Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Functional Modification of Meta-aramid: A Review

Author(s): Zheng Zhang, Xiaoyan Wang, Changhai Xu*, Yang Jiang and Jinmei Du*

Volume 21, Issue 4, 2024

Published on: 12 May, 2023

Page: [436 - 444] Pages: 9

DOI: 10.2174/1570193X20666230302114735

Price: $65

Abstract

Meta-aramid is a high-performance polymer based on amide aromatic rings, which has excellent properties because of its amide bonds and rigid aromaticity. Meta-aramid has been widely used in the fields of transportation, energy, communication, high-performance protective clothing, military, and aerospace due to its extraordinary thermal stability, mechanical properties, and chemical structural stability. Compared to aliphatic polyamides, meta-aramid has higher stiffness and glass transition temperature. In addition, meta-aramid has poor solubility, and the interfacial compatibility with other materials needs to be improved. Therefore, meta-aramid is modified by copolymerization and surface grafting for the purpose of intensifying its functions. The purpose of this review is to discuss the methods for modification of meta-aramid and the properties of the modified meta-aramids.

Graphical Abstract

[1]
Li, Q.; Zhang, W.; Zhai, J.; Yu, D. Aramid fiber preparation, industry status and market prospect at home and abroad. Synthetic Fiber in China, 2014, 43(6), 19-23.
[http://dx.doi.org/10.16090/j.cnki.hcxw.2014.06.006]
[2]
Wang, H.; Chun, J. Research progress and application of aromatic polyamide fiber. Melliand China, 2020, (4), 4-9.
[3]
Gore, P.M.; Kandasubramanian, B. Functionalized aramid fibers and composites for protective applications: A review. Ind. Eng. Chem. Res., 2018, 57(49), 16537-16563.
[http://dx.doi.org/10.1021/acs.iecr.8b04903]
[4]
Mishra, N.; Madhad, H.; Vasava, D. Progress in the chemistry of functional aramids properties. J. Heterocycl. Chem., 2021, 58(10), 1887-1913.
[http://dx.doi.org/10.1002/jhet.4336]
[5]
García, J.M.; García, F.C.; Serna, F.; de la Peña, J.L. High-performance aromatic polyamides. Prog. Polym. Sci., 2010, 35(5), 623-686.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.09.002]
[6]
Chen, C.; Wang, X.; Wang, F.; Peng, T. Preparation and characterization of para-aramid fibers with the main chain containing heterocyclic units. J. Macromol. Sci. Part B Phys., 2020, 59(2), 90-99.
[http://dx.doi.org/10.1080/00222348.2019.1694754]
[7]
Chen, L.; Hu, Z.; Xie, X.; Liu, Z. Properties and structures of terephthalyl chloride (TPC) modified meta‐aramid copolymers. J. Macromol. Sci. Part A Pure Appl. Chem., 2006, 43(11), 1741-1748.
[http://dx.doi.org/10.1080/10601320600939429]
[8]
Amininasab, S.M.; Rashidi, A.; Taghavi, M.; Shami, Z. Preparation and characterization of novel thermostable polyamides bearing different photoactive pendent architectures with antibacterial properties. Chin. J. Polym. Sci., 2016, 34(6), 766-776.
[http://dx.doi.org/10.1007/s10118-016-1798-0]
[9]
Tamami, B.; Yeganeh, H. Synthesis and properties of novel aromatic polyamides based on 4-aryl-2,6-bis(4-chlorocarbonylphenyl) pyridines. Eur. Polym. J., 2002, 38(5), 933-940.
[http://dx.doi.org/10.1016/S0014-3057(01)00264-6]
[10]
Dobb, M.G.; Robson, R.M. Structural characteristics of aramid fibre variants. J. Mater. Sci., 1990, 25(1), 459-464.
[http://dx.doi.org/10.1007/BF00714056]
[11]
Yuan, H.; Wang, W.; Yang, D.; Zhou, X.; Zhao, Z.; Zhang, L.; Wang, S.; Feng, J. Hydrophilicity modification of aramid fiber using a linear shape plasma excited by nanosecond pulse. Surf. Coat. Tech., 2018, 344, 614-620.
[http://dx.doi.org/10.1016/j.surfcoat.2018.03.057]
[12]
Nasser, J.; Lin, J.; Steinke, K.; Sodano, H.A. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings. Compos. Sci. Technol., 2019, 174, 125-133.
[http://dx.doi.org/10.1016/j.compscitech.2019.02.025]
[13]
Zhang, B.; Wang, W.; Tian, M.; Ning, N.; Zhang, L. Preparation of aramid nanofiber and its application in polymer reinforcement: A review. Eur. Polym. J., 2020, 139, 109996.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109996]
[14]
Fan, Y.; Li, Z.; Wei, J. Application of aramid nanofibers in nanocomposites: A brief review. Polymers , 2021, 13(18), 3071.
[http://dx.doi.org/10.3390/polym13183071] [PMID: 34577972]
[15]
Chae, H.G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci., 2006, 100(1), 791-802.
[http://dx.doi.org/10.1002/app.22680]
[16]
Ma, P.; Dai, C.; Wang, H.; Li, Z.; Liu, H.; Li, W.; Yang, C. A review on high temperature resistant polyimide films: Heterocyclic structures and nanocomposites. Composites Communications, 2019, 16, 84-93.
[http://dx.doi.org/10.1016/j.coco.2019.08.011]
[17]
Luo, L.; Yuan, Y.; Dai, Y.; Cheng, Z.; Wang, X.; Liu, X. The novel high performance aramid fibers containing benzimidazole moieties and chloride substitutions. Mater. Des., 2018, 158, 127-135.
[http://dx.doi.org/10.1016/j.matdes.2018.08.025]
[18]
Cao, K.; Liu, Y.; Yang, Y.; Yuan, F.; Wang, J.; Liu, H.; Jiang, M.; Yang, J. The preparation and characterization of a heterocyclic meta-aramid fiber with outstanding thermal stability. High Perform. Polym., 2021, 33(5), 554-567.
[http://dx.doi.org/10.1177/0954008320974415]
[19]
Ayala, V.; Maya, E.M.; García, J.M.; De La Campa, J.G.; Lozano, A.E.; De Abajo, J. Synthesis, characterization, and water sorption properties of new aromatic polyamides containing benzimidazole and ethylene oxide moieties. J. Polym. Sci. A Polym. Chem., 2005, 43(1), 112-121.
[http://dx.doi.org/10.1002/pola.20486]
[20]
Trigo-López, M.; Sanjuán, A.M.; Mendía, A.; Muñoz, A.; García, F.C.; García, J.M. Heteroaromatic polyamides with improved thermal and mechanical properties. Polymers , 2020, 12(8), 1793.
[http://dx.doi.org/10.3390/polym12081793] [PMID: 32785165]
[21]
Carja, I.D.; Hamciuc, C.; Hamciuc, E.; Vlad-Bubulac, T.; Lisa, G. New highly thermostable aromatic polyamides with pendant phthalonitrile groups. Macromol. Res., 2012, 20(10), 1011-1020.
[http://dx.doi.org/10.1007/s13233-012-0147-6]
[22]
Trigo-López, M.; Pablos, J.L.; García, F.C.; Serna, F.; García, J.M. Functional aramids: Aromatic polyamides with reactive azido and amino groups in the pendant structure. J. Polym. Sci. A Polym. Chem., 2014, 52(10), 1469-1477.
[http://dx.doi.org/10.1002/pola.27141]
[23]
Rafiee, Z.; Mallakpour, S. Synthesis and properties of novel brominated chiral polyamides derived from 5-[4-(2-tetrabromophthalimidylpropanoylamino)benzoylamino]isophthalic acid and aromatic diamines. Polym. Bull., 2016, 73(7), 1951-1964.
[http://dx.doi.org/10.1007/s00289-015-1587-x]
[24]
Liu, Y.; Tsai, S. Synthesis and properties of new organosoluble aromatic polyamides with cyclic bulky groups containing phosphorus. Polymer , 2002, 43(21), 5757-5762.
[http://dx.doi.org/10.1016/S0032-3861(02)00473-1]
[25]
Zhang, Z.Y.; Pan, Y.; Zhang, X.L.; Zhou, Y.T.; Liu, X.L. Novel soluble and heat-resistant polyamides derived from 4-(4-diphenylphosphino) phenyl-2,6-bis(4-aminophenyl)pyridine and various aromatic dicarboxylic acids. High Perform. Polym., 2020, 32(8), 914-923.
[http://dx.doi.org/10.1177/0954008320910807]
[26]
Cretenoud, J.; Özen, B.; Schmaltz, T.; Görl, D.; Fabrizio, A.; Corminboeuf, C.; Fadaei Tirani, F.; Scopelliti, R.; Frauenrath, H. Synthesis and characterization of semiaromatic polyamides comprising benzofurobenzofuran repeating units. Polym. Chem., 2017, 8(14), 2197-2209.
[http://dx.doi.org/10.1039/C7PY00129K]
[27]
Zhang, G.; Yan, G.M.; Yu, T.; Lu, J.H.; Huang, X.; Wang, X.J.; Yang, J. Semiaromatic polyamides containing carboxyl unit: Synthesis and properties. Ind. Eng. Chem. Res., 2017, 56(33), 9275-9284.
[http://dx.doi.org/10.1021/acs.iecr.7b01998]
[28]
Diwate, A.V.; Tamboli, A.M.; Ghodke, S.D.; Tamboli, A.B.; Tamboli, M.S.; Maldar, N.N. New polyamides based on diacid with decanediamide and methylene groups and aromatic diamines. J. Appl. Polym. Sci., 2022, 139(21), 52221.
[http://dx.doi.org/10.1002/app.52221]
[29]
Zhou, S.; Wang, X.; Zhang, W.; Zhang, M.; Zhang, X.; Zhao, N.; Liu, R.; Xu, J.; Shen, Z.; Fan, X. Facile preparation and characterization of soluble aramid. J. Appl. Polym. Sci., 2018, 135(23), 4634159.
[http://dx.doi.org/10.1002/app.46341]
[30]
Tamboli, A.B.; Kalshetti, B.S.; Ghodke, S.D.; Diwate, A.V.; Maldar, N.N. Synthesis and characterization of semi-aromatic polyamides containing heterocyclic 1,3,5 s-triazine and methylene spacer group for thermally stable and colloidal property. Des. Monomers Polym., 2020, 23(1), 93-105.
[http://dx.doi.org/10.1080/15685551.2020.1795435] [PMID: 33029078]
[31]
Tamboli, A.B.; Maldar, N.N. Soluble aromatic polyamides containing pendant pentadecyl substituted methoxy phenyl unit. J. Polym. Res., 2019, 26(6), 139.
[http://dx.doi.org/10.1007/s10965-019-1799-0]
[32]
Liu, Y.; Zhou, S.; Zhao, N.; Xu, J.; Shen, Z.; Fan, X.H.; Zhou, Q.F. Facile synthesis and characterization of soluble aramid containing polar hydroxyl side group. Polymer , 2022, 238, 124411.
[http://dx.doi.org/10.1016/j.polymer.2021.124411]
[33]
Li, N.; Zhang, X.K.; Yu, J.R.; Wang, Y.; Zhu, J.; Hu, Z.M. Increased Hydrogen-bonding of Poly(m-phenylene isophthalamide) (PMIA) with Sulfonate Moiety for High-performance Easily Dyeable Fiber. Chin. J. Polym. Sci., 2020, 38(11), 1230-1238.
[http://dx.doi.org/10.1007/s10118-020-2416-8]
[34]
Li, N.; Zhang, X.K.; Yu, J.R.; Wang, Y.; Zhu, J.; Hu, Z.M. Synthesis and characterization of easily colored meta-aramid copolymer containing ether bonds. Chin. J. Polym. Sci., 2019, 37(3), 227-234.
[http://dx.doi.org/10.1007/s10118-019-2200-9]
[35]
Trigo-López, M.; Miguel-Ortega, Á.; Vallejos, S.; Muñoz, A.; Izquierdo, D.; Colina, Á.; García, F.C.; García, J.M. Intrinsically colored wholly aromatic polyamides (aramids). Dyes Pigments, 2015, 122, 177-183.
[http://dx.doi.org/10.1016/j.dyepig.2015.06.027]
[36]
Trigo-López, M.; Reglero Ruiz, J.A.; Peredo, P.D.; Mendía, A.; Muñoz, A.; García, F.C.; García, J.M. Segmented-block Poly(ether amide)s containing flexible polydisperse polyethyleneoxide sequences and rigid aromatic amide moieties. Materials (Basel), 2021, 14(11), 2804.
[http://dx.doi.org/10.3390/ma14112804] [PMID: 34070343]
[37]
Bonardd, S.; Ángel, A.; Norambuena, Á.; Coll, D.; Tundidor-Camba, A.; Ortiz, P.A. Novel polyelectrolytes obtained by direct alkylation and ion replacement of a new aromatic polyamide copolymer bearing pyridinyl pendant groups. Polymers , 2021, 13(12), 1993.
[http://dx.doi.org/10.3390/polym13121993] [PMID: 34207038]
[38]
Penn, L.S.; Jutis, B. The effect of pendent groups at the fiber surface on interfacial adhesion. J. Adhes., 1989, 30(1-4), 67-81.
[http://dx.doi.org/10.1080/00218468908048196]
[39]
Benrashid, R.; Tesoro, G.C. Effect of surface-limited reactions on the properties of kevlar® fibers. Text. Res. J., 1990, 60(6), 334-344.
[http://dx.doi.org/10.1177/004051759006000604]
[40]
Zhang, H.; Liang, G.; Gu, A.; Yuan, L. Facile preparation of hyperbranched polysiloxane-grafted aramid fibers with simultaneously improved UV resistance, surface activity, and thermal and mechanical properties. Ind. Eng. Chem. Res., 2014, 53(7), 2684-2696.
[http://dx.doi.org/10.1021/ie403642m]
[41]
Jia, C.; Zhang, R.; Yuan, C.; Ma, Z.; Du, Y.; Liu, L.; Huang, Y. Surface modification of aramid fibers by amino functionalized silane grafting to improve interfacial property of aramid fibers reinforced composite. Polym. Compos., 2020, 41(5), 2046-2053.
[http://dx.doi.org/10.1002/pc.25519]
[42]
Sa, R.; Yan, Y.; Wei, Z.; Zhang, L.; Wang, W.; Tian, M. Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting. ACS Appl. Mater. Interfaces, 2014, 6(23), 21730-21738.
[http://dx.doi.org/10.1021/am507087p] [PMID: 25401775]
[43]
Cheng, Z.; Li, B.; Huang, J.; Chen, T.; Liu, Y.; Wang, X.; Liu, X. Covalent modification of Aramid fibers’ surface via direct fluorination to enhance composite interfacial properties. Mater. Des., 2016, 106, 216-225.
[http://dx.doi.org/10.1016/j.matdes.2016.05.120]
[44]
Cheng, Z.; Han, Y.; Luo, L.; Liu, X. Grafting degradable coordination polymer on aramid fiber surface to improve its interfacial properties. Mater. Lett., 2018, 233, 102-106.
[http://dx.doi.org/10.1016/j.matlet.2018.08.134]
[45]
Liu, T.M.; Zheng, Y.S.; Hu, J. Surface modification of Aramid fibers with new chemical method for improving interfacial bonding strength with epoxy resin. J. Appl. Polym. Sci., 2010, 118(5), 2541-2552.
[http://dx.doi.org/10.1002/app.32478]
[46]
Wei, X.; Liu, M.; Lu, K.; Wu, H.; Wu, J. Friedel-Crafts alkylation modification and hydrophilic soft finishing of meta aramid. J. Eng. Fibers Fabrics, 2021, 16.
[http://dx.doi.org/10.1177/1558925021999061]
[47]
Chen, W.; Qian, X.M.; He, X.Q.; Liu, Z.Y.; Liu, J.P. Surface modification of Kevlar by grafting carbon nanotubes. J. Appl. Polym. Sci., 2012, 123(4), 1983-1990.
[http://dx.doi.org/10.1002/app.34703]
[48]
Chou, C.T.; Penn, L.S. Chemical bonding and physical interaction by attached chains at the fiber-matrix interface. J. Adhes., 1991, 36(2-3), 125-137.
[http://dx.doi.org/10.1080/00218469108027067]
[49]
Cruz dos Santos, S.; Fernandes Loguercio, L.; Silva Corrêa, D.; Ramos Nunes, M.; Antônio Villetti, M.; Teresinha, S.G.I. Interfacial properties and thermal stability of modified poly(m -phenylene isophthalamide) thin films. Surf. Interface Anal., 2013, 45(4), 837-843.
[http://dx.doi.org/10.1002/sia.5177]
[50]
Takayanagi, M.; Kajiyama, T.; Katayose, T. Surface-modified kevlar fiber-reinforced polyethylene and ionomer. J. Appl. Polym. Sci., 1982, 27(10), 3903-3917.
[http://dx.doi.org/10.1002/app.1982.070271024]
[51]
Ai, T.; Wang, R.; Zhou, W. Effect of grafting alkoxysilane on the surface properties of Kevlar fiber. Polym. Compos., 2007, 28(3), 412-416.
[http://dx.doi.org/10.1002/pc.20313]
[52]
Lin, J.S. Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion. Eur. Polym. J., 2002, 38(1), 79-86.
[http://dx.doi.org/10.1016/S0014-3057(01)00176-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy