Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Assessment of Wine Quality, Traceability and Detection of Grapes Wine, Detection of Harmful Substances in Alcohol and Liquor Composition Analysis

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 21, Issue 8, 2024

Published on: 27 March, 2023

Page: [1377 - 1399] Pages: 23

DOI: 10.2174/1570180820666230228115450

Price: $65

Abstract

Wine production is the result of the interaction between various strains and grapes, and its good quality is also affected by many factors. Aureobasidium, Cladosporium, Candida, Filobasidium, Hanseniaspora, Hannaella, Saccharomyces, Wickerhamomyce, Alternaria, Starmerella, Acetobacter, Papiliotrema, Bradyrhizobium, Leuconostoclia, Gluconobacter, Comamonas, and Massilia, are significantly correlated with changes of physiological properties and volatile compounds. Phenolic compounds, shortened as phenolics, are a vital parameter to the quality of wine, and wine phenolics include two main families: non-flavonoids, which consist of hydroxybenzoic acids (HBAs), hydroxycinnamic acids (HCAs), and stilbenes, and flavonoids, comprising flavonols, flavan-3-ols, and anthocyanins. Wine quality is determined by either sensory tests or physicochemical tests, and the latter analyse the wine’s chemical parameters such as sugar, pH, and alcohol level. The most important constituents found in wine are Terpenes; Aldehydes, Pyrazines, Esters, Ketones and diketones, Mercaptans, and Lactones. In wine quality analysis, the most chief variables are volatile acidity, alcohol, sulphates, citric acid, density, total sulfur dioxide, chlorides, pH, fixed acidity, free sulfur dioxide, and residual sugar. Some classifiers utilized for wine quality prediction in machine learning are: k-Nearest Neighbor (KNN), Random Forest, Decision Tree, Support Vector Machines, Linear Regression, Stochastic Gradient Descent, Artificial Neural Networks (ANN), and Naive Bayes. This article is aimed to review wine quality parameters, detection and traceability of wine, and detection of harmful substances in alcohol and liquor composition analysis.

Graphical Abstract

[1]
Marín-San Román, S.; Rubio-Bretón, P.; Pérez-Álvarez, E.P.; Garde-Cerdán, T. Advancement in analytical techniques for the extraction of grape and wine volatile compounds. Food Res. Int., 2020, 137, 109712.
[http://dx.doi.org/10.1016/j.foodres.2020.109712] [PMID: 33233285]
[2]
Motta, S.; Guaita, M.; Petrozziello, M.; Ciambotti, A.; Panero, L.; Solomita, M.; Bosso, A. Comparison of the physicochemical and volatile composition of wine fractions obtained by two different dealcoholization techniques. Food Chem., 2017, 221, 1-10.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.046] [PMID: 27979050]
[3]
Sánchez, R.; Rodríguez-Nogales, J.M.; Fernández-Fernández, E.; González, M.R.; Medina-Trujillo, L.; Martín, P. Volatile composition and sensory properties of wines from vineyards affected by iron chlorosis. Food Chem., 2022, 369, 130850.
[http://dx.doi.org/10.1016/j.foodchem.2021.130850] [PMID: 34461510]
[4]
Ríos-Reina, R.; Camiña, J.M.; Callejón, R.M.; Azcarate, S.M. Spectralprint techniques for wine and vinegar characterization, authentication and quality control: Advances and projections. Trends Analyt. Chem., 2021, 134, 116121.
[http://dx.doi.org/10.1016/j.trac.2020.116121]
[5]
Sparrow, A.M.; Gill, W.; Dambergs, R.G.; Close, D.C. Focus on the role of seed tannins and pectolytic enzymes in the color development of Pinot noir wine. Curr. Res. Food Sci., 2021, 4, 405-413.
[http://dx.doi.org/10.1016/j.crfs.2021.05.007] [PMID: 34189466]
[6]
Marmitt, D.J.; Shahrajabian, M.H.; Goettert, M.I.; Rempel, C. Clinical trials with plants in diabetes mellitus therapy: A systematic review. Expert Rev. Clin. Pharmacol., 2021, 14(6), 735-747.
[http://dx.doi.org/10.1080/17512433.2021.1917380] [PMID: 33884948]
[7]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni. Suef Univ. J. Basic Appl. Sci., 2022, 11(1), 26.
[http://dx.doi.org/10.1186/s43088-022-00210-6]
[8]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev. Org. Chem., 2022, 19(3), 293-318.
[http://dx.doi.org/10.2174/1570178618666210707161025]
[9]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Ginkgo Biloba, a famous living fossil tree and an ancient herbal traditional Chinese medicine. Curr. Nutr. Food Sci., 2022, 18(3), 259-264.
[http://dx.doi.org/10.2174/1573401317666210910120735]
[10]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Health benefits of wolfberry (Gou Qi Zi) on the basis of ancient Chinese herbalism and Western modern medicine. Avicenna J. Phytomed., 2021, 11(2), 109-119.
[http://dx.doi.org/10.15835/nsb11310419] [PMID: 33907670]
[11]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-COVID-19 era. Appl. Sci., 2021, 11(17), 7889.
[http://dx.doi.org/10.3390/app11177889]
[12]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Isr. J. Plant Sci., 2021, 68(1-2), 61-71.
[http://dx.doi.org/10.1163/22238980-bja10019]
[13]
Fang, Y.; Qian, M.C. Quantification of selected aroma-active compounds in Pinot noir wines from different grape maturities. J. Agric. Food Chem., 2006, 54(22), 8567-8573.
[http://dx.doi.org/10.1021/jf061396m] [PMID: 17061835]
[14]
Arroyo, T.; Lozano, J.; Cabellos, J.M.; Gil-Diaz, M.; Santos, J.P.; Horrillo, C. Evaluation of wine aromatic compounds by a sensory human panel and an electronic nose. J. Agric. Food Chem., 2009, 57(24), 11543-11549.
[http://dx.doi.org/10.1021/jf902109y] [PMID: 19919096]
[15]
Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep., 2015, 5(1), 14233.
[http://dx.doi.org/10.1038/srep14233] [PMID: 26400688]
[16]
Wei, Q.; Liu, G.; Zhang, C.; Sun, J.; Zhang, Y. Identification of characteristic volatile compounds and prediction of fermentation degree of pomelo wine using partial least squares regression. Lebensm. Wiss. Technol., 2022, 154, 112830.
[http://dx.doi.org/10.1016/j.lwt.2021.112830]
[17]
Wei, R.; Ding, Y.; Chen, N.; Wang, L.; Gao, F.; Zhang, L.; Song, R.; Liu, Y.; Li, H.; Wang, H. Diversity and dynamics of microbial communities during spontaneous fermentation of Cabernet Sauvignon (Vitis vinifera L.) from different regions of China and their relationship with the volatile components in the wine. Food Res. Int., 2022, 156, 111372.
[http://dx.doi.org/10.1016/j.foodres.2022.111372] [PMID: 35650985]
[18]
Wei, R.; Chen, N.; Ding, Y.; Wang, L.; Liu, Y.; Gao, F.; Zhang, L.; Li, H.; Wang, H. Correlations between microbiota with physicochemical properties and volatile compounds during the spontaneous fermentation of Cabernet Sauvignon (Vitis vinifera L.) wine. Lebensm. Wiss. Technol., 2022, 163, 113529.
[http://dx.doi.org/10.1016/j.lwt.2022.113529]
[19]
Bagheri, B.; Bauer, F.F.; Setati, M.E. The impact of Saccharomyces cerevisiae on a wine yeast consortium in natural and inoculated fermentations. Front. Microbiol., 2017, 8, 1988.
[http://dx.doi.org/10.3389/fmicb.2017.01988] [PMID: 29085347]
[20]
Celik, Z.D.; Erten, H.; Darici, M.; Cabaroglu, T. Molecular characterization and technological properties of wine yeasts isolated during spontaneous fermentation of Vitis vinifera L. cv. Narince grape must grown in ancient wine making area Tokat Anatolia. BIO Web Conf., 2017, 9, p. 02017.
[http://dx.doi.org/10.1051/bioconf/20170902017]
[21]
Mane, S.S.; Ghormade, V.; Tupe, S.G.; Deshpande, M.V. Diversity of natural yeast flora of grapes and its significance in wine making. In: Yeast diversity in human welfare; Satyanarayana, T.; Kunze, G., Eds.; Springer: Singapore, 2017; pp. 1-27.
[http://dx.doi.org/10.1007/978-981-10-2621-8_1]
[22]
Bagheri, B.; Bauer, F.F.; Cardinali, G.; Setati, M.E. Ecological interactions are a primary driver of population dynamics in wine yeast microbiota during fermentation. Sci. Rep., 2020, 10(1), 4911.
[http://dx.doi.org/10.1038/s41598-020-61690-z] [PMID: 32188881]
[23]
Wei, Z.; Zhang, J.; Shao, W.; Wang, J. Fabrication and application of three-dimensional nanocomposites modified electrodes for evaluating the aging process of Huangjiu (Chinese rice wine). Food Chem., 2022, 372, 131158.
[http://dx.doi.org/10.1016/j.foodchem.2021.131158] [PMID: 34601421]
[24]
Waterhouse, A.L. Wine Phenolics. Ann. N. Y. Acad. Sci., 2002, 957(1), 21-36.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb02903.x] [PMID: 12074959]
[25]
Liu, P.T.; Lu, L.; Duan, C.Q.; Yan, G.L. The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. Lebensm. Wiss. Technol., 2016, 71, 356-363.
[http://dx.doi.org/10.1016/j.lwt.2016.04.031]
[26]
Kennedy, J.A. Grape and wine phenolics: Observations and recent findings. Cienc. Investig. Agrar., 2008, 35(2), 77-90.
[http://dx.doi.org/10.4067/S0718-16202008000200001]
[27]
Kylli, P. Berry phenolics: Isolation, analysis, identification, and antioxidant properties.Doctoral Dissertation; University of Helsinki: Finland August , 2011.
[http://dx.doi.org/10.17323/1995-459X.2011.1.56.66]
[28]
Liu, C.; Li, M.; Ren, T.; Wang, J.; Niu, C.; Zheng, F.; Li, Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. Lebensm. Wiss. Technol., 2022, 155, 112993.
[http://dx.doi.org/10.1016/j.lwt.2021.112993]
[29]
Fragoso, R.; Vieira, A.A.C. Efficiency analysis of the Portuguese wine industry using accounting and operational metrics. Results Eng., 2022, 14, 100389.
[http://dx.doi.org/10.1016/j.rineng.2022.100389]
[30]
Jakabová, S.; Fikselová, M.; Mendelová, A.; Ševčík, M.; Jakab, I.; Aláčová, Z.; Kolačkovská, J.; Ivanova-Petropulos, V. Chemical composition of white wines produced from different grape varieties and wine regions in Slovakia. Appl. Sci., 2021, 11(22), 11059.
[http://dx.doi.org/10.3390/app112211059]
[31]
Ivanova, V.; Vojnoski, B.; Stefova, M. Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. J. Food Sci. Technol., 2012, 49(2), 161-172.
[http://dx.doi.org/10.1007/s13197-011-0279-2] [PMID: 23572838]
[32]
Ivanova, V.; Vojnoski, B.; Stefova, M. Effect of the winemaking practices and aging on phenolic content of Smederevka and Chardonnay wines. Food Bioprocess Technol., 2011, 4(8), 1512-1518.
[http://dx.doi.org/10.1007/s11947-011-0566-y]
[33]
van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic., 2004, 55(3), 207-217.
[http://dx.doi.org/10.5344/ajev.2004.55.3.207]
[34]
Moe, T. Perspectives on traceability in food manufacture. Trends Food Sci. Technol., 1998, 9(5), 211-214.
[http://dx.doi.org/10.1016/S0924-2244(98)00037-5]
[35]
Palade, M.; Popa, M-E. Wine traceability and authenticity-a literature review. Sci. Bull. Ser. F Biotechnol., 2014, XVIII, 226-233.
[http://dx.doi.org/10.3390/beverages4040075]
[36]
Buja, L.M. The history, science, and art of wine and the case for health benefits: Perspectives of an oenophilic cardiovascular pathologist. Cardiovasc. Pathol., 2022, 60, 107446.
[http://dx.doi.org/10.1016/j.carpath.2022.107446] [PMID: 35654336]
[37]
Khalafyan, A.A.; Temerdashev, Z.A.; Akin’shina, V.A.; Yakuba, Y.F. Data on the sensory evaluation of the dry red and white wines quality obtained by traditional technologies from European and hybrid grape varieties in the Krasnodar Territory, Russia. Data Brief, 2021, 36, 106992.
[http://dx.doi.org/10.1016/j.dib.2021.106992] [PMID: 33889695]
[38]
Marone, E.; Bertocci, M.; Boncinelli, F.; Marinelli, N. The cost of making wine: A Tuscan case study based on a full cost approach. Wine Econ. Policy, 2017, 6(2), 88-97.
[http://dx.doi.org/10.1016/j.wep.2017.06.002]
[39]
Perra, M.; Lozano-Sánchez, J.; Leyva-Jiménez, F.J.; Segura-Carretero, A.; Pedraz, J.L.; Bacchetta, G.; Muntoni, A.; De Gioannis, G.; Manca, M.L.; Manconi, M. Extraction of the antioxidant phytocomplex from wine-making by-products and sustainable loading in phospholipid vesicles specifically tailored for skin protection. Biomed. Pharmacother., 2021, 142, 111959.
[http://dx.doi.org/10.1016/j.biopha.2021.111959] [PMID: 34333288]
[40]
Colombié, S.; Malherbe, S.; Sablayrolles, J.M. Modeling of heat transfer in tanks during wine-making fermentation. Food Control, 2007, 18(8), 953-960.
[http://dx.doi.org/10.1016/j.foodcont.2006.05.016]
[41]
Boyer, J.; Touzard, J.M. To what extent do an innovation system and cleaner technological regime affect the decision-making process of climate change adaptation? Evidence from wine producers in three wine clusters in France. J. Clean. Prod., 2021, 315, 128218.
[http://dx.doi.org/10.1016/j.jclepro.2021.128218]
[42]
Pan, X.; Dong, F.; Liu, N.; Cheng, Y.; Xu, J.; Liu, X.; Wu, X.; Chen, Z.; Zheng, Y. The fate and enantioselective behavior of zoxamide during wine-making process. Food Chem., 2018, 248, 14-20.
[http://dx.doi.org/10.1016/j.foodchem.2017.12.052] [PMID: 29329837]
[43]
Ilieva, F.; Veličkovska, S.K.; Dimovska, V.; Spasov, H. The impact of some wine-making practices on the quality of Vranec red wines from Macedonia produced by the newly-selected local strain “F-78”. Food Chem., 2016, 194, 1123-1131.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.088] [PMID: 26471662]
[44]
Lai, Y.T.; Hsieh, C.W.; Lo, Y.C.; Liou, B.K.; Lin, H.W.; Hou, C.Y.; Cheng, K.C. Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making. Lebensm. Wiss. Technol., 2022, 154, 112653.
[http://dx.doi.org/10.1016/j.lwt.2021.112653]
[45]
Montagner, G.E.; Ribeiro, M.F.; Cadoná, F.C.; Franco, C.; Gomes, P. Liposomes loading grape seed extract: A nanotechnological solution to reduce wine-making waste and obtain health-promoting products. Future Foods, 2022, 5, 100144.
[http://dx.doi.org/10.1016/j.fufo.2022.100144]
[46]
David, R.; Dochain, D.; Mouret, J.R.; Vande Wouwer, A.; Sablayrolles, J.M. Modeling of the aromatic profile in wine-making fermentation: The backbone equations. IFAC Proceed. Vol., 2011, 44(1), 10597-10602.
[http://dx.doi.org/10.3182/20110828-6-IT-1002.01189]
[47]
Genisheva, Z.; Mussatto, S.I.; Oliveira, J.M.; Teixeira, J.A. Evaluating the potential of wine-making residues and corn cobs as support materials for cell immobilization for ethanol production. Ind. Crops Prod., 2011, 34(1), 979-985.
[http://dx.doi.org/10.1016/j.indcrop.2011.03.006]
[48]
Blotevogel, S.; Schreck, E.; Laplanche, C.; Besson, P.; Saurin, N.; Audry, S.; Viers, J.; Oliva, P. Soil chemistry and meteorological conditions influence the elemental profiles of West European wines. Food Chem., 2019, 298, 125033.
[http://dx.doi.org/10.1016/j.foodchem.2019.125033] [PMID: 31260969]
[49]
Kuhlman, B.; Hansen, J.; Jørgensen, B.; du Toit, W.; Moore, J.P. The effect of enzyme treatment on polyphenol and cell wall polysaccharide extraction from the grape berry and subsequent sensory attributes in Cabernet Sauvignon wines. Food Chem., 2022, 385, 132645.
[http://dx.doi.org/10.1016/j.foodchem.2022.132645] [PMID: 35278728]
[50]
Gonçalves, A.C.; Minute, F.; Giotto, F.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. Is pinking susceptibility index a good predictor of white wines pinking phenomena? Food Chem., 2022, 386, 132861.
[http://dx.doi.org/10.1016/j.foodchem.2022.132861] [PMID: 35381540]
[51]
Temerdashev, Z.; Abakumov, A.; Bolshov, M.; Khalafyan, A.; Ageeva, N.; Vasilyev, A.; Ramazanov, A. Instrumental assessment of the formation of the elemental composition of wines with various bentonite clays. Microchem. J., 2022, 175, 107145.
[http://dx.doi.org/10.1016/j.microc.2021.107145]
[52]
Francesca, N.; Romano, R.; Sannino, C.; Le Grottaglie, L.; Settanni, L.; Moschetti, G. Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration. Int. J. Food Microbiol., 2014, 171, 84-93.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.11.008] [PMID: 24334093]
[53]
Kandylis, P.; Manousi, M.E.; Bekatorou, A.; Koutinas, A.A. Freeze-dried wheat supported biocatalyst for low temperature wine making. Lebensm. Wiss. Technol., 2010, 43(10), 1485-1493.
[http://dx.doi.org/10.1016/j.lwt.2010.05.027]
[54]
Garcia-Esparza, M.J.; Abrisqueta, I.; Escriche, I.; Intrigliolo, D.S.; Alvarez, I.; Lizama, V. Volatile compounds and phenolic composition of skins and seeds of Cabernet Sauvignon grapes under different deficit irrigation regimes. Vitis, 2018, 57, 83-91.
[http://dx.doi.org/10.1016/j.agwat.2015.10.020]
[55]
Ayestarán, B.; Martínez-Lapuente, L.; Guadalupe, Z.; Canals, C.; Adell, E.; Vilanova, M. Effect of the winemaking process on the volatile composition and aromatic profile of Tempranillo Blanco wines. Food Chem., 2019, 276, 187-194.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.013] [PMID: 30409583]
[56]
Zhang, B.; Ivanova-Petropulos, V.; Duan, C.; Yan, G. Distinctive chemical and aromatic composition of red wines produced by Saccharomyces cerevisiae co-fermentation with indigenous and commercial non-Saccharomyces strains. Food Biosci., 2021, 41, 100925.
[http://dx.doi.org/10.1016/j.fbio.2021.100925]
[57]
Romero, P.; Botía, P.; del Amor, F.M.; Gil-Muñoz, R.; Flores, P.; Navarro, J.M. Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting conditions. Agric. Water Manage., 2019, 225, 105733.
[http://dx.doi.org/10.1016/j.agwat.2019.105733]
[58]
Liang, Z.; Zhang, P.; Zeng, X.A.; Fang, Z. The art of flavored wine: Tradition and future. Trends Food Sci. Technol., 2021, 116, 130-145.
[http://dx.doi.org/10.1016/j.tifs.2021.07.020]
[59]
Calderón-Martín, M.; Valdés-Sánchez, E.; Alexandre-Franco, M.F.; Fernández-González, M.C.; Vilanova de la Torre, M.; Cuerda-Correa, E.M.; Gómez-Serrano, V. Waste valorization in winemaking industry: Vine shoots as precursors to optimize sensory features in white wine. Lebensm. Wiss. Technol., 2022, 163, 113601.
[http://dx.doi.org/10.1016/j.lwt.2022.113601]
[60]
Sánchez-Córdoba, C.; Durán-Guerrero, E.; Castro, R. Olfactometric and sensory evaluation of red wines subjected to ultrasound or microwaves during their maceration or ageing stages. Lebensm. Wiss. Technol., 2021, 144, 111228.
[http://dx.doi.org/10.1016/j.lwt.2021.111228]
[61]
Ivanova, N.; Yang, Q.; Bastian, S.E.P.; Wilkinson, K.L.; Ford, R. Consumer understanding of beer and wine body: An exploratory study of an ill-defined concept. Food Qual. Prefer., 2022, 98, 104383.
[http://dx.doi.org/10.1016/j.foodqual.2021.104383]
[62]
Noguerol-Pato, R.; González-Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained. Food Chem., 2013, 139(1-4), 1052-1061.
[http://dx.doi.org/10.1016/j.foodchem.2012.12.048] [PMID: 23561209]
[63]
Gutiérrez-Escobar, R.; Fernández-Marín, M.I.; Richard, T.; Fernández-Morales, A.; Carbú, M.; Cebrian-Tarancón, C.; Torija, M.J.; Puertas, B.; Cantos-Villar, E. Development and characterization of a pure stilbene extract from grapevine shoots for use as a preservative in wine. Food Control, 2021, 121, 107684.
[http://dx.doi.org/10.1016/j.foodcont.2020.107684]
[64]
Lu, Y.; Guan, X.; Li, R.; Wang, J.; Liu, Y.; Ma, Y.; Lv, J.; Wang, S.; Mu, J. Comparative study of microbial communities and volatile profiles during the inoculated and spontaneous fermentation of persimmon wine. Proc. Biochem., 2021, 100, 49-58.
[http://dx.doi.org/10.1016/j.procbio.2020.09.023]
[65]
Huang, Z.R.; Hong, J.L.; Xu, J.X.; Li, L.; Guo, W.L.; Pan, Y.Y.; Chen, S.J.; Bai, W.D.; Rao, P.F.; Ni, L.; Zhao, L.N.; Liu, B.; Lv, X.C. Exploring core functional microbiota responsible for the production of volatile flavour during the traditional brewing of Wuyi Hong Qu glutinous rice wine. Food Microbiol., 2018, 76, 487-496.
[http://dx.doi.org/10.1016/j.fm.2018.07.014] [PMID: 30166178]
[66]
Guo, L.; Luo, Y.; Zhou, Y.; Bianba, C.; Guo, H.; Zhao, Y.; Fu, H. Exploring microbial dynamics associated with flavours production during highland barley wine fermentation. Food Res. Int., 2020, 130, 108971.
[http://dx.doi.org/10.1016/j.foodres.2019.108971] [PMID: 32156405]
[67]
Xue, Z.D.; Zhang, Q.A.; Zheng, H.R. Roles of free radical on the formation of acetaldehyde in model wine solutions under different ultrasound parameters: A key bridge-link compound for red wine coloration during ageing. Ultrason. Sonochem., 2021, 79, 105757.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105757] [PMID: 34562734]
[68]
Sadoudi, M.; Tourdot-Maréchal, R.; Rousseaux, S.; Steyer, D.; Gallardo-Chacón, J.J.; Ballester, J.; Vichi, S.; Guérin-Schneider, R.; Caixach, J.; Alexandre, H. Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol., 2012, 32(2), 243-253.
[http://dx.doi.org/10.1016/j.fm.2012.06.006] [PMID: 22986187]
[69]
Jones-Moore, H.R.; Jelley, R.E.; Marangon, M.; Fedrizzi, B. The interactions of wine polysaccharides with aroma compounds, tannins, and proteins, and their importance to winemaking. Food Hydrocoll., 2022, 123, 107150.
[http://dx.doi.org/10.1016/j.foodhyd.2021.107150]
[70]
Allamy, L.; Darriet, P.; Pons, A. Molecular interpretation of dried-fruit aromas in Merlot and Cabernet Sauvignon musts and young wines: Impact of over-ripening. Food Chem., 2018, 266, 245-253.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.022] [PMID: 30381183]
[71]
Lizama, V.; Pérez-Álvarez, E.P.; Intrigliolo, D.S.; Chirivella, C.; Álvarez, I.; García-Esparza, M.J. Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: II. Wine, skins, seeds, and grape aromatic composition. Agric. Water Manage., 2021, 256, 107078.
[http://dx.doi.org/10.1016/j.agwat.2021.107078]
[72]
Castellanos, E.R.; Jofre, V.P.; Fanzone, M.L.; Assof, M.V.; Catania, A.A.; Diaz-Sambueza, A.M.; Heredia, F.J.; Mercado, L.A. Effect of different closure types and storage temperatures on the color and sensory characteristics development of Argentinian Torrontes Riojano white wines aged in bottles. Food Control, 2021, 130, 108343.
[http://dx.doi.org/10.1016/j.foodcont.2021.108343]
[73]
Ma, T.; Wang, J.; Wang, H.; Zhao, Q.; Zhang, F.; Ge, Q.; Li, C.; Gamboa, G.G.; Fang, Y.; Sun, X. Wine aging and artificial simulated wine aging: Technologies, applications, challenges, and perspectives. Food Res. Int., 2022, 153, 110953.
[http://dx.doi.org/10.1016/j.foodres.2022.110953] [PMID: 35227475]
[74]
Han, B.; Han, X.; Deng, H.; Wu, T.; Li, C.; Zhan, J.; Huang, W.; You, Y. Profiling the occurrence of biogenic amines in wine from Chinese market and during fermentation using an improved chromatography method. Food Control, 2022, 136, 108859.
[http://dx.doi.org/10.1016/j.foodcont.2022.108859]
[75]
Niedźwiedź, I.; Płotka-Wasylka, J.; Kapusta, I.; Simeonov, V.; Stój, A.; Waśko, A.; Pawłat, J.; Polak-Berecka, M. The impact of cold plasma on the phenolic composition and biogenic amine content of red wine. Food Chem., 2022, 381, 132257.
[http://dx.doi.org/10.1016/j.foodchem.2022.132257] [PMID: 35121310]
[76]
Falqué, E.; Fernández, E.; Dubourdieu, D. Differentiation of white wines by their aromatic index. Talanta, 2001, 54(2), 271-281.
[http://dx.doi.org/10.1016/S0039-9140(00)00641-X] [PMID: 18968249]
[77]
Zhang, B.; Wang, X.Q.; Yang, B.; Li, N.N.; Niu, J.M.; Shi, X.; Han, S.Y. Copigmentation evidence of phenolic compound: The effect of caffeic and rosmarinic acids addition on the chromatic quality and phenolic composition of Cabernet Sauvignon red wine from the Hexi Corridor region (China). J. Food Compos. Anal., 2021, 102, 104037.
[http://dx.doi.org/10.1016/j.jfca.2021.104037]
[78]
Wei, X.; Zhuang, L.; Wu, C.; Chen, W.; Li, Z.; Xu, B. Rapid determination of trace EDTA in wines and beers by LC-MS/MS. Lebensm. Wiss. Technol., 2016, 72, 485-491.
[http://dx.doi.org/10.1016/j.lwt.2016.05.019]
[79]
Zhao, X.; Xue, Y.; Tang, F.; Cai, W.; Hao, G.; Shan, C. Quality improvement of jujube wine through mixed fermentation with Saccharomyces cerevisiae and Bacillus licheniformis. Lebensm. Wiss. Technol., 2022, 164, 113444.
[http://dx.doi.org/10.1016/j.lwt.2022.113444]
[80]
Lin, M.M.H.; Boss, P.K.; Walker, M.E.; Sumby, K.M.; Jiranek, V. Influence of Kazachstania spp. on the chemical and sensory profile of red wines. Int. J. Food Microbiol., 2022, 362, 109496.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2021.109496] [PMID: 34895934]
[81]
Han, X.; Qing, X.; Yang, S.; Li, R.; Zhan, J.; You, Y.; Huang, W. Study on the diversity of non-Saccharomyces yeasts in Chinese wine regions and their potential in improving wine aroma by β-glucosidase activity analyses. Food Chem., 2021, 360, 129886.
[http://dx.doi.org/10.1016/j.foodchem.2021.129886] [PMID: 34000634]
[82]
Rubio-Bretón, P.; Gonzalo-Diago, A.; Iribarren, M.; Garde-Cerdán, T.; Pérez-Álvarez, E.P. Bioprotection as a tool to free additives winemaking: Effect on sensorial, anthocyanic and aromatic profile of young red wines. Lebensm. Wiss. Technol., 2018, 98, 458-464.
[http://dx.doi.org/10.1016/j.lwt.2018.08.050]
[83]
Chen, L.; Wang, S.; Li, D.; Feng, S. Correlations between microbes and metabolites of hulless barley wines fermented with varieties of hulless barley and different starters. Lebensm. Wiss. Technol., 2021, 152, 112228.
[http://dx.doi.org/10.1016/j.lwt.2021.112228]
[84]
Chinnici, F.; Natali, N.; Spinabelli, U.; Riponi, C. Presence of polycyclic aromatic hydrocarbons in woody chips used as adjuvant in wines, vinegars and distillates. Lebensm. Wiss. Technol., 2007, 40(9), 1587-1592.
[http://dx.doi.org/10.1016/j.lwt.2006.11.005]
[85]
López de Lerma, N.; Peinado, R.A.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Influence of two yeast strains in free, bioimmobilized or immobilized with alginate forms on the aromatic profile of long aged sparkling wines. Food Chem., 2018, 250, 22-29.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.036] [PMID: 29412914]
[86]
Longhi, S.J.; Martín, M.C.; Fontana, A.; de Ambrosini, V.I.M. Different approaches to supplement polysaccharide-degrading enzymes in vinification: Effects on color extraction, phenolic composition, antioxidant activity and sensory profiles of Malbec wines. Food Res. Int., 2022, 157, 111447.
[http://dx.doi.org/10.1016/j.foodres.2022.111447] [PMID: 35761687]
[87]
Gil i Cortiella, M.; Úbeda, C.; Covarrubias, J.I.; Peña-Neira, Á. Chemical, physical, and sensory attributes of Sauvignon blanc wine fermented in different kinds of vessels. Innov. Food Sci. Emerg. Technol., 2020, 66, 102521.
[http://dx.doi.org/10.1016/j.ifset.2020.102521]
[88]
Strati, I.F.; Tataridis, P.; Shehadeh, A.; Chatzilazarou, A.; Bartzis, V.; Batrinou, A.; Sinanoglou, V.J. Impact of tannin addition on the antioxidant activity and sensory character of Malagousia white wine. Curr. Res. Food Science, 2021, 4, 937-945.
[http://dx.doi.org/10.1016/j.crfs.2021.11.017] [PMID: 34934957]
[89]
Macedo, E.H.B.C.; Santos, G.C., Jr; Santana, M.N.; Jesus, E.F.O.; de Araújo, U.B.; Anjos, M.J.; Pinheiro, A.S.; Carneiro, C.S.; Rodrigues, I.A. Unveiling the physicochemical properties and chemical profile of artisanal jabuticaba wines by bromatological and NMR-based metabolomics approaches. Lebensm. Wiss. Technol., 2021, 146, 111371.
[http://dx.doi.org/10.1016/j.lwt.2021.111371]
[90]
Wang, N.; Chen, S.; Zhou, Z. Age-dependent characterization of volatile organic compounds and age discrimination in Chinese rice wine using an untargeted GC/MS-based metabolomic approach. Food Chem., 2020, 325, 126900.
[http://dx.doi.org/10.1016/j.foodchem.2020.126900] [PMID: 32387958]
[91]
Alfonzo, A.; Laudicina, V.A.; Muscarella, S.M.; Badalucco, L.; Moschetti, G.; Spanò, G.M.; Francesca, N. Cellulolytic bacteria joined with deproteinized whey decrease carbon to nitrogen ratio and improve stability of compost from wine production chain by-products. J. Environ. Manage., 2022, 304, 114194.
[http://dx.doi.org/10.1016/j.jenvman.2021.114194] [PMID: 34864414]
[92]
Ling, M.; Qi, M.; Li, S.; Shi, Y.; Pan, Q.; Cheng, C.; Yang, W.; Duan, C. The influence of polyphenol supplementation on ester formation during red wine alcoholic fermentation. Food Chem., 2022, 377, 131961.
[http://dx.doi.org/10.1016/j.foodchem.2021.131961] [PMID: 34990947]
[93]
Li, S.; Bi, P.; Sun, N.; Gao, Z.; Chen, X.; Guo, J. Characterization of different non-Saccharomyces yeasts via mono-fermentation to produce polyphenol-enriched and fragrant kiwi wine. Food Microbiol., 2022, 103, 103867.
[http://dx.doi.org/10.1016/j.fm.2021.103867] [PMID: 35082058]
[94]
Soceanu, A.; Dobrinas, S.; Sirbu, A.; Manea, N.; Popescu, V. Economic aspects of waste recovery in the wine industry. A multidisciplinary approach. Sci. Total Environ., 2021, 759, 143543.
[http://dx.doi.org/10.1016/j.scitotenv.2020.143543] [PMID: 33199012]
[95]
Kumar, L.; Tian, B.; Harrison, R. Interactions of Vitis vinifera L. cv. Pinot Noir grape anthocyanins with seed proanthocyanidins and their effect on wine color and phenolic composition. Lebensm. Wiss. Technol., 2022, 162, 113428.
[http://dx.doi.org/10.1016/j.lwt.2022.113428]
[96]
Neira, J.Y.; Boulett, A.; Roa, K.; Oyarzún, D.P.; Sánchez, J. Vegetable filters reinforced with fibrillated cellulose for iron removal from water and organic white wines. Environment. Technol. Innov., 2022, 25, 102104.
[http://dx.doi.org/10.1016/j.eti.2021.102104]
[97]
Losada, M.M.; Hernández-Apaolaza, L.; Morata, A.; Revilla, E. Impact of the application of monosilicic acid to grapevine (Vitis vinifera L.) on the chemical composition of young red Mencia wines. Food Chem., 2022, 378, 132140.
[http://dx.doi.org/10.1016/j.foodchem.2022.132140] [PMID: 35042111]
[98]
Bestulić, E.; Rossi, S.; Plavša, T.; Horvat, I.; Lukić, I.; Bubola, M.; Ilak Peršurić, A.S.; Jeromel, A.; Radeka, S. Comparison of different maceration and non-maceration treatments for enhancement of phenolic composition, colour intensity, and taste attributes of Malvazija istarska (Vitis vinifera L.) white wines. J. Food Compos. Anal., 2022, 109, 104472.
[http://dx.doi.org/10.1016/j.jfca.2022.104472]
[99]
Torres, N.; Yu, R.; Martinez-Luscher, J.; Girardello, R.C.; Kostaki, E.; Oberholster, A.; Kaan Kurtural, S. Shifts in the phenolic composition and aromatic profiles of Cabernet Sauvignon (Vitis vinifera L.) wines are driven by different irrigation amounts in a hot climate. Food Chem., 2022, 371, 131163.
[http://dx.doi.org/10.1016/j.foodchem.2021.131163] [PMID: 34583184]
[100]
Oliveira, J.B.; Egipto, R.; Laureano, O.; de Castro, R.; Pereira, G.E.; Ricardo-da-Silva, J.M. Chemical composition and sensory profile of Syrah wines from semiarid tropical Brazil – Rootstock and harvest season effects. Lebensm. Wiss. Technol., 2019, 114, 108415.
[http://dx.doi.org/10.1016/j.lwt.2019.108415]
[101]
Liu, D.; Qi, Y.; Zhao, N.; Cao, Y.; Xu, J.; Fan, M. Multivariate analysis reveals effect of glutathione-enriched inactive dry yeast on amino acids and volatile components of kiwi wine. Food Chem., 2020, 329, 127086.
[http://dx.doi.org/10.1016/j.foodchem.2020.127086] [PMID: 32516706]
[102]
Zhao, C.; Su, W.; Mu, Y.; Jiang, L.; Mu, Y. Correlations between microbiota with physicochemical properties and volatile flavor components in black glutinous rice wine fermentation. Food Res.Int., 2020, 138(Part B), 109800.
[http://dx.doi.org/10.1016/j.foodres.2020.109800]
[103]
Xu, J.; Qi, Y.; Zhang, J.; Liu, M.; Wei, X.; Fan, M. Effect of reduced glutathione on the quality characteristics of apple wine during alcoholic fermentation. Food Chem., 2019, 300, 125130.
[http://dx.doi.org/10.1016/j.foodchem.2019.125130] [PMID: 31325746]
[104]
Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary aroma: influence of wine microorganisms in their aroma profile. Foods, 2020, 10(1), 51.
[http://dx.doi.org/10.3390/foods10010051] [PMID: 33375439]
[105]
Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol., 2011, 38(9), 1145-1159.
[http://dx.doi.org/10.1007/s10295-011-1018-4] [PMID: 21786136]
[106]
Baca-Bocanegra, B.; Martínez-Lapuente, L.; Nogales-Bueno, J.; Hernández-Hierro, J.M.; Ferrer-Gallego, R. Feasibility study on the use of ATR-FTIR spectroscopy as a tool for the estimation of wine polysaccharides. Carbohydr. Polym., 2022, 287, 119365.
[http://dx.doi.org/10.1016/j.carbpol.2022.119365] [PMID: 35422308]
[107]
Ayestarán, B.; Guadalupe, Z.; León, D. Quantification of major grape polysaccharides (Tempranillo v.) released by maceration enzymes during the fermentation process. Anal. Chim. Acta, 2004, 513(1), 29-39.
[http://dx.doi.org/10.1016/j.aca.2003.12.012]
[108]
Vilanova, M.; Cortés, S.; Santiago, J.L.; Martínez, C.; Fernández, E. Aromatic compounds in wines produced during fermentation: effect of three red cultivars. Int. J. Food Prop., 2007, 10(4), 867-875.
[http://dx.doi.org/10.1080/10942910601161615]
[109]
Ilc, T.; Werck-Reichhart, D.; Navrot, N. Meta-analysis of the core aroma components of grape and wine aroma. Front. Plant Sci., 2016, 7, 1472.
[http://dx.doi.org/10.3389/fpls.2016.01472] [PMID: 27746799]
[110]
Vietoris, V.; Balkova, H.; Bojnanska, T.; Bennar, L.; Czako, P. Chemical, physical and sensory analysis of activity different yeast species on identical substrate in wine production. J. Microbiol. Biotechnol. Food Sci., 2013, 2(1), 1808-1818.
[http://dx.doi.org/10.15414/jmbfs.2015.4.special3.170-172]
[111]
Pereira, L.; Gomes, S.; Barrias, S.; Gomes, E.; Baleiras-Couto, M.; Fernandes, J.; Martins-Lopes, P. From the field to the bottle-an integrated strategy for wine authenticity. Beverages, 2018, 4(4), 71.
[http://dx.doi.org/10.3390/beverages4040071]
[112]
Zeng, Y.; Liu, Y.; Wu, L.; Dong, H.; Zhang, Y.; Guo, H.; Guo, Z.; Wang, S.; Lan, Y. Evaluation and analysis model of wine quality based on mathematical model. Studies Eng. Technol., 2018, 6(1), 6.
[http://dx.doi.org/10.11114/set.v6i1.3626]
[113]
Brand, J.; Panzeri, V.; Buica, A. Wine quality drivers: A case study on South African Chenin Blanc and Pinotage wines. Foods, 2020, 9(6), 805.
[http://dx.doi.org/10.3390/foods9060805] [PMID: 32570804]
[114]
Jara, C.; Mateo, E.; Guillamón, J.M.; Torija, M.J.; Mas, A. Analysis of several methods for the extraction of high quality DNA from acetic acid bacteria in wine and vinegar for characterization by PCR-based methods. Int. J. Food Microbiol., 2008, 128(2), 336-341.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.09.008] [PMID: 18950887]
[115]
Guan, Z.; Ren, X.; Bian, S.; Xu, E.; Jin, Z.; Jiao, A. Study on the relationship between the degradation degrees of enzymatically extruded glutinous rice and the qualities of fermented Chinese rice wine. J. Cereal Sci., 2022, 105, 103476.
[http://dx.doi.org/10.1016/j.jcs.2022.103476]
[116]
Schober, D.; Gilmore, A.; Chen, L.; Zincker, J.; Gonzalez, A. Determination of Cabernet Sauvignon wine quality parameters in Chile by Absorbance-Transmission and fluorescence Excitation Emission Matrix (A-TEEM) spectroscopy. Food Chem., 2022, 392, 133101.
[http://dx.doi.org/10.1016/j.foodchem.2022.133101] [PMID: 35640427]
[117]
Tempesta, T.; Giancristofaro, R.A.; Corain, L.; Salmaso, L.; Tomasi, D.; Boatto, V. The importance of landscape in wine quality perception: An integrated approach using choice-based conjoint analysis and combination-based permutation tests. Food Qual. Prefer., 2010, 21(7), 827-836.
[http://dx.doi.org/10.1016/j.foodqual.2010.04.007]
[118]
Jung, R.; Kumar, K.; Patz, C.; Rauhut, D.; Tarasov, A.; Schüßler, C. Influence of transport temperature profiles on wine quality. Food Packag. Shelf Life, 2021, 29, 100706.
[http://dx.doi.org/10.1016/j.fpsl.2021.100706]
[119]
Gilmore, A. Comprehensive multivariate analysis of red wine phenolic composition, color and quality components with simultaneous absorbance and fluorescence excitation emission mapping. Biophys. J., 2018, 114(3), 390a.
[http://dx.doi.org/10.1016/j.bpj.2017.11.2159]
[120]
Arvanitoyannis, I.; Katsota, M.N.; Psarra, E.P.; Soufleros, E.H.; Kallithraka, S. Application of quality control methods for assessing wine authenticity: Use of multivariate analysis (chemometrics). Trends Food Sci. Technol., 1999, 10(10), 321-336.
[http://dx.doi.org/10.1016/S0924-2244(99)00053-9]
[121]
Pan, Y.; Gu, H.W.; Lv, Y.; Yin, X.L.; Chen, Y.; Long, W.; Fu, H.; She, Y. Untargeted metabolomic analysis of Chinese red wines for geographical origin traceability by UPLC-QTOF-MS coupled with chemometrics. Food Chem., 2022, 394, 133473.
[http://dx.doi.org/10.1016/j.foodchem.2022.133473] [PMID: 35716498]
[122]
Koranga, M.; Pandey, R.; Joshi, M.; Kumar, M. Analysis of white wine using machine learning algorithms. Mater. Today Proc., 2021, 46(20), 11087-11093.
[http://dx.doi.org/10.1016/j.matpr.2021.02.229]
[123]
Cai, W.; Tang, F.; Guo, Z.; Guo, X.; Zhang, Q.; Zhao, X.; Ning, M.; Shan, C. Effects of pretreatment methods and leaching methods on jujube wine quality detected by electronic senses and HS-SPME–GC–MS. Food Chem., 2020, 330, 127330.
[http://dx.doi.org/10.1016/j.foodchem.2020.127330] [PMID: 32569941]
[124]
Lin, Y.; Liu, Y.; Liu, S.; Kortesniemi, M.; Liu, J.; Zhu, B.; Laaksonen, O. Sensory and chemical characterization of Chinese bog bilberry wines using Check-all-that-apply method and GC-Quadrupole-MS and GC-Orbitrap-MS analyses. Food Res. Int., 2022, 151, 110809.
[http://dx.doi.org/10.1016/j.foodres.2021.110809] [PMID: 34980368]
[125]
Tian, T.; Sun, J.; Wu, D.; Xiao, J.; Lu, J. Objective measures of greengage wine quality: From taste-active compound and aroma-active compound to sensory profiles. Food Chem., 2021, 340, 128179.
[http://dx.doi.org/10.1016/j.foodchem.2020.128179] [PMID: 33007693]
[126]
Shimizu, H.; Akamatsu, F.; Kamada, A.; Koyama, K.; Iwashita, K.; Goto-Yamamoto, N. Variation in the mineral composition of wine produced using different winemaking techniques. J. Biosci. Bioeng., 2020, 130(2), 166-172.
[http://dx.doi.org/10.1016/j.jbiosc.2020.03.012] [PMID: 32303414]
[127]
Torres, N.; Martínez-Lüscher, J.; Porte, E.; Yu, R.; Kaan Kurtural, S. Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine (Vitis vinifera L.) berry and wine chemistry in warm climates. Food Chem., 2021, 343, 128447.
[http://dx.doi.org/10.1016/j.foodchem.2020.128447] [PMID: 33131953]
[128]
Rastija, V.; Srečnik, G. Marica-Medić-Šarić, Polyphenolic composition of Croatian wines with different geographical origins. Food Chem., 2009, 115(1), 54-60.
[http://dx.doi.org/10.1016/j.foodchem.2008.11.071]
[129]
de Andrade, R.H.S.; do Nascimento, L.S.; Pereira, G.E.; Hallwass, F.; Paim, A.P.S. Anthocyanic composition of Brazilian red wines and use of HPLC-UV–Vis associated to chemometrics to distinguish wines from different regions. Microchem. J., 2013, 110, 256-262.
[http://dx.doi.org/10.1016/j.microc.2013.04.003]
[130]
Bouzas-Cid, Y.; Díaz-Losada, E.; Trigo-Córdoba, E.; Falqué, E.; Orriols, I.; Garde-Cerdán, T.; Mirás-Avalos, J.M. Effects of irrigation over three years on the amino acid composition of Albariño (Vitis vinifera L) musts and wines in two different terroirs. Sci. Hortic., 2018, 227, 313-325.
[http://dx.doi.org/10.1016/j.scienta.2017.05.005]
[131]
del Barrio-Galán, R.; Medel-Marabolí, M.; Peña-Neira, Á. Effect of different aging techniques on the polysaccharide and phenolic composition and sensory characteristics of Syrah red wines fermented using different yeast strains. Food Chem., 2015, 179, 116-126.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.075] [PMID: 25722146]
[132]
Barrajón, N.; Capece, A.; Arévalo-Villena, M.; Briones, A.; Romano, P. Co-inoculation of different Saccharomyces cerevisiae strains and influence on volatile composition of wines. Food Microbiol., 2011, 28(5), 1080-1086.
[http://dx.doi.org/10.1016/j.fm.2011.02.016] [PMID: 21569955]
[133]
Torchio, F.; Urcan, D.E.; Lin, L.; Gerbi, V.; Giacosa, S.; Río Segade, S.; Pop, N.; Lambri, M.; Rolle, L. Influence of different withering conditions on phenolic composition of Avanà, Chatus and Nebbiolo grapes for the production of ‘Reinforced’ wines. Food Chem., 2016, 194, 247-256.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.009] [PMID: 26471551]
[134]
Apolinar-Valiente, R.; Williams, P.; Mazerolles, G.; Romero-Cascales, I.; Gómez-Plaza, E.; López-Roca, J.M.; Ros-García, J.M.; Doco, T. Effect of enzyme additions on the oligosaccharide composition of Monastrell red wines from four different wine-growing origins in Spain. Food Chem., 2014, 156, 151-159.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.093] [PMID: 24629951]
[135]
Vázquez, J.; Grillitsch, K.; Daum, G.; Mas, A.; Beltran, G.; Torija, M.J. The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts. Food Microbiol., 2019, 78, 143-154.
[http://dx.doi.org/10.1016/j.fm.2018.10.001] [PMID: 30497596]
[136]
Garrido-Bañuelos, G.; Buica, A.; Schückel, J.; Zietsman, A.J.J.; Willats, W.G.T.; Moore, J.P.; Du Toit, W.J. Investigating the relationship between cell wall polysaccharide composition and the extractability of grape phenolic compounds into Shiraz wines. Part II: Extractability during fermentation into wines made from grapes of different ripeness levels. Food Chem., 2019, 278, 26-35.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.136] [PMID: 30583371]
[137]
Rocchetti, G.; Gatti, M.; Bavaresco, L.; Lucini, L. Untargeted metabolomics to investigate the phenolic composition of Chardonnay wines from different origins. J. Food Compos. Anal., 2018, 71, 87-93.
[http://dx.doi.org/10.1016/j.jfca.2018.05.010]
[138]
Gao, F.; Hao, X.; Zeng, G.; Guan, L.; Wu, H.; Zhang, L.; Wei, R.; Wang, H.; Li, H. Identification of the geographical origin of Ecolly (Vitis vinifera L.) grapes and wines from different Chinese regions by ICP-MS coupled with chemometrics. J. Food Compos. Anal., 2022, 105, 104248.
[http://dx.doi.org/10.1016/j.jfca.2021.104248]
[139]
Kontoudakis, N.; Schmidtke, L.M.; Bekker, M.Z.; Smith, M.; Smith, P.A.; Scollary, G.R.; Wilkes, E.N.; Clark, A.C. Analytical strategies for the measurement of different forms of Cu and Fe in wine: Comparison between approaches in relation to wine composition. Food Chem., 2019, 274, 89-99.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.084] [PMID: 30373024]
[140]
Feng, H.; Skinkis, P.A.; Qian, M.C. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal. Food Chem., 2017, 214, 736-744.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.110] [PMID: 27507532]
[141]
Song, J.; Smart, R.E.; Dambergs, R.G.; Sparrow, A.M.; Wells, R.B.; Wang, H.; Qian, M.C. Pinot Noir wine composition from different vine vigour zones classified by remote imaging technology. Food Chem., 2014, 153, 52-59.
[http://dx.doi.org/10.1016/j.foodchem.2013.12.037] [PMID: 24491699]
[142]
Urcan, D.E.; Giacosa, S.; Torchio, F.; Río Segade, S.; Raimondi, S.; Bertolino, M.; Gerbi, V.; Pop, N.; Rolle, L. ‘Fortified’ wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.). Food Chem., 2017, 219, 346-356.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.142] [PMID: 27765237]
[143]
Sui, Y.; Wollan, D.; McRae, J.; Muhlack, R.; Tuke, J.; Wilkinson, K. Impact of commercial scale ultrafiltration on the composition of white and rosé wine. Separ. Purif. Tech., 2022, 284, 120227.
[http://dx.doi.org/10.1016/j.seppur.2021.120227]
[144]
Ruipérez, V.; Rodríguez-Nogales, J.M.; Fernández-Fernández, E.; Vila-Crespo, J. Impact of β-glucanases and yeast derivatives on chemical and sensory composition of long-aged sparkling wines. J. Food Compos. Anal., 2022, 107, 104385.
[http://dx.doi.org/10.1016/j.jfca.2022.104385]
[145]
Previtali, P.; Dokoozlian, N.K.; Pan, B.S.; Wilkinson, K.L.; Ford, C.M. The effect of ripening rates on the composition of Cabernet Sauvignon and Riesling wines: Further insights into the sugar/flavor nexus. Food Chem, 2022, 373(Part A), 131406.
[http://dx.doi.org/10.1021/jf304987m]
[146]
Duan, B.; Ren, Y.; Zhao, Y.; Merkeryan, H.; Su-Zhou, C.; Li, Y.; Mei, Y.; Liu, X. An adequate regulated deficit irrigation strategy improves wine astringency perception by altering proanthocyanidin composition in Cabernet Sauvignon grapes. Sci. Hortic. (Amsterdam), 2021, 285, 110182.
[http://dx.doi.org/10.1016/j.scienta.2021.110182]
[147]
Zhang, Z.; Yu, Q.; Li, J.; Fan, L. Effect of package oxygen on color, color-related compounds, and volatile composition of Chinese bayberry wine after bottling. Lebensm. Wiss. Technol., 2020, 128, 109430.
[http://dx.doi.org/10.1016/j.lwt.2020.109430]
[148]
Fandiño, M.; Vilanova, M.; Caldeira, I.; Silvestre, J.M.; Rey, B.J.; Mirás-Avalos, J.M.; Cancela, J.J. Chemical composition and sensory properties of Albariño wine: Fertigation effects. Food Res. Int., 2020, 137, 109533.
[http://dx.doi.org/10.1016/j.foodres.2020.109533] [PMID: 33233163]
[149]
Tian, M.B.; Liu, Y.; Lu, H.C.; Hu, L.; Wang, Y.; Cheng, C.F.; Chen, W.; Li, S.D.; He, F.; Duan, C.Q.; Wang, J. Cluster spatial positions varied the phenolics profiles of ‘Cabernet Sauvignon’ grapes and wines under a fan training system with multiple trunks. Food Chem., 2022, 387, 132930.
[http://dx.doi.org/10.1016/j.foodchem.2022.132930] [PMID: 35436688]
[150]
Ntuli, R.G.; Saltman, Y.; Ponangi, R.; Jeffery, D.W.; Bindon, K.; Wilkinson, K.L. Impact of fermentation temperature and grape solids content on the chemical composition and sensory profiles of Cabernet Sauvignon wines made from flash détente treated must fermented off-skins. Food Chem., 2022, 369, 130861.
[http://dx.doi.org/10.1016/j.foodchem.2021.130861] [PMID: 34469835]
[151]
Canas, S.; Anjos, O.; Caldeira, I.; Fernandes, T.A.; Santos, N.; Lourenço, S.; Granja-Soares, J.; Fargeton, L.; Boissier, B.; Catarino, S. Micro-oxygenation level as a key to explain the variation in the colour and chemical composition of wine spirits aged with chestnut wood staves. Lebensm. Wiss. Technol., 2022, 154, 112658.
[http://dx.doi.org/10.1016/j.lwt.2021.112658]
[152]
Martínez-Gil, A.; Del Alamo-Sanza, M.; Nevares, I. Evolution of red wine in oak barrels with different oxygen transmission rates. Phenolic compounds and colour. Lebensm. Wiss. Technol., 2022, 158, 113133.
[http://dx.doi.org/10.1016/j.lwt.2022.113133]
[153]
Massera, A.; Assof, M.; Sari, S.; Ciklic, I.; Mercado, L.; Jofré, V.; Combina, M. Effect of low temperature fermentation on the yeast-derived volatile aroma composition and sensory profile in Merlot wines. Lebensm. Wiss. Technol., 2021, 142, 111069.
[http://dx.doi.org/10.1016/j.lwt.2021.111069]
[154]
Luzzini, G.; Slaghenaufi, D.; Pasetto, F.; Ugliano, M. Influence of grape composition and origin, yeast strain and spontaneous fermentation on aroma profile of Corvina and Corvinone wines. Lebensm. Wiss. Technol., 2021, 143, 111120.
[http://dx.doi.org/10.1016/j.lwt.2021.111120]
[155]
Sánchez-Gómez, R.; del Alamo-Sanza, M.; Nevares, I. Volatile composition of oak wood from different customised oxygenation wine barrels: Effect on red wine. Food Chem., 2020, 329, 127181.
[http://dx.doi.org/10.1016/j.foodchem.2020.127181] [PMID: 32502743]
[156]
Zhang, J.; Wang, T.; Zhao, N.; Xu, J.; Qi, Y.; Wei, X.; Fan, M. Performance of a novel β-glucosidase BGL0224 for aroma enhancement of Cabernet Sauvignon wines. Lebensm. Wiss. Technol., 2021, 144, 111244.
[http://dx.doi.org/10.1016/j.lwt.2021.111244]
[157]
Alcalde-Eon, C.; Ferreras-Charro, R.; Ferrer-Gallego, R.; Rivero, F.J.; Heredia, F.J.; Escribano-Bailón, M.T. Monitoring the effects and side-effects on wine colour and flavonoid composition of the combined post-fermentative additions of seeds and mannoproteins. Food Res. Int., 2019, 126, 108650.
[http://dx.doi.org/10.1016/j.foodres.2019.108650] [PMID: 31732037]
[158]
Markoski, M.M.; Garavaglia, J.; Oliveira, A.; Olivaes, J.; Marcadenti, A. Molecular properties of red wine compounds and cardiometabolic benefits. Nutr. Metab. Insights, 2016, 9, NMI.S32909.
[http://dx.doi.org/10.4137/NMI.S32909] [PMID: 27512338]
[159]
Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Chemical composition and polyphenolic compounds of red wines: their antioxidant activities and effects on human health-A review. Beverages, 2021, 8(1), 1.
[http://dx.doi.org/10.3390/beverages8010001]
[160]
Hu, X.Z.; Liu, S.Q.; Li, X.H.; Wang, C.X.; Ni, X.L.; Liu, X.; Wang, Y.; Liu, Y.; Xu, C.H. Geographical origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint technology combined with chemometrics. Sci. Rep., 2019, 9(1), 8256.
[http://dx.doi.org/10.1038/s41598-019-44521-8] [PMID: 31164667]
[161]
Christoph, N.; Baratossy, G.; Kubnovic, V.; Kozina, B.; Rossmann, A.; Schlicht, C.; Voerkelius, S. Possibilities and limitations of wine authentication using stable isotope ration analysis and traceability. Part 2: Wines from Hungary, Croatia, and other European countries. Mitteilungen Klosterneuburg, 2004, 54, 144-158.
[http://dx.doi.org/10.1021/bk-2007-0952.ch011]
[162]
Wu, J.; Huang, X. Electric field-reinforced solid phase microextraction based on anion-exchange monolith for efficient entrapment of anions in aqueous and wine samples. J. Chromatogr. A, 2022, 1676, 463291.
[http://dx.doi.org/10.1016/j.chroma.2022.463291] [PMID: 35792441]
[163]
Baldo, T.A.; Proença, C.A.; Felix, F.S.; Freitas, T.A.; Sakata, S.K.; Angnes, L.; Faria, R.C. Disposable electrochemical microfluidic device for ultrasensitive detection of egg allergen in wine samples. Talanta, 2021, 232, 122447.
[http://dx.doi.org/10.1016/j.talanta.2021.122447] [PMID: 34074431]
[164]
Pacheco, M.; Winckler, P.; Marin, A.; Perrier-Cornet, J.M.; Coelho, C. Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation. Food Chem., 2022, 370, 131370.
[http://dx.doi.org/10.1016/j.foodchem.2021.131370] [PMID: 34662797]
[165]
Ma, Z.; Zhao, T.; Cui, S.; Zhao, X.; Fan, Y.; Song, J. Determination of ethyl carbamate in wine by matrix modification-assisted headspace single-drop microextraction and gas chromatography-mass spectrometry technique. Food Chem, 2022, 373(Part B), 131573.
[http://dx.doi.org/10.1016/j.foodchem.2021.131573]
[166]
Rostami, S.; Zór, K.; Zhai, D.S.; Viehrig, M.; Morelli, L.; Mehdinia, A.; Smedsgaard, J.; Rindzevicius, T.; Boisen, A. High-throughput label-free detection of Ochratoxin A in wine using supported liquid membrane extraction and Ag-capped silicon nanopillar SERS substrates. Food Control, 2020, 113, 107183.
[http://dx.doi.org/10.1016/j.foodcont.2020.107183]
[167]
Ji, Y.; Zhao, M.; Li, A.; Zhao, L. Hydrophobic deep eutectic solvent-based ultrasonic-assisted dispersive liquid-liquid microextraction for preconcentration and determination of trace cadmium and arsenic in wine samples. Microchem. J., 2021, 164, 105974.
[http://dx.doi.org/10.1016/j.microc.2021.105974]
[168]
Simões da Costa, A.M.; Delgadillo, I.; Rudnitskaya, A. Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system. Talanta, 2014, 129, 63-71.
[http://dx.doi.org/10.1016/j.talanta.2014.04.030] [PMID: 25127565]
[169]
Tamargo, A.; Cueva, C.; Silva, M.; Molinero, N.; Miralles, B.; Bartolomé, B.; Moreno-Arribas, M.V. Gastrointestinal co-digestion of wine polyphenols with glucose/whey proteins affects their bioaccessibility and impact on colonic microbiota. Food Res. Int., 2022, 155, 111010.
[http://dx.doi.org/10.1016/j.foodres.2022.111010] [PMID: 35400421]
[170]
Wu, G.; Fan, G.; Zhou, J.; Liu, X.; Wu, C.; Wang, Y. Structure and main polyphenols in the haze of blackberry wine. Lebensm. Wiss. Technol., 2021, 149, 111821.
[http://dx.doi.org/10.1016/j.lwt.2021.111821]
[171]
Wachełko, O.; Szpot, P.; Zawadzki, M. The application of headspace gas chromatographic method for the determination of ethyl alcohol in craft beers, wines and soft drinks. Food Chem., 2021, 346, 128924.
[http://dx.doi.org/10.1016/j.foodchem.2020.128924] [PMID: 33429297]
[172]
Sainz, F.; Pardo, J.; Ruiz, A.; Expósito, D.; Armero, R.; Querol, A.; Guillamón, J.M. Use of non-conventional yeasts to increase total acidity in the Cava base wines. Lebensm. Wiss. Technol., 2022, 158, 113183.
[http://dx.doi.org/10.1016/j.lwt.2022.113183]
[173]
Ferreira, V.; López, R.; Escudero, A.; Cacho, J.F. Quantitative determination of trace and ultratrace flavour active compounds in red wines through gas chromatographic–ion trap mass spectrometric analysis of microextracts. J. Chromatogr. A, 1998, 806(2), 349-354.
[http://dx.doi.org/10.1016/S0021-9673(98)00070-3]
[174]
Vyviurska, O.; Špánik, I. Assessment of Tokaj varietal wines with comprehensive two-dimensional gas chromatography coupled to high resolution mass spectrometry. Microchem. J., 2020, 152, 104385.
[http://dx.doi.org/10.1016/j.microc.2019.104385]
[175]
Pang, L.; Yang, H.; Yang, P.; Zhang, H.; Zhao, J. Trace determination of organophosphate esters in white wine, red wine, and beer samples using dispersive liquid-liquid microextraction combined with ultra-high-performance liquid chromatography–tandem mass spectrometry. Food Chem., 2017, 229, 445-451.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.103] [PMID: 28372199]
[176]
Espinoza Cruz, T.L.; Guerrero Esperanza, M.; Wrobel, K.; Yanez Barrientos, E.; Acevedo Aguilar, F.J.; Wrobel, K. Determination of major and minor elements in Mexican red wines by microwave-induced plasma optical emission spectrometry, evaluating different calibration methods and exploring potential of the obtained data in the assessment of wine provenance. Spectrochim. Acta B At. Spectrosc., 2020, 164, 105754.
[http://dx.doi.org/10.1016/j.sab.2019.105754]
[177]
Qian, X.; Lan, Y.; Han, S.; Liang, N.; Zhu, B.; Shi, Y.; Duan, C. Comprehensive investigation of lactones and furanones in icewines and dry wines using gas chromatography-triple quadrupole mass spectrometry. Food Res. Int., 2020, 137, 109650.
[http://dx.doi.org/10.1016/j.foodres.2020.109650] [PMID: 33233229]
[178]
Wang, X.; Capone, D.L.; Kang, W.; Roland, A.; Jeffery, D.W. Impact of accentuated cut edges (ACE) technique on volatile and sensory profiles of Shiraz wines. Food Chem., 2022, 372, 131222.
[http://dx.doi.org/10.1016/j.foodchem.2021.131222] [PMID: 34638059]
[179]
Chen, B.Y.; Zhang, Q.A.; Zhang, B.S.; Zhang, Y.F.; Li, E.C. Effects of ultrasound on the formation of oxidative pigments in a model red wine solution containing glutathione. J. Food Compos. Anal., 2021, 103, 104092.
[http://dx.doi.org/10.1016/j.jfca.2021.104092]
[180]
Wu, J.; Yang, R.; Liu, J.; Huang, X. Easy fabrication of aminated graphene oxide functionalized magnetic nanocomposite for efficient preconcentration of phenolic acids prior to HPLC determination: Application in tea-derived wines. Talanta, 2021, 228, 122246.
[http://dx.doi.org/10.1016/j.talanta.2021.122246] [PMID: 33773746]
[181]
Palade, L.; Popa, M. Polyphenol fingerprinting approaches in wine traceability and athenticity: assessment and implications of red wines. Beverages, 2018, 4(4), 75.
[http://dx.doi.org/10.3390/beverages4040075]
[182]
de Andrade Neves, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérez, I.; Ferreira da Silva, I.; Stringheta, P.C. Chemical composition of jabuticaba (Plinia jaboticaba) liquors produced from cachaça and cereal alcohol. Lebensm. Wiss. Technol., 2022, 155, 112923.
[http://dx.doi.org/10.1016/j.lwt.2021.112923]
[183]
Cunha, S.C.; Lopes, R.; Fernandes, J.O. Biogenic amines in liqueurs: Influence of processing and composition. J. Food Compos. Anal., 2017, 56, 147-155.
[http://dx.doi.org/10.1016/j.jfca.2016.11.016]
[184]
Yao, F.; Yi, B.; Shen, C.; Tao, F.; Liu, Y.; Lin, Z.; Xu, P. Chemical analysis of the Chinese liquor Luzhoulaojiao by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Sci. Rep., 2015, 5(1), 9553.
[http://dx.doi.org/10.1038/srep09553] [PMID: 25857434]
[185]
Jiao, J.; Xia, Y.; Yang, M.; Zheng, J.; Liu, Y.; Cao, Z. Differences in grape-surface yeast populations significantly influence the melatonin level of wine in spontaneous fermentation. Lebensm. Wiss. Technol., 2022, 163, 113568.
[http://dx.doi.org/10.1016/j.lwt.2022.113568]
[186]
Su, C.; Zhang, K.Z.; Cao, X.Z.; Yang, J.G. Effects of Saccharomycopsis fibuligera and Saccharomyces cerevisiae inoculation on small fermentation starters in Sichuan-style Xiaoqu liquor. Food Res. Int., 2020, 137, 109425.
[http://dx.doi.org/10.1016/j.foodres.2020.109425] [PMID: 33233107]
[187]
De Iseppi, A.; Marangon, M.; Lomolino, G.; Crapisi, A.; Curioni, A. Red and white wine lees as a novel source of emulsifiers and foaming agents. Lebensm. Wiss. Technol., 2021, 152, 112273.
[http://dx.doi.org/10.1016/j.lwt.2021.112273]
[188]
Li, H.; Chen, Y.; Tang, H.; Zhang, J.; Zhang, L.; Yang, X.; Wang, F.; Chen, L. Effect of lysozyme and Chinese liquor on Staphylococcus aureus growth, microbiome, flavor profile, and the quality of dry fermented sausage. Lebensm. Wiss. Technol., 2021, 150, 112059.
[http://dx.doi.org/10.1016/j.lwt.2021.112059]
[189]
Wang, C.; Liang, S.; Yang, J.; Wu, C.; Qiu, S. The impact of indigenous Saccharomyces cerevisiae and Schizosaccharomyces japonicus on typicality of crystal grape (Niagara) wine. Food Res. Int., 2022, 159, 111580.
[http://dx.doi.org/10.1016/j.foodres.2022.111580] [PMID: 35940784]
[190]
Weihua, Z.; Guoqing, C.; Zhuowei, Z.; Feng, Z.; Ying, G.; Xiang, H.; Chunmei, T. Year prediction of a mild aroma Chinese liquors based on fluorescence spectra and simulated annealing algorithm. Measurement, 2017, 97, 156-164.
[http://dx.doi.org/10.1016/j.measurement.2016.11.016]
[191]
Zhi, Y.; Wu, Q.; Du, H.; Xu, Y. Biocontrol of geosmin-producing Streptomyces spp. by two Bacillus strains from Chinese liquor. Int. J. Food Microbiol., 2016, 231, 1-9.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.04.021] [PMID: 27161758]
[192]
Cheng, P.; Fan, W.; Xu, Y. Determination of Chinese liquors from different geographic origins by combination of mass spectrometry and chemometric technique. Food Control, 2014, 35(1), 153-158.
[http://dx.doi.org/10.1016/j.foodcont.2013.07.003]
[193]
Cheng, P.; Fan, W.; Xu, Y. Quality grade discrimination of Chinese strong aroma type liquors using mass spectrometry and multivariate analysis. Food Res. Int., 2013, 54(2), 1753-1760.
[http://dx.doi.org/10.1016/j.foodres.2013.09.002]
[194]
Wu, Q.; Zhu, W.; Wang, W.; Xu, Y. Effect of yeast species on the terpenoids profile of Chinese light-style liquor. Food Chem., 2015, 168, 390-395.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.069] [PMID: 25172725]
[195]
Ji, X.; Yu, X.; Wu, Q.; Xu, Y. Initial fungal diversity impacts flavor compounds formation in the spontaneous fermentation of Chinese liquor. Food Res. Int., 2022, 155, 110995.
[http://dx.doi.org/10.1016/j.foodres.2022.110995] [PMID: 35400416]
[196]
Ma, L.; Gao, W.; Chen, F.; Meng, Q. HS-SPME and SDE combined with GC–MS and GC-O for characterization of flavor compounds in Zhizhonghe Wujiapi medicinal liquor. Food Res. Int., 2020, 137, 109590.
[http://dx.doi.org/10.1016/j.foodres.2020.109590] [PMID: 33233196]
[197]
Wu, Q.; Zhu, Y.; Fang, C.; Wijffels, R.H.; Xu, Y. Can we control microbiota in spontaneous food fermentation? – Chinese liquor as a case example. Trends Food Sci. Technol., 2021, 110, 321-331.
[http://dx.doi.org/10.1016/j.tifs.2021.02.011]
[198]
Niu, Y.; Chen, X.; Xiao, Z.; Ma, N.; Zhu, J. Characterization of aroma-active compounds in three Chinese Moutai liquors by gas chromatography-olfactometry, gas chromatography-mass spectrometry and sensory evaluation. Nat. Prod. Res., 2017, 31(8), 938-944.
[http://dx.doi.org/10.1080/14786419.2016.1255892] [PMID: 27834102]
[199]
Somboon, T.; Phatchana, R.; Tongpoothorn, W.; Sansuk, S. A simple and green method for determination of ethanol in liquors by the conductivity measurement of the uncatalyzed esterification reaction. Lebensm. Wiss. Technol., 2022, 154, 112593.
[http://dx.doi.org/10.1016/j.lwt.2021.112593]
[200]
Carbonell-Barrachina, Á.A.; Szychowski, P.J.; Vásquez, M.V.; Hernández, F.; Wojdyło, A. Technological aspects as the main impact on quality of quince liquors. Food Chem., 2015, 167, 387-395.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.012] [PMID: 25149002]
[201]
Jin, G.; Zhu, Y.; Xu, Y. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol., 2017, 63, 18-28.
[http://dx.doi.org/10.1016/j.tifs.2017.02.016]
[202]
Jiao, W.; Xie, F.; Gao, L.; Du, L.; Wei, Y.; Zhou, J.; He, G. Identification of core microbiota in the fermented grains of a Chinese strong-flavor liquor from Sichuan. Lebensm. Wiss. Technol., 2022, 158, 113140.
[http://dx.doi.org/10.1016/j.lwt.2022.113140]
[203]
Andresen-Streichert, H.; Müller, A.; Glahn, A.; Skopp, G.; Sterneck, M. Alcohol biomarkers in clinical and forensic contexts. Dtsch. Arztebl. Int., 2018, 115(18), 309-315.
[http://dx.doi.org/10.3238/arztebl.2018.0309] [PMID: 29807559]
[204]
Ghosh, S.; Jain, R.; Jhanjee, S.; Rao, R.; Mishra, A.K. Alcohol biomarkers and their relevance in detection of alcohol consumption in clinical settings. Int. Arch. Subst. Abuse Rehabil., 2019, 1, 002.
[http://dx.doi.org/10.23937/iasar-2017/1710002]
[205]
Global status report on alcohol and health 2018. Geneva: World Health Organization, 2018. Available from: https://apps.who.int/iris/bitstream/handle/10665/274603/9789241565639-eng.pdf?us=1
[206]
Destanoğlu, O.; Ateş, İ. Determination and evaluation of methanol, ethanol and higher alcohols in legally and illegally produced alcoholic beverages. Chemistry, 2019, 6(1), 21-28.
[http://dx.doi.org/10.18596/jotcsa.481384]
[207]
Zamani, N.; Rafizadeh, A.; Hassanian-Moghaddam, H.; Akhavan-Tavakoli, A.; Ghorbani-Samin, M.; Akhgari, M.; Shariati, S. Evaluation of methanol content of illegal beverages using GC and an easier modified Chromotropic acid method; A cross sectional study. Subst. Abuse Treat. Prev. Policy, 2019, 14(1), 56.
[http://dx.doi.org/10.1186/s13011-019-0244-z] [PMID: 31842979]
[208]
Farnaghi, F.; Hassanian-Moghaddam, H.; Zamani, N.; Gholami, N.; Gachkar, L.; Yazdi, M.H. A brief review on toxic alcohols: management strategies. Iran. J. Kidney Dis., 2016, 10(6), 344-350.
[http://dx.doi.org/10.21203/rs.3.rs-24130/v1] [PMID: 27903992]
[209]
Hassanian-Moghaddam, H.; Rafizadeh, A.; Shariati, S.; Rafizadeh, M.; Zamani, N. Evaluation of methanol content of beverages using an easy modified chromotropic acid method. Food Chem. Toxicol., 2018, 121(11), 11-14.
[http://dx.doi.org/10.1016/j.fct.2018.08.012] [PMID: 30099055]
[210]
Ellis, D.I.; Eccles, R.; Xu, Y.; Griffen, J.; Muhamadali, H.; Matousek, P.; Goodall, I.; Goodacre, R. Through-container, extremely low concentration detection of multiple chemical markers of counterfeit alcohol using a handheld SORS device. Sci. Rep., 2017, 7(1), 12082.
[http://dx.doi.org/10.1038/s41598-017-12263-0] [PMID: 28935907]
[211]
Corrao, G.; Bagnardi, V.; Zambon, A.; La Vecchia, C. A meta-analysis of alcohol consumption and the risk of 15 diseases. Prev. Med., 2004, 38(5), 613-619.
[http://dx.doi.org/10.1016/j.ypmed.2003.11.027] [PMID: 15066364]
[212]
Paljärvi, T.; Mäkelä, P.; Poikolainen, K. Pattern of drinking and fatal injury: a population-based follow-up study of Finnish men. Addiction, 2005, 100(12), 1851-1859.
[http://dx.doi.org/10.1111/j.1360-0443.2005.01258.x] [PMID: 16367986]
[213]
Costa, J.J.; Moreira, F.T.C.; Soares, S.; Brandão, E.; Mateus, N.; De Freitas, V.; Sales, M.G.F. Wine astringent compounds monitored by an electrochemical biosensor. Food Chem., 2022, 395, 133587.
[http://dx.doi.org/10.1016/j.foodchem.2022.133587] [PMID: 35802982]
[214]
Bullé Rêgo, E.S.; Santos, D.L.; Hernández-Macedo, M.L.; Padilha, F.F.; López, J.A. Methods for the prevention and control of microbial spoilage and undesirable compounds in wine manufacturing. Process Biochem., 2022, 121, 276-285.
[http://dx.doi.org/10.1016/j.procbio.2022.07.016]
[215]
Luo, Q.; Shi, R.; Gong, P.; Liu, Y.; Chen, W.; Wang, C. Biogenic amines in Huangjiu (Chinese rice wine): Formation, hazard, detection, and reduction. Lebensm. Wiss. Technol., 2022, 168, 113952.
[http://dx.doi.org/10.1016/j.lwt.2022.113952]
[216]
Gonçalves da Silva, A.; Franco, D.L.; Santos, L.D. A simple, fast, and direct electrochemical determination of tyramine in Brazilian wines using low-cost electrodes. Food Control, 2021, 130, 108369.
[http://dx.doi.org/10.1016/j.foodcont.2021.108369]
[217]
Han, B.; Gao, J.; Han, X.; Deng, H.; Wu, T.; Li, C.; Zhang, J.; Huang, W.; You, Y. Hanseniaspora uvarum FS35 degrade putrescine in wine through the direct oxidative deamination pathway of copper amine oxidase. Food Res. Int., 2022, 162(Part A), 111923.
[http://dx.doi.org/10.1016/j.foodres.2022.111923]
[218]
Ubeda, C.; Hornedo-Ortega, R.; Cerezo, A.B.; Garcia-Parrilla, M.C.; Troncoso, A.M. Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem., 2020, 314, 126222.
[http://dx.doi.org/10.1016/j.foodchem.2020.126222] [PMID: 31981884]
[219]
Haynes, A.; Halpert, P.; Levine, M. Colorimetric detection of aliphatic alcohols in β-cyclodextrin solutions. ACS Omega, 2019, 4(19), 18361-18369.
[http://dx.doi.org/10.1021/acsomega.9b02612] [PMID: 31720538]
[220]
Galpothdeniya, W.I.S.; Regmi, B.P.; McCarter, K.S.; de Rooy, S.L.; Siraj, N.; Warner, I.M. Virtual colorimetric sensor array: single ionic liquid for solvent discrimination. Anal. Chem., 2015, 87(8), 4464-4471.
[http://dx.doi.org/10.1021/acs.analchem.5b00714] [PMID: 25822878]
[221]
Yu, Y.; Ma, J.P.; Zhao, C.W.; Yang, J.; Zhang, X.M.; Liu, Q.K.; Dong, Y.B. Copper (I) metal-organic framework: visual sensor for detecting small polar aliphatic volatile organic compounds. Inorg. Chem., 2015, 54(24), 11590-11592.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02150] [PMID: 26645672]
[222]
Guo, Y.; Xue, S.; Dîrtu, M.M.; Garcia, Y. A versatile iron(II)-based colorimetric sensor for the vapor-phase detection of alcohols and toxic gases. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6(15), 3895-3900.
[http://dx.doi.org/10.1039/C8TC00375K]
[223]
Milheiro, J.; Cosme, F.; Filipe-Ribeiro, L.; Nunes, F.M. Reductive amination of aldehyde 2,4-dinitrophenylhydrazones using cyanoborohydride for determination of selected carbonyl compounds in Port wines, table wines, and wine spirits. Food Chem., 2023, 405(Part B), 134897.
[http://dx.doi.org/10.1016/j.foodchem.2022.134897]
[224]
Elias, R.J.; Laurie, V.F.; Ebeler, S.E.; Wong, J.W.; Waterhouse, A.L. Analysis of selected carbonyl oxidation products in wine by liquid chromatography with diode array detection. Anal. Chim. Acta, 2008, 626(1), 104-110.
[http://dx.doi.org/10.1016/j.aca.2008.07.048] [PMID: 18761127]
[225]
Han, G.; Wang, H.; Webb, M.R.; Waterhouse, A.L. A rapid, one step preparation for measuring selected free plus SO2 -bound wine carbonyls by HPLC-DAD/MS. Talanta, 2015, 134, 596-602.
[http://dx.doi.org/10.1016/j.talanta.2014.11.046] [PMID: 25618712]
[226]
Liu, S.Q.; Pilone, G.J. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Technol., 2000, 35(1), 49-61.
[http://dx.doi.org/10.1046/j.1365-2621.2000.00341.x]
[227]
Thuy, P.T.; Elisabeth, G.; Pascal, S.; Claudine, C. Optimal conditions for the formation of sotolon from alpha-ketobutyric acid in the French Vin Jaune. J. Agric. Food Chem., 1995, 43(10), 2616-2619.
[http://dx.doi.org/10.1021/jf00058a012]
[228]
Pons, A.; Lavigne, V.; Landais, Y.; Darriet, P.; Dubourdieu, D. Identification of a sotolon pathway in dry white wines. J. Agric. Food Chem., 2010, 58(12), 7273-7279.
[http://dx.doi.org/10.1021/jf100150q] [PMID: 20486709]
[229]
Fulcrand, H.; Benabdeljalil, C.; Rigaud, J.; Cheynier, V.; Moutounet, M. A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry, 1998, 47(7), 1401-1407.
[http://dx.doi.org/10.1016/S0031-9422(97)00772-3] [PMID: 9611832]
[230]
Pérez-Jiménez, M.; Sherman, E.; Ángeles Pozo-Bayón, M.; Muñoz-González, C.; Pinu, F.R. Application of untargeted volatile profiling to investigate the fate of aroma compounds during wine oral processing. Food Chem., 2023, 403, 134307.
[http://dx.doi.org/10.1016/j.foodchem.2022.134307] [PMID: 36358092]
[231]
Wang, J.; Yan, J.; Zhang, W.; Zhang, Y.; Dong, Z.; Luo, H.; Liu, M.; Su, J. Comparison of potential Wickerhamomyces anomalus to improve the quality of Cabernet Sauvignon wines by mixed fermentation with Saccharomyces cerevisiae. Lebensm. Wiss. Technol., 2023, 173, 114285.
[http://dx.doi.org/10.1016/j.lwt.2022.114285]
[232]
Sam, F.E.; Ma, T.; Wang, J.; Liang, Y.; Sheng, W.; Li, J.; Jiang, Y.; Zhang, B. Aroma improvement of dealcoholized Merlot red wine using edible flowers. Food Chem., 2023, 404(Part B), 134711.
[http://dx.doi.org/10.1016/j.foodchem.2022.134711]
[233]
Ma, T.; Sam, F.E.; Didi, D.A.; Atuna, R.A.; Amagloh, F.K.; Zhang, B. Contribution of edible flowers on the aroma profile of dealcoholized pinot noir rose wine. Lebensm. Wiss. Technol., 2022, 170, 114034.
[http://dx.doi.org/10.1016/j.lwt.2022.114034]
[234]
Escudero, A.; Asensio, E.; Cacho, J.; Ferreira, V. Sensory and chemical changes of young white wines stored under oxygen. An assessment of the role played by aldehydes and some other important odorants. Food Chem., 2002, 77(3), 325-331.
[http://dx.doi.org/10.1016/S0308-8146(01)00355-7]
[235]
Arias-Pérez, I.; Sáenz-Navajas, M.P.; de-la-Fuente-Blanco, A.; Ferreira, V.; Escudero, A. Insights on the role of acetaldehyde and other aldehydes in the odour and tactile nasal perception of red wine. Food Chem., 2021, 361, 130081.
[http://dx.doi.org/10.1016/j.foodchem.2021.130081] [PMID: 34022483]
[236]
Cao, Y.; Xia, Q.; Chen, J.; Jin, Z. Aniya, Understanding of microbial diversity in three representative Qu in China and characterization of the volatile compounds in the corresponding Chinese rice wine. Lebensm. Wiss. Technol., 2022, 164, 113680.
[http://dx.doi.org/10.1016/j.lwt.2022.113680]
[237]
Zhang, L.; Liu, Q.; Li, Y.; Liu, S.; Tu, Q.; Yuan, C. Characterization of wine volatile compounds from different regions and varieties by HS-SPME/GC-MS coupled with chemometrics. Curr. Res. Food Sci., 2023, 6, 100418.
[http://dx.doi.org/10.1016/j.crfs.2022.100418] [PMID: 36588783]
[238]
Marri, L.; Jansson, A.M.; Christensen, C.E.; Hindsgaul, O. An enzyme-linked immunosorbent assay for the detection of diacetyl (2,3-butanedione). Anal. Biochem., 2017, 535, 12-18.
[http://dx.doi.org/10.1016/j.ab.2017.07.021] [PMID: 28739133]
[239]
Sternes, P.R.; Costello, P.J.; Chambers, P.J.; Bartowsky, E.J.; Borneman, A.R. Whole transcriptome RNAseq analysis of Oenococcus oeni reveals distinct intra-specific expression patterns during malolactic fermentation, including genes involved in diacetyl metabolism. Int. J. Food Microbiol., 2017, 257, 216-224.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.06.024] [PMID: 28688370]
[240]
Ramos, R.M.; Pacheco, J.G.; Gonçalves, L.M.; Valente, I.M.; Rodrigues, J.A.; Barros, A.A. Determination of free and total diacetyl in wine by HPLC–UV using gas-diffusion microextraction and pre-column derivatization. Food Control, 2012, 24(1-2), 220-224.
[http://dx.doi.org/10.1016/j.foodcont.2011.07.017]
[241]
Martineau, B.; Acree, T.E.; Henick-Kling, T. Effect of wine type on the detection threshold for diacetyl. Food Res. Int., 1995, 28(2), 139-143.
[http://dx.doi.org/10.1016/0963-9969(95)90797-E]
[242]
Cassino, C.; Tsolakis, C.; Gulino, F.; Vaudano, E.; Osella, D. The effects of sulphur dioxide on wine metabolites: New insights from 1H NMR spectroscopy based in-situ screening, detection, identification and quantification. Lebensm. Wiss. Technol., 2021, 145, 111296.
[http://dx.doi.org/10.1016/j.lwt.2021.111296]
[243]
Wu, J.; Liu, Y.; Zhao, H.; Huang, M.; Sun, Y.; Zhang, J.; Sun, B. Recent advances in the understanding of off-flavors in alcoholic beverages: Generation, regulation, and challenges. J. Food Compos. Anal., 2021, 103, 104117.
[http://dx.doi.org/10.1016/j.jfca.2021.104117]
[244]
Kim, J.; Lee, H.E.; Kim, Y.; Yang, J.; Lee, S.J.; Jung, Y.H. Development of a post-processing method to reduce the unique off-flavor of Allomyrina dichotoma: Yeast fermentation. Lebensm. Wiss. Technol., 2021, 150, 111940.
[http://dx.doi.org/10.1016/j.lwt.2021.111940]
[245]
Tavares, A.; Mafra, G.; Carasek, E.; Micke, G.A.; Vitali, L. Determination of five 3-alkyl-2-methoxypyrazines employing HS-SPME-GC-NPD: Application in evaluation of off-flavor of South American wines. J. Food Compos. Anal., 2022, 105, 104237.
[http://dx.doi.org/10.1016/j.jfca.2021.104237]
[246]
Lisanti, M.T.; Gambuti, A.; Genovese, A.; Piombino, P.; Moio, L. Earthy off-flavour in wine: Evaluation of remedial treatments for geosmin contamination. Food Chem., 2014, 154, 171-178.
[http://dx.doi.org/10.1016/j.foodchem.2013.12.100] [PMID: 24518330]
[247]
Shinohara, T.; Kubodera, S.; Yanagida, F. Distribution of phenolic yeasts and production of phenolic off-flavors in wine fermentation. J. Biosci. Bioeng., 2000, 90(1), 90-97.
[http://dx.doi.org/10.1016/S1389-1723(00)80040-7] [PMID: 16232824]

© 2025 Bentham Science Publishers | Privacy Policy