Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Tacrolimus and Azole Derivatives of Agricultural and Human Health Importance: Prediction of ADME Properties

Author(s): Lyudmyla Antypenko*, Konstyantyn Shabelnyk and Sergiy Kovalenko

Volume 20, Issue 1, 2024

Published on: 10 April, 2023

Page: [42 - 48] Pages: 7

DOI: 10.2174/1573409919666230228122259

Price: $65

Abstract

Introduction: Agricultural chemicals are impacting health nowadays. Recently, promising synergistic antifungal interaction between tacrolimus and some azole compounds was studied.

Objective: To determine ADME parameters, potential side effects of test substances to reduce time and resources in the future.

Methods: All descriptors and molecular parameters were obtained by the protocols of SwissADME and ProTox II.

Results: In the result, the following physicochemical and drug-likeness parameters were calculated.

Conclusion: Studied triazoles 1 and 2 showed good ADME characteristics and promising toxicity levels suitable to be checked for in vitro toxicology in case of future advanced results in the agricultural field.

Graphical Abstract

[1]
Berger, S.; El Chazli, Y.; Babu, A.F.; Coste, A.T. Azole resistance in aspergillus fumigatus: a consequence of antifungal use in agriculture? Front. Microbiol., 2017, 8, 1024.
[http://dx.doi.org/10.3389/fmicb.2017.01024] [PMID: 28638374]
[2]
Antypenko, L.; Meyer, F.; Sadykova, Z.; Shabelnyk, K.; Kovalenko, S.; Steffens, K.G.; Garbe, L-A. Combined application of tacrolimus with cyproconazole, hymexazol and novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines as antifungals: in vitro growth inhibition and in silico molecular docking analysis to fungal chitin deacetylase. J. Fungi, 2023, 9(1), 79.
[http://dx.doi.org/10.3390/jof9010079] [PMID: 36675900]
[3]
Liu, Y.; Ahmed, S.; Fang, Y.; Chen, M.; An, J.; Yang, G.; Hou, X.; Lu, J.; Ye, Q.; Zhu, R.; Liu, Q.; Liu, S. Discovery of chitin deacetylase inhibitors through structure-based virtual screening and biological assays. J. Microbiol. Biotechnol., 2022, 32(4), 504-513.
[http://dx.doi.org/10.4014/jmb.2201.01009] [PMID: 35131956]
[4]
Cedergreen, N. Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS One, 2014, 9(5), e96580.
[http://dx.doi.org/10.1371/journal.pone.0096580] [PMID: 24794244]
[5]
SwissADME. Swiss Institute of Bioinformatics., 2022. Available from: http://www.swissadme.ch/index.php#
[6]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[7]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubilityand permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[8]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[9]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[10]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[11]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[12]
Martin, Y.C. A bioavailability score. J. Med. Chem., 2005, 48(9), 3164-3170.
[http://dx.doi.org/10.1021/jm0492002] [PMID: 15857122]
[13]
Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem., 2009, 52(21), 6752-6756.
[http://dx.doi.org/10.1021/jm901241e] [PMID: 19827778]
[14]
Lee, M.S.; Feig, M.; Salsbury, F.R., Jr; Brooks, C.L. III New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations. J. Comput. Chem., 2003, 24(11), 1348-1356.
[http://dx.doi.org/10.1002/jcc.10272] [PMID: 12827676]
[15]
Daina, A.; Michielin, O.; Zoete, V. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model., 2014, 54(12), 3284-3301.
[http://dx.doi.org/10.1021/ci500467k] [PMID: 25382374]
[16]
Moriguchi, I.; Hirono, S.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull., 1992, 40(1), 127-130.
[http://dx.doi.org/10.1248/cpb.40.127]
[17]
Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model., 2007, 47(6), 2140-2148.
[http://dx.doi.org/10.1021/ci700257y] [PMID: 17985865]
[18]
Delaney, J.S. ESOL: estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci., 2004, 44(3), 1000-1005.
[http://dx.doi.org/10.1021/ci034243x] [PMID: 15154768]
[19]
Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model., 2012, 52(2), 420-428.
[http://dx.doi.org/10.1021/ci200387c] [PMID: 22196228]
[20]
Zhang, A.Y.; Camp, W.L.; Elewski, B.E. Advances in topical and systemic antifungals. Dermatol. Clin., 2007, 25(2), 165-183. vi.
[http://dx.doi.org/10.1016/j.det.2007.01.002] [PMID: 17430754]
[21]
Kaur, I.P.; Kakkar, S. Topical delivery of antifungal agents. Expert Opin. Drug Deliv., 2010, 7(11), 1303-1327.
[http://dx.doi.org/10.1517/17425247.2010.525230] [PMID: 20961206]
[22]
Gűngőr, S.; Erdal, M.S.; Aksu, B. New formulation strategies in topical antifungal therapy. J. Cosm. Dermatol. Sci. Appl, 2013, 3, 56-65.
[23]
Ritchie, T.J.; Ertl, P.; Lewis, R. The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov. Today, 2011, 16(1-2), 65-72.
[http://dx.doi.org/10.1016/j.drudis.2010.11.002] [PMID: 21074634]
[24]
Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res., 1992, 9(5), 663-669.
[http://dx.doi.org/10.1023/A:1015810312465] [PMID: 1608900]
[25]
Montanari, F.; Ecker, G.F. Prediction of drug–ABC-transporter interaction-recent advances and future challenges. Adv. Drug Deliv. Rev., 2015, 86, 17-26.
[http://dx.doi.org/10.1016/j.addr.2015.03.001] [PMID: 25769815]
[26]
Szakács, G.; Váradi, A.; Özvegy-Laczka, C.; Sarkadi, B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox). Drug Discov. Today, 2008, 13(9-10), 379-393.
[http://dx.doi.org/10.1016/j.drudis.2007.12.010] [PMID: 18468555]
[27]
Saad, A.H.; DePestel, D.D.; Carver, P.L. Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants. Pharmacotherapy, 2006, 26(12), 1730-1744.
[http://dx.doi.org/10.1592/phco.26.12.1730] [PMID: 17125435]
[28]
Tavira, B.; Gómez, J.; Díaz-Corte, C.; Coronel, D.; Lopez-Larrea, C.; Suarez, B.; Coto, E. The donor ABCB1 (MDR-1) C3435T polymorphism is a determinant of the graft glomerular filtration rate among tacrolimus treated kidney transplanted patients. J. Hum. Genet., 2015, 60(5), 273-276.
[http://dx.doi.org/10.1038/jhg.2015.12] [PMID: 25673014]
[29]
Piletta-Zanin, A.; De Mul, A.; Rock, N.; Lescuyer, P.; Samer, C.F.; Rodieux, F. Case Report: Low hematocrit leading to tacrolimus toxicity. Front. Pharmacol., 2021, 12, 717148.
[http://dx.doi.org/10.3389/fphar.2021.717148] [PMID: 34483924]
[30]
Di, L. The role of drug metabolizing enzymes in clearance. Expert Opin. Drug Metab. Toxicol., 2014, 10(3), 379-393.
[http://dx.doi.org/10.1517/17425255.2014.876006] [PMID: 24392841]
[31]
Oral toxicity prediction results for input compound. 2022. Available from: https://tox-new.charite.de/protox_II/index.php?site=compound_input
[32]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[33]
Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 2008, 3(3), 435-444.
[http://dx.doi.org/10.1002/cmdc.200700139] [PMID: 18064617]
[34]
Daina, A.; Zoete, V. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy