell-based activities, PK profiles, antitumor activities in vivo, and clinical efficacy of the selected RET inhibitors were described.

Results: Great efforts have been spent on the development of RET inhibitors, leading to increased RETtargeted therapies. Due to high potency and specificity, pralsetinib and selpercatinib resulted in a >8- month improvement in overall survival, compared to MKIs. However, solvent-front mutants emerged and contributed to the acquired resistance to pralsetinib and selpercatinib. To overcome solvent front mutants, TPX-0046, TAS0953, and LOX-260 are investigated in early clinical studies.

Conclusion: Zeteletinib, SYHA1815, TPX-0046, TAS0953, and LOX-260 are potential therapies for RET-altered cancers. In addition, macrocyclic inhibitors, allosteric inhibitors, and PROTACs are three promising strategies to address the potential drug resistance of RET.

Graphical Abstract

[1]
Ballerini, P.; Struski, S.; Cresson, C.; Prade, N.; Toujani, S.; Deswarte, C.; Dobbelstein, S.; Petit, A.; Lapillonne, H.; Gautier, E-F.; Demur, C.; Lippert, E.; Pages, P. Mansat- De Mas, V.; Donadieu, J.; Huguet, F.; Dastugue, N.; Broccardo, C.; Perot, C.; Delabesse, E. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia, 2012, 26(11), 2384-2389.
[http://dx.doi.org/10.1038/leu.2012.109] [PMID: 22513837]
[2]
Gainor, J.F.; Shaw, A.T. The new kid on the block: RET in lung cancer. Cancer Discov., 2013, 3(6), 604-606.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0174] [PMID: 23749525]
[3]
Ju, Y.S.; Lee, W.C.; Shin, J.Y.; Lee, S.; Bleazard, T.; Won, J.K.; Kim, Y.T.; Kim, J.I.; Kang, J.H.; Seo, J.S. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res., 2012, 22(3), 436-445.
[http://dx.doi.org/10.1101/gr.133645.111] [PMID: 22194472]
[4]
Kohno, T.; Ichikawa, H.; Totoki, Y.; Yasuda, K.; Hiramoto, M.; Nammo, T.; Sakamoto, H.; Tsuta, K.; Furuta, K.; Shimada, Y.; Iwakawa, R.; Ogiwara, H.; Oike, T.; Enari, M.; Schetter, A.J.; Okayama, H.; Haugen, A.; Skaug, V.; Chiku, S.; Yamanaka, I.; Arai, Y.; Watanabe, S.; Sekine, I.; Ogawa, S.; Harris, C.C.; Tsuda, H.; Yoshida, T.; Yokota, J.; Shibata, T. KIF5B-RET fusions in lung adenocarcinoma. Nat. Med., 2012, 18(3), 375-377.
[http://dx.doi.org/10.1038/nm.2644] [PMID: 22327624]
[5]
Skálová, A.; Stenman, G.; Simpson, R.H.W.; Hellquist, H.; Slouka, D.; Svoboda, T.; Bishop, J.A.; Hunt, J.L.; Nibu, K.I.; Rinaldo, A.; Vander Poorten, V.; Devaney, K.O.; Steiner, P.; Ferlito, A. The role of molecular testing in the differential diagnosis of salivary gland carcinomas. Am. J. Surg. Pathol., 2018, 42(2), e11-e27.
[http://dx.doi.org/10.1097/PAS.0000000000000980] [PMID: 29076877]
[6]
Stransky, N.; Cerami, E.; Schalm, S.; Kim, J.L.; Lengauer, C. The landscape of kinase fusions in cancer. Nat. Commun., 2014, 5(1), 4846.
[http://dx.doi.org/10.1038/ncomms5846] [PMID: 25204415]
[7]
Romei, C.; Ciampi, R.; Elisei, R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat. Rev. Endocrinol., 2016, 12(4), 192-202.
[http://dx.doi.org/10.1038/nrendo.2016.11] [PMID: 26868437]
[8]
Mulligan, L.M. RET revisited: Expanding the oncogenic portfolio. Nat. Rev. Cancer, 2014, 14(3), 173-186.
[http://dx.doi.org/10.1038/nrc3680] [PMID: 24561444]
[9]
Tong, Q.; Xing, S.; Jhiang, S.M. Leucine zipper-mediated dimerization is essential for the PTC1 oncogenic activity. J. Biol. Chem., 1997, 272(14), 9043-9047.
[http://dx.doi.org/10.1074/jbc.272.14.9043] [PMID: 9083029]
[10]
Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; Wilson, K.J.; DiPietro, L.; Fleming, P.; Palmer, M.; Hu, M.I.; Wirth, L.; Brose, M.S.; Ou, S.H.I.; Taylor, M.; Garralda, E.; Miller, S.; Wolf, B.; Lengauer, C.; Guzi, T.; Evans, E.K. Precision targeted therapy with blu-667 for RET -driven cancers. Cancer Discov., 2018, 8(7), 836-849.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0338] [PMID: 29657135]
[11]
Drilon, A.E.; Filleron, T.; Bergagnini, I.; Milia, J.; Hatzoglou, V.; Velcheti, V.; Besse, B.; Mok, T.; Awad, M.M.; Wolf, J.; Carbone, D.P.; Camidge, D.R.; Riely, G.J.; Peled, N.; Mazieres, J.; Kris, M.G.; Gautschi, O.; Investigators, G.M.R.R. Baseline frequency of brain metastases and outcomes with multikinase inhibitor therapy in patients with RET -rearranged lung cancers. J. Clin. Oncol., 2017, 35(S15), 9069-9069.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.9069]
[12]
Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2005, 352(8), 786-792.
[http://dx.doi.org/10.1056/NEJMoa044238] [PMID: 15728811]
[13]
Fox, E.; Widemann, B.C.; Chuk, M.K.; Marcus, L.; Aikin, A.; Whitcomb, P.O.; Merino, M.J.; Lodish, M.; Dombi, E.; Steinberg, S.M.; Wells, S.A.; Balis, F.M. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin. Cancer Res., 2013, 19(15), 4239-4248.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0071] [PMID: 23766359]
[14]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[15]
Carlomagno, F.; Vitagliano, D.; Guida, T.; Ciardiello, F.; Tortora, G.; Vecchio, G.; Ryan, A.J.; Fontanini, G.; Fusco, A.; Santoro, M. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res., 2002, 62(24), 7284-7290.
[PMID: 12499271]
[16]
Mologni, L.; Redaelli, S.; Morandi, A.; Plaza-Menacho, I.; Gambacorti-Passerini, C. Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase. Mol. Cell. Endocrinol., 2013, 377(1-2), 1-6.
[http://dx.doi.org/10.1016/j.mce.2013.06.025] [PMID: 23811235]
[17]
Kodama, T.; Tsukaguchi, T.; Satoh, Y.; Yoshida, M.; Watanabe, Y.; Kondoh, O.; Sakamoto, H. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol. Cancer Ther., 2014, 13(12), 2910-2918.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0274] [PMID: 25349307]
[18]
Drilon, A.; Hu, Z.I.; Lai, G.G.Y.; Tan, D.S.W. Targeting RET-driven cancers: Lessons from evolving preclinical and clinical landscapes. Nat. Rev. Clin. Oncol., 2018, 15(3), 151-167.
[http://dx.doi.org/10.1038/nrclinonc.2017.175] [PMID: 29134959]
[19]
Takeuchi, S.; Yanagitani, N.; Seto, T.; Hattori, Y.; Ohashi, K.; Morise, M.; Matsumoto, S.; Yoh, K.; Goto, K.; Nishio, M.; Takahara, S.; Kawakami, T.; Imai, Y.; Yoshimura, K.; Tanimoto, A.; Nishiyama, A.; Murayama, T.; Yano, S. Phase 1/2 study of alectinib in RET-rearranged previously-treated non-small cell lung cancer (ALL-RET). Transl. Lung Cancer Res., 2021, 10(1), 314-325.
[http://dx.doi.org/10.21037/tlcr-20-549] [PMID: 33569315]
[20]
Wirth, L.J.; Kohno, T.; Udagawa, H.; Matsumoto, S.; Ishii, G.; Ebata, K.; Tuch, B.B.; Zhu, E.Y.; Nguyen, M.; Smith, S.; Hanson, L.M.; Burkard, M.R.; Cable, L.; Blake, J.F.; Condroski, K.R.; Brandhuber, B.J.; Andrews, S.; Rothenberg, S.M.; Goto, K. Emergence and targeting of acquired and hereditary resistance to multikinase ret inhibition in patients with ret-altered cancer. JCO Precis. Oncol., 2019, 3(3), 1-7.
[http://dx.doi.org/10.1200/PO.19.00189] [PMID: 32923848]
[21]
Dagogo-Jack, I.; Stevens, S.E.; Lin, J.J.; Nagy, R.; Ferris, L.; Shaw, A.T.; Gainor, J.F. Emergence of a RET V804M gatekeeper mutation during treatment with vandetanib in ret-rearranged NSCLC. J. Thorac. Oncol., 2018, 13(11), e226-e227.
[http://dx.doi.org/10.1016/j.jtho.2018.06.021] [PMID: 30368414]
[22]
Meng, S.; Wu, H.; Wang, J.; Qiu, Q. Systematic analysis of tyrosine kinase inhibitor response to ret gatekeeper mutations in thyroid cancer. Mol. Inform., 2016, 35(10), 495-505.
[http://dx.doi.org/10.1002/minf.201600039] [PMID: 27712045]
[23]
Blueprint medicines, discovery of BLU-667 for RET-driven cancers. Available from: https://www.blueprintmedicines.com/wp-content/uploads/2019/04/Blueprint-Medicines-AACR-Presentation-Final.pdf [Accessed February 12, 2022]
[24]
Subbiah, V.; Shen, T.; Terzyan, S.S.; Liu, X.; Hu, X.; Patel, K.P.; Hu, M.; Cabanillas, M.; Behrang, A.; Meric-Bernstam, F.; Vo, P.T.T.; Mooers, B.H.M.; Wu, J. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann. Oncol., 2021, 32(2), 261-268.
[http://dx.doi.org/10.1016/j.annonc.2020.10.599] [PMID: 33161056]
[25]
Yosaatmadja, Y.; Silva, S.; Dickson, J.M.; Patterson, A.V.; Smaill, J.B.; Flanagan, J.U.; McKeage, M.J.; Squire, C.J. Binding mode of the breakthrough inhibitor AZD9291 to epidermal growth factor receptor revealed. J. Struct. Biol., 2015, 192(3), 539-544.
[http://dx.doi.org/10.1016/j.jsb.2015.10.018] [PMID: 26522274]
[26]
Sakamoto, H.; Tsukaguchi, T.; Hiroshima, S.; Kodama, T.; Kobayashi, T.; Fukami, T.A.; Oikawa, N.; Tsukuda, T.; Ishii, N.; Aoki, Y. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell, 2011, 19(5), 679-690.
[http://dx.doi.org/10.1016/j.ccr.2011.04.004] [PMID: 21575866]
[27]
Terzyan, S.S.; Shen, T.; Liu, X.; Huang, Q.; Teng, P.; Zhou, M.; Hilberg, F.; Cai, J.; Mooers, B.H.M.; Wu, J. Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. J. Biol. Chem., 2019, 294(27), 10428-10437.
[http://dx.doi.org/10.1074/jbc.RA119.007682] [PMID: 31118272]
[28]
Knowles, P.P.; Murray-Rust, J.; Kjær, S.; Scott, R.P.; Hanrahan, S.; Santoro, M.; Ibáñez, C.F.; McDonald, N.Q. Structure and chemical inhibition of the RET tyrosine kinase domain. J. Biol. Chem., 2006, 281(44), 33577-33587.
[http://dx.doi.org/10.1074/jbc.M605604200] [PMID: 16928683]
[29]
Gainor, J.F.; Curigliano, G.; Kim, D.W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Tan, D.S.W.; Garralda, E.; Paz-Ares, L.G.; Cho, B.C.; Gadgeel, S.M.; Thomas, M.; Liu, S.V.; Taylor, M.H.; Mansfield, A.S.; Zhu, V.W.; Clifford, C.; Zhang, H.; Palmer, M.; Green, J.; Turner, C.D.; Subbiah, V. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): A multi-cohort, open-label, phase 1/2 study. Lancet Oncol., 2021, 22(7), 959-969.
[http://dx.doi.org/10.1016/S1470-2045(21)00247-3] [PMID: 34118197]
[30]
Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; Baik, C.S.; Adkins, D.; Keam, B.; Matos, I.; Garralda, E.; Gainor, J.F.; Lopes, G.; Lin, C.C.; Godbert, Y.; Sarker, D.; Miller, S.G.; Clifford, C.; Zhang, H.; Turner, C.D.; Taylor, M.H. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): A multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol., 2021, 9(8), 491-501.
[http://dx.doi.org/10.1016/S2213-8587(21)00120-0] [PMID: 34118198]
[31]
Mansfield, A.S.; Subbiah, V.; Schuler, M.H.; Zhu, V.W.; Hadoux, J.; Brose, M.S.; Curigliano, G.; Wirth, L.J.; Garralda, E.; Adkins, D.; Godbert, Y.; Ahn, M.-J.; Cassier, P.A.; Cho, B.C.; Lin, C.-C.; Zhang, H.; Zalutskaya, A.; Barata, T.; Scalori, A.; Taylor, M.H. Pralsetinib in patients (pts) with advanced or metastatic RET-altered thyroid cancer (TC): Updated data from the ARROW trial. J. Clin. Oncol., 2022, 40(S16), 6080.
[http://dx.doi.org/10.1200/JCO.2022.40.16_suppl.6080]
[32]
Subbiah, V.; Cassier, P.A.; Siena, S.; Alonso, G.; Paz-Ares, L.G.; Garrido, P.; Nadal, E.; Curigliano, G.; Vuky, J.; Lopes, G.; Kalemkerian, G.P.; Bowles, D.W.; Seetharam, M.; Chang, J.; Zhang, H.; Ye, C.; Green, J.; Zalutskaya, A.; Schuler, M.H.; Fan, Y. Clinical activity and safety of the RET inhibitor pralsetinib in patients with RET fusion-positive solid tumors: Update from the ARROW trial. J. Clin. Oncol., 2021, 39(S15), 3079-3079.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.3079]
[33]
Thein, K.Z.; Velcheti, V.; Mooers, B.H.M.; Wu, J.; Subbiah, V. Precision therapy for RET-altered cancers with RET inhibitors. Trends Cancer, 2021, 7(12), 1074-1088.
[http://dx.doi.org/10.1016/j.trecan.2021.07.003] [PMID: 34391699]
[34]
Subbiah, V.; Velcheti, V.; Tuch, B.B.; Ebata, K.; Busaidy, N.L.; Cabanillas, M.E.; Wirth, L.J.; Stock, S.; Smith, S.; Lauriault, V.; Corsi-Travali, S.; Henry, D.; Burkard, M.; Hamor, R.; Bouhana, K.; Winski, S.; Wallace, R.D.; Hartley, D.; Rhodes, S.; Reddy, M.; Brandhuber, B.J.; Andrews, S.; Rothenberg, S.M.; Drilon, A. Selective RET kinase inhibition for patients with RET-altered cancers. Ann. Oncol., 2018, 29(8), 1869-1876.
[http://dx.doi.org/10.1093/annonc/mdy137] [PMID: 29912274]
[35]
Bradford, D.; Larkins, E.; Mushti, S.L.; Rodriguez, L.; Skinner, A.M.; Helms, W.S.; Price, L.S.L.; Zirkelbach, J.F.; Li, Y.; Liu, J.; Charlab, R.; Turcu, F.R.; Liang, D.; Ghosh, S.; Roscoe, D.; Philip, R.; Zack-Taylor, A.; Tang, S.; Kluetz, P.G.; Beaver, J.A.; Pazdur, R.; Theoret, M.R.; Singh, H. FDA approval summary: Selpercatinib for the treatment of lung and thyroid cancers with ret gene mutations or fusions. Clin. Cancer Res., 2021, 27(8), 2130-2135.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3558] [PMID: 33239432]
[36]
Solomon, B.J.; Zhou, C.C.; Drilon, A.; Park, K.; Wolf, J.; Elamin, Y.; Davis, H.M.; Soldatenkova, V.; Sashegyi, A.; Lin, A.B.; Lin, B.K.; F, Loong.; H, H.; Novello, S.; Arriola, E.; Pérol, M.; Goto, K. Santini, F.C. Phase III study of selpercatinib versus chemotherapy ± pembrolizumab in untreated RET positive non-small-cell lung cancer. Future Oncol., 2021, 17(7), 763-773.
[http://dx.doi.org/10.2217/fon-2020-0935] [PMID: 33150799]
[37]
Murciano-Goroff, Y.R.; Falcon, C.J.; Lin, S.T.; Dhawan, A.; Grimaldi, G.; Liu, D.; Wilhelm, C.; Thomas, R.; Iasonos, A.; Drilon, A.E. Central nervous system (CNS) outcomes and progression patterns in patients with RET fusion-positive lung cancers treated with selpercatinib. J. Clin. Oncol., 2022, 40(S16), 3109.
[http://dx.doi.org/10.1200/JCO.2022.40.16_suppl.3109]
[38]
Subbiah, V.; Wolf, J.; Konda, B.; Kang, H.; Spira, A.I.; Weiss, J.; Takeda, M.; Ohe, Y.; Khan, S.A.; Ohashi, K.; Soldatenkova, V.; Szymczak, S.; Sullivan, L.; Wright, J.; Drilon, A.E. Tumor agnostic efficacy of selpercatinib in patients with RET fusion+ solid tumors: A global, multicenter, registrational trial update (LIBRETTO-001). J. Clin. Oncol., 2022, 40(S16), 3094.
[http://dx.doi.org/10.1200/JCO.2022.40.16_suppl.3094]
[39]
Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; Godbert, Y.; Barlesi, F.; Morris, J.C.; Owonikoko, T.K.; Tan, D.S.W.; Gautschi, O.; Weiss, J.; de la Fouchardière, C.; Burkard, M.E.; Laskin, J.; Taylor, M.H.; Kroiss, M.; Medioni, J.; Goldman, J.W.; Bauer, T.M.; Levy, B.; Zhu, V.W.; Lakhani, N.; Moreno, V.; Ebata, K.; Nguyen, M.; Heirich, D.; Zhu, E.Y.; Huang, X.; Yang, L.; Kherani, J.; Rothenberg, S.M.; Drilon, A.; Subbiah, V.; Shah, M.H.; Cabanillas, M.E. Efficacy of selpercatinib in RET -altered thyroid cancers. N. Engl. J. Med., 2020, 383(9), 825-835.
[http://dx.doi.org/10.1056/NEJMoa2005651] [PMID: 32846061]
[40]
Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; Peled, N.; Weiss, J.; Kim, Y.J.; Ohe, Y.; Nishio, M.; Park, K.; Patel, J.; Seto, T.; Sakamoto, T.; Rosen, E.; Shah, M.H.; Barlesi, F.; Cassier, P.A.; Bazhenova, L.; De Braud, F.; Garralda, E.; Velcheti, V.; Satouchi, M.; Ohashi, K.; Pennell, N.A.; Reckamp, K.L.; Dy, G.K.; Wolf, J.; Solomon, B.; Falchook, G.; Ebata, K.; Nguyen, M.; Nair, B.; Zhu, E.Y.; Yang, L.; Huang, X.; Olek, E.; Rothenberg, S.M.; Goto, K.; Subbiah, V. Efficacy of selpercatinib in RET fusion–positive non–small-cell lung cancer. N. Engl. J. Med., 2020, 383(9), 813-824.
[http://dx.doi.org/10.1056/NEJMoa2005653] [PMID: 32846060]
[41]
McCoach, C.E.; Rolfo, C.; Drilon, A.; Lacouture, M.; Besse, B.; Goto, K.; Zhu, V.W.; Tan, D.S.W.; Farajian, S.; Potter, L.A.; Kherani, J.F.; Soldatenkova, V.; Olek, E.A.; Muehlenbein, C.E.; Park, K. Hypersensitivity reactions to selpercatinib treatment with or without prior immune checkpoint inhibitor therapy in patients with NSCLC in LIBRETTO-001. J. Thorac. Oncol., 2022, 17(6), 768-778.
[http://dx.doi.org/10.1016/j.jtho.2022.02.004] [PMID: 35183775]
[42]
Kaneta, Y.; Komatsu, T.; Miyamoto, M.; Goto, M.; Namiki, H.; Shibata, Y.; Kageji, H.; Inagaki, H.; Nakayama, K.; Tominaga, Y.; Isoyama, T. Abstract B173: Preclinical characterization and antitumor efficacy of DS-5010, a highly potent and selective RET inhibitor. Mol. Cancer Ther., 2018, 17(1_Supplement Suppl.), B173-B173.
[http://dx.doi.org/10.1158/1535-7163.TARG-17-B173]
[43]
Schoffski, P.; Cho, B.C.; Italiano, A.; Loong, H.H.F.; Massard, C.; Medina Rodriguez, L.; Shih, J.Y.; Subbiah, V.; Verlingue, L.; Andreas, K.; Basson, C.T.; Clawson, A.; Ho, P.T.C.; Knight, S.; Scheuber, A.; Keegan, M. BOS172738, a highly potent and selective RET inhibitor, for the treatment of RET -altered tumors including RET -fusion+ NSCLC and RET -mutant MTC: Phase 1 study results. J. Clin. Oncol., 2021, 39(15_suppl Suppl.), 3008-3008.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.3008]
[44]
Jiang, Y.; Peng, X.; Ji, Y.; Dai, Y.; Fang, Y.; Xiong, B.; Ren, W.; Hu, Y.; Chen, Y.; Ai, J. The novel ret inhibitor SYHA1815 inhibits ret-driven cancers and overcomes gatekeeper mutations by inducing g1 cell-cycle arrest through c-myc downregulation. Mol. Cancer Ther., 2021, 20(11), 2198-2206.
[http://dx.doi.org/10.1158/1535-7163.MCT-21-0127] [PMID: 34518294]
[45]
Dawood, S.S.; Brzozowski, K. Use of RET inhibitors among patients with advanced NSCLC: A real-world evidence analysis. J. Clin. Oncol., 2022, 40(S16), 9079.
[http://dx.doi.org/10.1200/JCO.2022.40.16_suppl.9079]
[46]
Lin, J.J.; Liu, S.V.; McCoach, C.E.; Zhu, V.W.; Tan, A.C.; Yoda, S.; Peterson, J.; Do, A.; Prutisto-Chang, K.; Dagogo-Jack, I.; Sequist, L.V.; Wirth, L.J.; Lennerz, J.K.; Hata, A.N.; Mino-Kenudson, M.; Nardi, V.; Ou, S.H.I.; Tan, D.S.W.; Gainor, J.F. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann. Oncol., 2020, 31(12), 1725-1733.
[http://dx.doi.org/10.1016/j.annonc.2020.09.015] [PMID: 33007380]
[47]
Solomon, B.J.; Tan, L.; Lin, J.J.; Wong, S.Q.; Hollizeck, S.; Ebata, K.; Tuch, B.B.; Yoda, S.; Gainor, J.F.; Sequist, L.V.; Oxnard, G.R.; Gautschi, O.; Drilon, A.; Subbiah, V.; Khoo, C.; Zhu, E.Y.; Nguyen, M.; Henry, D.; Condroski, K.R.; Kolakowski, G.R.; Gomez, E.; Ballard, J.; Metcalf, A.T.; Blake, J.F.; Dawson, S.J.; Blosser, W.; Stancato, L.F.; Brandhuber, B.J.; Andrews, S.; Robinson, B.G.; Rothenberg, S.M. RET solvent front mutations mediate acquired resistance to selective ret inhibition in ret-driven malignancies. J. Thorac. Oncol., 2020, 15(4), 541-549.
[http://dx.doi.org/10.1016/j.jtho.2020.01.006] [PMID: 31988000]
[48]
Ali, F.; Neha, K.; Chauhan, G. Pralsetinib: Chemical and therapeutic development with FDA authorization for the management of RET fusion-positive non-small-cell lung cancers. Arch. Pharm. Res., 2022, 45(5), 309-327.
[http://dx.doi.org/10.1007/s12272-022-01385-3] [PMID: 35598228]
[49]
Chen, K.; Zhang, F.; Pan, G.; Sheng, J.; Ye, J.; Xu, Y.; Yu, X.; Huang, Z.; Fan, Y. A case of resistance to selective ret-tki therapy with pleural-genotyped met amplification and response to crizotinib. Clin. Lung Cancer, 2021, 22(1), e1-e4.
[http://dx.doi.org/10.1016/j.cllc.2020.07.007] [PMID: 32778510]
[50]
Rosen, E.Y.; Won, H.H.; Zheng, Y.; Cocco, E.; Selcuklu, D.; Gong, Y.; Friedman, N.D.; de Bruijn, I.; Sumer, O.; Bielski, C.M.; Savin, C.; Bourque, C.; Falcon, C.; Clarke, N.; Jing, X.; Meng, F.; Zimel, C.; Shifman, S.; Kittane, S.; Wu, F.; Ladanyi, M.; Ebata, K.; Kherani, J.; Brandhuber, B.J.; Fagin, J.; Sherman, E.J.; Rekhtman, N.; Berger, M.F.; Scaltriti, M.; Hyman, D.M.; Taylor, B.S.; Drilon, A. The evolution of RET inhibitor resistance in RET-driven lung and thyroid cancers. Nat. Commun., 2022, 13(1), 1450.
[http://dx.doi.org/10.1038/s41467-022-28848-x] [PMID: 35304457]
[51]
Repetto, M.; Crimini, E.; Ascione, L.; Boscolo Bielo, L.; Belli, C.; Curigliano, G. The return of RET Gate Keeper mutations? an in-silico exploratory analysis of potential resistance mechanisms to novel RET macrocyclic inhibitor TPX-0046. Invest. New Drugs, 2022, 40(5), 1133-1136.
[http://dx.doi.org/10.1007/s10637-022-01259-x]
[52]
Drilon, A.E.; Zhai, D.; Rogers, E.; Deng, W.; Zhang, X.; Ung, J.; Lee, D.; Rodon, L.; Graber, A.; Zimmerman, Z.F.; Murray, B.W.; Subbiah, V. The next-generation RET inhibitor TPX-0046 is active in drug-resistant and naïve RET-driven cancer models. J. Clin. Oncol., 2020, 38(S15), 3616-3616.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.3616]
[53]
Drilon, A.; Rogers, E.; Zhai, D.; Deng, W.; Zhang, X.; Lee, D.; Ung, J.; Whitten, J.; Zhang, H.; Liu, J.; Hu, T.; Zhuang, H.; Lu, Y.; Huang, Z.; Graber, A.; Zimmerman, Z.; Xin, R.; Cui, J.J.; Subbiah, V. TPX-0046 is a novel and potent RET/SRC inhibitor for RET-driven cancers. Ann. Oncol., 2019, 30, v190-v191.
[http://dx.doi.org/10.1093/annonc/mdz244.068]
[54]
Lovati, E.; Giorgino, R.; Doria, S.; Giuliano, C.; Bonifacio, A.; Igarashi, M.; Miyazaki, I.; Kato, M.; Bernareggi, A. Inventors, Methods of using 4-amino-n-[4-(methoxymethyl)phenyl]-7-(1-methylcyclopropyl)-6-(3-morpholinoprop-1-yn-1-yl)-7hpyrrolo[2,3-d]pyrimidine-5-carboxamide for the treatment of tumors. WO Patent 2022106529, 2022.
[55]
Odintsov, I. Comparison of TAS0953/HM06 and selpercatinib in RET fusion-driven preclinical disease models of intracranial metastases. J. Clin. Oncol., 2022, 40(S16), 2024.
[http://dx.doi.org/10.1200/JCO.2022.40.16_suppl.2024]
[56]
Loxo oncology. Pre-clinical characterization of potent and selective next-generation RET inhibitors. Available from: https://www.loxooncology.com/docs/presentations/AACR_RET_LOX228_eposter_24Mar2021_NEW.pdf [Accessed March 21, 2022]
[57]
Schenck Eidam, H.; Russell, J.; Raha, K.; DeMartino, M.; Qin, D.; Guan, H.A.; Zhang, Z.; Zhen, G.; Yu, H.; Wu, C.; Pan, Y.; Joberty, G.; Zinn, N.; Laquerre, S.; Robinson, S.; White, A.; Giddings, A.; Mohammadi, E.; Greenwood-Van Meerveld, B.; Oliff, A.; Kumar, S.; Cheung, M. Discovery of a first-in-class gut-restricted ret kinase inhibitor as a clinical candidate for the treatment of IBS. ACS Med. Chem. Lett., 2018, 9(7), 623-628.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00035] [PMID: 30034590]
[58]
Luo, Z.; Wang, L.; Fu, Z.; Shuai, B.; Luo, M.; Hu, G.; Chen, J.; Sun, J.; Wang, J.; Li, J.; Chen, S.; Zhang, Y. Discovery and optimization of selective RET inhibitors via scaffold hopping. Bioorg. Med. Chem. Lett., 2021, 47, 128149.
[http://dx.doi.org/10.1016/j.bmcl.2021.128149] [PMID: 34058344]
[59]
Su, Y.; Wang, J.; Bao, R. Inhibitor containing bicyclic derivative, preparation method therefor and use thereof. WO patent 2020228756, 2020.
[60]
Dong, H.; Yang, L.; Guo, L. Inventors, crystal form of free base of inhibitor containing bicyclic ring derivative and preparation method and application of crystal form. WO Patent 2022100738, 2022.
[61]
Mathison, C.J.N.; Chianelli, D.; Rucker, P.V.; Nelson, J.; Roland, J.; Huang, Z.; Yang, Y.; Jiang, J.; Xie, Y.F.; Epple, R.; Bursulaya, B.; Lee, C.; Gao, M.Y.; Shaffer, J.; Briones, S.; Sarkisova, Y.; Galkin, A.; Li, L.; Li, N.; Li, C.; Hua, S.; Kasibhatla, S.; Kinyamu-Akunda, J.; Kikkawa, R.; Molteni, V.; Tellew, J.E. Efficacy and tolerability of pyrazolo[1,5- a ]pyrimidine ret kinase inhibitors for the treatment of lung adenocarcinoma. ACS Med. Chem. Lett., 2020, 11(4), 558-565.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00015] [PMID: 32292564]
[62]
Mathison, C.J.N.; Yang, Y.; Nelson, J.; Huang, Z.; Jiang, J.; Chianelli, D.; Rucker, P.V.; Roland, J.; Xie, Y.F.; Epple, R.; Bursulaya, B.; Lee, C.; Gao, M.Y.; Shaffer, J.; Briones, S.; Sarkisova, Y.; Galkin, A.; Li, L.; Li, N.; Li, C.; Hua, S.; Kasibhatla, S.; Kinyamu-Akunda, J.; Kikkawa, R.; Molteni, V.; Tellew, J.E. Antitarget selectivity and tolerability of novel pyrrolo[2,3- d ]pyrimidine RET inhibitors. ACS Med. Chem. Lett., 2021, 12(12), 1912-1919.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00450] [PMID: 34917254]
[63]
Yang, J.; Chen, K.; Zhang, G.; Yang, Q.Y.; Li, Y.S.; Huang, S.Z.; Wang, Y.L.; Yang, W.; Jiang, X.J.; Yan, H.X.; Zhu, J.Q.; Xiang, R.; Luo, Y.F.; Li, W.M.; Wei, Y.Q.; Li, L.L.; Yang, S.Y. Structural optimization and structure-activity relationship studies of N-phenyl-7,8-dihydro-6H-pyrimido[5,4-b][1,4]oxazin-4-amine derivatives as a new class of inhibitors of RET and its drug resistance mutants. Eur. J. Med. Chem., 2018, 143, 1148-1164.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.018] [PMID: 29133048]
[64]
Li, X.; Su, J.; Yang, Y.; Lian, W.; Deng, Z.; Yang, Z.; Chen, G.; Zhang, B.; Dong, C.; Liu, X.; Li, L.; Wang, Z.; Hu, Z.; Xu, Q.; Deng, X. Discovery of 4-methyl-N-(4-((4-methylpiperazin- 1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-((6-(pyridin-3-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-oxy)benzamide as a potent inhibitor of RET and its gatekeeper mutant. Eur. J. Med. Chem., 2020, 207, 112755.
[http://dx.doi.org/10.1016/j.ejmech.2020.112755] [PMID: 32882611]
[65]
Newton, R.; Waszkowycz, B.; Seewooruthun, C.; Burschowsky, D.; Richards, M.; Hitchin, S.; Begum, H.; Watson, A.; French, E.; Hamilton, N.; Jones, S.; Lin, L.Y.; Waddell, I.; Echalier, A.; Bayliss, R.; Jordan, A.M.; Ogilvie, D. Discovery and optimization of wt-RET/KDR-selective inhibitors of retv804m kinase. ACS Med. Chem. Lett., 2020, 11(4), 497-505.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00615] [PMID: 32292556]
[66]
Drilon, A.; Ou, S.H.I.; Cho, B.C.; Kim, D.W.; Lee, J.; Lin, J.J.; Zhu, V.W.; Ahn, M.J.; Camidge, D.R.; Nguyen, J.; Zhai, D.; Deng, W.; Huang, Z.; Rogers, E.; Liu, J.; Whitten, J.; Lim, J.K.; Stopatschinskaja, S.; Hyman, D.M.; Doebele, R.C.; Cui, J.J.; Shaw, A.T. Repotrectinib (TPX-0005) is a next-generation ros1/trk/alk inhibitor that potently inhibits ros1/trk/alk solvent- front mutations. Cancer Discov., 2018, 8(10), 1227-1236.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0484] [PMID: 30093503]
[67]
Song, X.; Zhong, H.; Qu, X.; Yang, L.; Jiang, B. Two novel strategies to overcome the resistance to ALK tyrosine kinase inhibitor drugs: Macrocyclic inhibitors and proteolysis‐targeting chimeras. MedComm, 2021, 2(3), 341-350.
[http://dx.doi.org/10.1002/mco2.42] [PMID: 34766150]
[68]
Johnson, T.W.; Richardson, P.F.; Bailey, S.; Brooun, A.; Burke, B.J.; Collins, M.R.; Cui, J.J.; Deal, J.G.; Deng, Y.L.; Dinh, D.; Engstrom, L.D.; He, M.; Hoffman, J.; Hoffman, R.L.; Huang, Q.; Kania, R.S.; Kath, J.C.; Lam, H.; Lam, J.L.; Le, P.T.; Lingardo, L.; Liu, W.; McTigue, M.; Palmer, C.L.; Sach, N.W.; Smeal, T.; Smith, G.L.; Stewart, A.E.; Timofeevski, S.; Zhu, H.; Zhu, J.; Zou, H.Y.; Edwards, M.P. Discovery of (10 R )-7-Amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro- 2H -8,4-(metheno)pyrazolo[4,3- h ][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a Macrocyclic Inhibitor of Anaplastic Lymphoma Kinase (ALK) and c-ros Oncogene 1 (ROS1) with Preclinical Brain Exposure and Broad-Spectrum Potency against ALK-Resistant Mutations. J. Med. Chem., 2014, 57(11), 4720-4744.
[http://dx.doi.org/10.1021/jm500261q] [PMID: 24819116]
[69]
Drilon, A.; Nagasubramanian, R.; Blake, J.F.; Ku, N.; Tuch, B.B.; Ebata, K.; Smith, S.; Lauriault, V.; Kolakowski, G.R.; Brandhuber, B.J.; Larsen, P.D.; Bouhana, K.S.; Winski, S.L.; Hamor, R.; Wu, W.I.; Parker, A.; Morales, T.H.; Sullivan, F.X.; DeWolf, W.E.; Wollenberg, L.A.; Gordon, P.R.; Douglas-Lindsay, D.N.; Scaltriti, M.; Benayed, R.; Raj, S.; Hanusch, B.; Schram, A.M.; Jonsson, P.; Berger, M.F.; Hechtman, J.F.; Taylor, B.S.; Andrews, S.; Rothenberg, S.M.; Hyman, D.M. A next-generation trk kinase inhibitor overcomes acquired resistance to prior trk kinase inhibition in patients with trk fusion–positive solid tumors. Cancer Discov., 2017, 7(9), 963-972.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0507] [PMID: 28578312]
[70]
Haratake, N.; Toyokawa, G.; Seto, T.; Tagawa, T.; Okamoto, T.; Yamazaki, K.; Takeo, S.; Mori, M. The mechanisms of resistance to second- and third-generation ALK inhibitors and strategies to overcome such resistance. Expert Rev. Anticancer Ther., 2021, 21(9), 975-988.
[http://dx.doi.org/10.1080/14737140.2021.1940964] [PMID: 34110954]
[71]
Cocco, E.; Schram, A.M.; Kulick, A.; Misale, S.; Won, H.H.; Yaeger, R.; Razavi, P.; Ptashkin, R.; Hechtman, J.F.; Toska, E.; Cownie, J.; Somwar, R.; Shifman, S.; Mattar, M.; Selçuklu, S.D.; Samoila, A.; Guzman, S.; Tuch, B.B.; Ebata, K.; de Stanchina, E.; Nagy, R.J.; Lanman, R.B.; Houck-Loomis, B.; Patel, J.A.; Berger, M.F.; Ladanyi, M.; Hyman, D.M.; Drilon, A.; Scaltriti, M. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat. Med., 2019, 25(9), 1422-1427.
[http://dx.doi.org/10.1038/s41591-019-0542-z] [PMID: 31406350]
[72]
Wrobleski, S.T.; Moslin, R.; Lin, S.; Zhang, Y.; Spergel, S.; Kempson, J.; Tokarski, J.S.; Strnad, J.; Zupa-Fernandez, A.; Cheng, L.; Shuster, D.; Gillooly, K.; Yang, X.; Heimrich, E.; McIntyre, K.W.; Chaudhry, C.; Khan, J.; Ruzanov, M.; Tredup, J.; Mulligan, D.; Xie, D.; Sun, H.; Huang, C.; D’Arienzo, C.; Aranibar, N.; Chiney, M.; Chimalakonda, A.; Pitts, W.J.; Lombardo, L.; Carter, P.H.; Burke, J.R.; Weinstein, D.S. Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: Discovery of the allosteric inhibitor BMS-986165. J. Med. Chem., 2019, 62(20), 8973-8995.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00444] [PMID: 31318208]
[73]
Chang, Y.; Xu, S.; Ding, K. Tyrosine kinase 2 (TYK2) allosteric inhibitors to treat autoimmune diseases. J. Med. Chem., 2019, 62(20), 8951-8952.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01612] [PMID: 31603320]
[74]
Wylie, A.A.; Schoepfer, J.; Jahnke, W.; Cowan-Jacob, S.W.; Loo, A.; Furet, P.; Marzinzik, A.L.; Pelle, X.; Donovan, J.; Zhu, W.; Buonamici, S.; Hassan, A.Q.; Lombardo, F.; Iyer, V.; Palmer, M.; Berellini, G.; Dodd, S.; Thohan, S.; Bitter, H.; Branford, S.; Ross, D.M.; Hughes, T.P.; Petruzzelli, L.; Vanasse, K.G.; Warmuth, M.; Hofmann, F.; Keen, N.J.; Sellers, W.R. The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1. Nature, 2017, 543(7647), 733-737.
[http://dx.doi.org/10.1038/nature21702] [PMID: 28329763]
[75]
Lu, S.; He, X.; Ni, D.; Zhang, J. Allosteric modulator discovery: From serendipity to structure-based design. J. Med. Chem., 2019, 62(14), 6405-6421.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01749] [PMID: 30817889]
[76]
Hughes, S.J.; Testa, A.; Thompson, N.; Churcher, I. The rise and rise of protein degradation: Opportunities and challenges ahead. Drug Discov. Today, 2021, 26(12), 2889-2897.
[http://dx.doi.org/10.1016/j.drudis.2021.08.006] [PMID: 34419629]
[77]
Sun, X.; Rao, Y. PROTACs as potential therapeutic agents for cancer drug resistance. Biochemistry, 2020, 59(3), 240-249.
[http://dx.doi.org/10.1021/acs.biochem.9b00848] [PMID: 31661257]
[78]
Buhimschi, A.D.; Armstrong, H.A.; Toure, M.; Jaime-Figueroa, S.; Chen, T.L.; Lehman, A.M.; Woyach, J.A.; Johnson, A.J.; Byrd, J.C.; Crews, C.M. Targeting the C481S ibrutinib-resistance mutation in bruton’s tyrosine kinase using protac-mediated degradation. Biochemistry, 2018, 57(26), 3564-3575.
[http://dx.doi.org/10.1021/acs.biochem.8b00391] [PMID: 29851337]
[79]
Sun, Y.; Zhao, X.; Ding, N.; Gao, H.; Wu, Y.; Yang, Y.; Zhao, M.; Hwang, J.; Song, Y.; Liu, W.; Rao, Y. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res., 2018, 28(7), 779-781.
[http://dx.doi.org/10.1038/s41422-018-0055-1] [PMID: 29875397]
[80]
Sun, Y.; Ding, N.; Song, Y.; Yang, Z.; Liu, W.; Zhu, J.; Rao, Y. Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia, 2019, 33(8), 2105-2110.
[http://dx.doi.org/10.1038/s41375-019-0440-x] [PMID: 30858551]
[81]
Zhao, Q.; Ren, C.; Liu, L.; Chen, J.; Shao, Y.; Sun, N.; Sun, R.; Kong, Y.; Ding, X.; Zhang, X.; Xu, Y.; Yang, B.; Yin, Q.; Yang, X.; Jiang, B. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von hippel–lindau (VHL) E3 ubiquitin ligase. J. Med. Chem., 2019, 62(20), 9281-9298.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01264] [PMID: 31539241]
[82]
Salami, J.; Alabi, S.; Willard, R.R.; Vitale, N.J.; Wang, J.; Dong, H.; Jin, M.; McDonnell, D.P.; Crew, A.P.; Neklesa, T.K.; Crews, C.M. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun. Biol., 2018, 1(1), 100.
[http://dx.doi.org/10.1038/s42003-018-0105-8] [PMID: 30271980]
[83]
Su, S.; Yang, Z.; Gao, H.; Yang, H.; Zhu, S.; An, Z.; Wang, J.; Li, Q.; Chandarlapaty, S.; Deng, H.; Wu, W.; Rao, Y. Potent and preferential degradation of cdk6 via proteolysis targeting chimera degraders. J. Med. Chem., 2019, 62(16), 7575-7582.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00871] [PMID: 31330105]

© 2024 Bentham Science Publishers | Privacy Policy