Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Hypoglycemic Effect of Trichosanthes pericarpium to Type 2 Model Diabetic Mice via Intestinal Bacteria Transplantation

Author(s): Yidi Wang, Huaibo Yuan*, Suisui Wang and Tingting Zeng

Volume 24, Issue 13, 2023

Published on: 29 March, 2023

Page: [1694 - 1707] Pages: 14

DOI: 10.2174/1389201024666230301100119

Price: $65

Abstract

Background: The treatment of diabetes with plant ingredients such as in Traditional Chinese Medicine (TCM) is an alternative to classical chemotherapy.

Objective: This study aims to explore the hypoglycemic effect of Trichosanthes pericarpium powder (TP) and intestinal bacteria transplantation in type 2 diabetic mice. The relationship between intestinal bacteria transplantation and improvement in insulin resistance was also investigated.

Methods: The polyphenols and terpenoids in the TP were identified by LC-MS/MS. Streptozotocin was used to induce a mouse model of type 2 diabetes. Diabetic mice were treated with different doses of TP and the intestinal bacteria obtained from the high-dose TP group for four weeks.

Results: As a result, FBG levels were found to be significantly reduced in diabetic mice, weight gain and organ enlargement were alleviated, and insulin resistance was significantly improved. TP administration also improved the disorder in intestinal bacteria in diabetic mice. Besides, TP can increase the liver AMPK, SIRT1, GLUT1, and GLUT4 gene expression, while down-regulated PEPCK and G6Pase gene expression suggest a potential mechanism for hypoglycemia in diabetic mice.

Conclusion: Oral administration of Trichosanthes pericarpium powder in the treatment of diabetes may be achieved by restoring hepatic function, improving insulin resistance, and the dynamic balance of intestinal bacteria.

Graphical Abstract

[1]
DeFronzo, R.A. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med., 2000, 133(1), 73-74.
[http://dx.doi.org/10.7326/0003-4819-133-1-200007040-00016] [PMID: 10877745]
[2]
Shah, V.; Lambeth, S.M.; Carson, T.; Lowe, J.; Ramaraj, T.; Leff, J.W.; Luo, L.; Bell, C.J. Composition diversity and abundance of gut microbiome in prediabetes and type 2 diabetes. J. Diabetes Obes., 2015, 2(2), 108-114.
[http://dx.doi.org/10.15436/2376-0949.15.031] [PMID: 26756039]
[3]
Sato, J.; Kanazawa, A.; Ikeda, F.; Yoshihara, T.; Goto, H.; Abe, H.; Komiya, K.; Kawaguchi, M.; Shimizu, T.; Ogihara, T.; Tamura, Y.; Sakurai, Y.; Yamamoto, R.; Mita, T.; Fujitani, Y.; Fukuda, H.; Nomoto, K.; Takahashi, T.; Asahara, T.; Hirose, T.; Nagata, S.; Yamashiro, Y.; Watada, H. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care, 2014, 37(8), 2343-2350.
[http://dx.doi.org/10.2337/dc13-2817] [PMID: 24824547]
[4]
Liu, T. 16S rDNA analysis of the effect of fecal microbiota transplantation on pulmonary and intestinal flora. 3 Biotech, 2017, 7(6), 370.
[http://dx.doi.org/10.1007/s13205-017-0997-x]
[5]
Angelberger, S.; Reinisch, W.; Makristathis, A.; Lichtenberger, C.; Dejaco, C.; Papay, P.; Novacek, G.; Trauner, M.; Loy, A.; Berry, D. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am. J. Gastroenterol., 2013, 108(10), 1620-1630.
[http://dx.doi.org/10.1038/ajg.2013.257] [PMID: 24060759]
[6]
Xu, J.; Zhao, M.; Qian, D.; Shang, E.; Jiang, S.; Guo, J.; Duan, J.; Du, L. Comparative metabolism of Radix scutellariae extract by intestinal bacteria from normal and type 2 diabetic mice in vitro. J. Ethnopharmacol., 2014, 153(2), 368-374.
[http://dx.doi.org/10.1016/j.jep.2014.02.020] [PMID: 24632019]
[7]
Wang, C.; Yin, Y.; Cao, X.; Li, X. Effects of Maydis stigma polysaccharide on the intestinal microflora in type-2 diabetes. Pharm. Biol., 2016, 54(12), 3086-3092.
[http://dx.doi.org/10.1080/13880209.2016.1211153] [PMID: 27558859]
[8]
Liu, X.; He, Z.; Yin, Y.; Xu, X.; Wu, W.; Li, L. Transcriptome sequencing and analysis during seed growth and development in Euryale ferox Salisb. BMC Genomics, 2018, 19(1), 343.
[http://dx.doi.org/10.1186/s12864-018-4707-9] [PMID: 29743016]
[9]
Li, A.; Sun, A.; Liu, R.; Zhang, Y.; Cui, J. An efficient preparative procedure for main flavonoids from the peel of Trichosanthes kirilowii Maxim. using polyamide resin followed by semi-preparative high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 965, 150-157.
[http://dx.doi.org/10.1016/j.jchromb.2014.06.003] [PMID: 25023212]
[10]
Li, A.F.; Sun, A.L.; Liu, R.M.; Zhang, Y.Q. Chemical constituents of Trichosanthes kirilowii peels. Zhong Yao Cai, 2014, 37(3), 428-431.
[PMID: 25174107]
[11]
Chao, Z.; Liu, J. Chemical constituents of the essential oil from the pericarp of Trichosanthes rosthornii Harms. Zhongguo Zhongyao Zazhi, 1996, 21(6), 357-359, 384.
[http://dx.doi.org/10.7326/0003-4819-133-1-200007040-00016] [PMID: 9388925]
[12]
Du, S.J. Studies on liposoluble constituents of peel of Trichosanthes kirilowii maxim. Pharm. Indust., 1988, 19, 301.
[13]
Yang, X.; Cheng, X.; Lu, Y. Effect of Euryale ferox seeds ethanol extract on renal function of diabetic nephropathy rats and determination of its antioxidant ability in vitro. J. Pharm. Res. Int., 2015, 42(3), 380-385.
[14]
Jian, T.; Yu, C.; Ding, X.; Chen, J.; Li, J.; Zuo, Y.; Ren, B.; Lv, H.; Li, W. Hepatoprotective effect of seed coat of Euryale ferox extract in non-alcoholic fatty liver disease induced by high-fat diet in mice by increasing irs-1 and inhibiting CYP2E1. J. Oleo Sci., 2019, 68(6), 581-589.
[http://dx.doi.org/10.5650/jos.ess19018] [PMID: 31092797]
[15]
Wang, Z. Determination of content of quercetin and total flavonoids in Trichosanthis pericarpium from different areas. Chin. Med., 2014, 20(19), 86-89.
[16]
Li, D. Analysis and quality evaluation of multiple types of chemical components in Trichosanthis pericarpium from different producing areas and strains. Chin. Med., 2020, 36(05), 607-614.
[17]
Archer, S.D.J.; McDonald, I.R.; Herbold, C.W.; Lee, C.K.; Cary, C.S. Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds. Front. Microbiol., 2015, 6, 485.
[http://dx.doi.org/10.3389/fmicb.2015.00485] [PMID: 26074890]
[18]
Yu, J.W.; Deng, Y.P.; Han, X.; Ren, G.F.; Cai, J.; Jiang, G.J. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc. Diabetol., 2016, 15(1), 88.
[http://dx.doi.org/10.1186/s12933-016-0408-3] [PMID: 27316923]
[19]
Bonnard, C. Changes in adiponectin, its receptors and AMPK activity in tissues of diet-induced diabetic mice. Diabetes & Metabolism,, 2008, 34(1), 52-61.
[http://dx.doi.org/10.1016/j.diabet.2007.09.006]
[20]
Jiménez-Flores, L.M. A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules, 2014, 19(6), 8289-8302.
[21]
Luo, J.; Nikolaev, A.Y.; Imai, S.; Chen, D.; Su, F.; Shiloh, A.; Guarente, L.; Gu, W. Negative control of p53 by Sir2α promotes cell survival under stress. Cell, 2001, 107(2), 137-148.
[http://dx.doi.org/10.1016/S0092-8674(01)00524-4] [PMID: 11672522]
[22]
Rodgers, J.T.; Lerin, C.; Haas, W.; Gygi, S.P.; Spiegelman, B.M.; Puigserver, P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature, 2005, 434(7029), 113-118.
[http://dx.doi.org/10.1038/nature03354] [PMID: 15744310]
[23]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human gut microbes associated with obesity. Nature, 2006, 444(7122), 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[24]
Swann, J.R.; Want, E.J.; Geier, F.M.; Spagou, K.; Wilson, I.D.; Sidaway, J.E.; Nicholson, J.K.; Holmes, E. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl. Acad. Sci., 2011, 108(Suppl 1), 4523-4530.
[http://dx.doi.org/10.1073/pnas.1006734107] [PMID: 20837534]
[25]
Evans, J.M.; Morris, L.S.; Marchesi, J.R. The gut microbiome: The role of a virtual organ in the endocrinology of the host. J. Endocrinol., 2013, 218(3), R37-R47.
[http://dx.doi.org/10.1530/JOE-13-0131] [PMID: 23833275]
[26]
Qiao, Y.; Sun, J.; Ding, Y.; Le, G.; Shi, Y. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl. Microbiol. Biotechnol., 2013, 97(4), 1689-1697.
[http://dx.doi.org/10.1007/s00253-012-4323-6] [PMID: 22948953]
[27]
Remely, M.; Aumueller, E.; Merold, C.; Dworzak, S.; Hippe, B.; Zanner, J.; Pointner, A.; Brath, H.; Haslberger, A.G. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene, 2014, 537(1), 85-92.
[http://dx.doi.org/10.1016/j.gene.2013.11.081] [PMID: 24325907]
[28]
Katz, E.B.; Stenbit, A.E.; Hatton, K.; DePinhot, R.; Charron, M.J. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature, 1995, 377(6545), 151-155.
[http://dx.doi.org/10.1038/377151a0] [PMID: 7675081]
[29]
Meyer, J.A.; Froelich, J.M.; Reid, G.E.; Karunarathne, W.K.A.; Spence, D.M. Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT1 transporter. Diabetologia, 2007, 51(1), 175-182.
[http://dx.doi.org/10.1007/s00125-007-0853-3] [PMID: 17965850]
[30]
Dong, Y. Activation of the liver X receptor by agonist TO901317 improves hepatic insulin resistance via suppressing reactive oxygen species and JNK pathway. PLoS One, 2015, 10(4), e0124778.
[http://dx.doi.org/10.1371/journal.pone.0124778]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy