Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Application and SARs of Pyrazolo[1,5-a]pyrimidine as Antitumor Agents Scaffold

Author(s): Yadong Zhang, Di Wen, Jiwei Shen, Lu Tian, Yan Zhu, Jifang Zhang, Leyan Zhao, Shi Ding, Ju Liu* and Ye Chen*

Volume 23, Issue 12, 2023

Published on: 15 March, 2023

Page: [1043 - 1064] Pages: 22

DOI: 10.2174/1568026623666230228111629

Price: $65

Abstract

Pyrazolo[1,5-a]pyrimidines are fused heterocycles that have spawned many biologically active antitumor drugs and are important privileged structures for drug development. Pyrazolo[1,5- a]pyrimidine derivatives have played an important role in the development of antitumor agents due to their structural diversity and good kinase inhibitory activity. In addition to their applications in traditional drug targets such as B-Raf, KDR, Lck, and Src kinase, some small molecule drugs with excellent activity against other kinases (Aurora, Trk, PI3K-γ, FLT-3, C-Met kinases, STING, TRPC) have emerged in recent years. Therefore, based on these antitumor drug targets, small molecule inhibitors containing pyrazolo[1,5-a]pyrimidine scaffold and their structure-activity relationships are summarized and discussed to provide more reference value for the application of this particular structure in antitumor drugs.

Next »
Graphical Abstract

[1]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[2]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[3]
Livshits, Z.; Rao, RB.; Smith, SW. An approach to chemotherapy-associated toxicity. . Emerg. Med. Clin. North. Am.,, 2014, 32(1), 167-203.
[http://dx.doi.org/10.1016/j.emc.2013.09.002.] [PMID: 24275174]
[4]
Drev, M.; Grošelj, U.; Mevec, Š.; Pušavec, E.; Štrekelj, J.; Golobič, A.; Dahmann,, G.; Stanovnik, B.; Svete,, J. Regioselective synthesis of 1- and 4-substituted 7-oxopyrazolo[1,5-a]pyrimidine-3-carboxamides. Tetrahedron, 2014, 70(44), 8267-8279.
[http://dx.doi.org/10.1016/j.tet.2014.09.020]
[5]
Tsuneo, Y.; Takeshi, I.; Masayuki, O.; Seiji, S.; Hideaki, K.; Koichi, N.; Emiko, S. The novel analgesic compound OT-7100 (5-n-Butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo [1,5-a] pyrimidine) attenuates mechanical nociceptive responses in animal models of acute and peripheral neuropathic hyperalgesia. Jpn. J. Pharmacol., 1999, 79(1), 65-73.
[http://dx.doi.org/10.1254/jjp.79.65] [PMID: 10082319]
[6]
Auzzi, G.; Bruni, F.; Cecchi, L.; Costanzo, A.; Pecori Vettori, L.; Pirisino, R.; Corrias, M.; Ignesti, G.; Banchelli, G.; Raimondi, L. 2-Phenylpyrazolo[1,5-a]pyrimidin-7-ones. A new class of nonsteroidal antiinflammatory drugs devoid of ulcerogenic activity. J. Med. Chem., 1983, 26(12), 1706-1709.
[http://dx.doi.org/10.1021/jm00366a009] [PMID: 6606043]
[7]
Portilla, J.; Quiroga, J.; Nogueras, M.; Cobo, J. Regioselective synthesis of fused pyrazolo[1,5-a]pyrimidines by reaction of 5-amino-1H-pyrazoles and β-dicarbonyl compounds containing five-membered rings. Tetrahedron, 2012, 68(4), 988-994.
[http://dx.doi.org/10.1016/j.tet.2011.12.001]
[8]
Cherukupalli, S.; Karpoormath, R.; Chandrasekaran, B.; Hampannavar, G.A.; Thapliyal, N.; Palakollu, V.N. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold. Eur. J. Med. Chem., 2017, 126, 298-352.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.019] [PMID: 27894044]
[9]
Drilon, A. TRK inhibitors in TRK fusion-positive cancers. Ann. Oncol., 2019, 30(Suppl 8), viii23-viii30.,
[http://dx.doi.org/10.1093/annonc/mdz282]
[10]
Zhang, Y.; Liu, Y.; Zhou, Y.; Zhang, Q.; Han, T.; Tang, C.; Fan, W. Pyrazolo[1,5-a]pyrimidine based Trk inhibitors: Design, synthesis, biological activity evaluation. Bioorg. Med. Chem. Lett., 2021, 31, 127712.
[http://dx.doi.org/10.1016/j.bmcl.2020.127712] [PMID: 33246108]
[11]
Liu, Z.; Yu, P.; Dong, L.; Wang, W.; Duan, S.; Wang, B.; Gong, X.; Ye, L.; Wang, H.; Tian, J. Discovery of the next-generation pan-TRK kinase inhibitors for the treatment of cancer. J. Med. Chem., 2021, 64(14), 10286-10296.
[PMID: 34253025]
[12]
Zhuo, L.S.; Wang, M.S.; Wu, F.X.; Xu, H.C.; Gong, Y.; Yu, Z.C.; Tian, Y.G.; Pang, C.; Hao, G.F.; Huang, W.; Yang, G.F. Discovery of next-generation tropomyosin receptor kinase inhibitors for combating multiple resistance associated. J. Med. Chem., 2021, 64(20), 15503-15514.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01539] [PMID: 34668694]
[13]
Field, J.J.; Kanakkanthara, A.; Miller, J.H. Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorg. Med. Chem., 2014, 22(18), 5050-5059.
[http://dx.doi.org/10.1016/j.bmc.2014.02.035] [PMID: 24650703]
[14]
Liu, Y.M.; Chen, H.L.; Lee, H.Y.; Liou, J.P. Tubulin inhibitors: a patent review. Expert Opin. Ther. Pat., 2014, 24(1), 69-88.
[http://dx.doi.org/10.1517/13543776.2014.859247] [PMID: 24313741]
[15]
Fang, L.; Zhang, M.; Chen, L.; Xiong, H.; Ge, Y.; Lu, W.; Wu, X.; Heng, B.; Yu, D.; Wu, S. Downregulation of nucleolar and spindle-associated protein 1 expression suppresses cell migration, proliferation and invasion in renal cell carcinoma. Oncol. Rep., 2016, 36(3), 1506-1516.
[http://dx.doi.org/10.3892/or.2016.4955] [PMID: 27461786]
[16]
Liu, R.; Zhang, S.; Huang, M.; Guo, Z.; Li, L.; Li, M.; Wu, L.; Guan, Q.; Zhang, W. Design, synthesis and bioevaluation of 2,7-diaryl-pyrazolo[1,5-a]pyrimidines as tubulin polymerization inhibitors. Bioorg. Chem., 2021, 115, 105220.
[http://dx.doi.org/10.1016/j.bioorg.2021.105220] [PMID: 34352709]
[17]
Li, G.; Wang, Y.; Li, L.; Ren, Y.; Deng, X.; Liu, J.; Wang, W.; Luo, M.; Liu, S.; Chen, J. Design, synthesis, and bioevaluation of pyrazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities. Eur. J. Med. Chem., 2020, 202, 112519.
[http://dx.doi.org/10.1016/j.ejmech.2020.112519] [PMID: 32650183]
[18]
Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell, 2017, 170(4), 605-635.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[19]
Cushing, T.D.; Metz, D.P.; Whittington, D.A.; McGee, L.R. PI3Kδ and PI3Kγ as targets for autoimmune and inflammatory diseases. J. Med. Chem., 2012, 55(20), 8559-8581.
[http://dx.doi.org/10.1021/jm300847w] [PMID: 22924688]
[20]
Perry, M.W.D.; Abdulai, R.; Mogemark, M.; Petersen, J.; Thomas, M.J.; Valastro, B.; Westin Eriksson, A. Evolution of PI3Kγ and δ inhibitors for inflammatory and autoimmune diseases. J. Med. Chem., 2019, 62(10), 4783-4814.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01298] [PMID: 30582813]
[21]
Drew, S.L.; Thomas-Tran, R.; Beatty, J.W.; Fournier, J.; Lawson, K.V.; Miles, D.H.; Mata, G.; Sharif, E.U.; Yan, X.; Mailyan, A.K.; Ginn, E.; Chen, J.; Wong, K.; Soni, D.; Dhanota, P.; Chen, P.Y.; Shaqfeh, S.G.; Meleza, C.; Pham, A.T.; Chen, A.; Zhao, X.; Banuelos, J.; Jin, L.; Schindler, U.; Walters, M.J.; Young, S.W.; Walker, N.P.; Leleti, M.R.; Powers, J.P.; Jeffrey, J.L. Discovery of potent and selective PI3Kγ inhibitors. J. Med. Chem., 2020, 63(19), 11235-11257.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01203] [PMID: 32865410]
[22]
Mata, G.; Miles, D.H.; Drew, S.L.; Fournier, J.; Lawson, K.V.; Mailyan, A.K.; Sharif, E.U.; Yan, X.; Beatty, J.W.; Banuelos, J.; Chen, J.; Ginn, E.; Chen, A.; Gerrick, K.Y.; Pham, A.T.; Wong, K.; Soni, D.; Dhanota, P.; Shaqfeh, S.G.; Meleza, C.; Narasappa, N.; Singh, H.; Zhao, X.; Jin, L.; Schindler, U.; Walters, M.J.; Young, S.W.; Walker, N.P.; Leleti, M.R.; Powers, J.P.; Jeffrey, J.L. Design, synthesis, and structure–activity relationship optimization of pyrazolopyrimidine amide inhibitors of phosphoinositide 3-kinase γ(PI3Kγ) . J. Med. Chem., 2022, 65(2), 1418-1444.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01153] [PMID: 34672584]
[23]
Carvajal, R.D.; Tse, A.; Schwartz, G.K. Aurora kinases: New targets for cancer therapy. Clin. Cancer Res., 2006, 12(23), 6869-6875.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1405] [PMID: 17145803]
[24]
Kumar, A.K.A.; Bodke, Y.D.; Sambasivam, G.; Lakra, P.S. Design, synthesis, and evaluation of novel hydrazide hydrochlorides of 6-aminopyrazolo[1,5-a]pyrimidine-3-carboxamides as potent Aurora kinase inhibitors. Monatsh. Chem., 2017, 148(10), 1767-1780.
[http://dx.doi.org/10.1007/s00706-017-1943-7]
[25]
Jung, K.H.; Park, B.H.; Hong, S.S. Progress in cancer therapy targeting c-Met signaling pathway. Arch. Pharm. Res., 2012, 35(4), 595-604.
[http://dx.doi.org/10.1007/s12272-012-0402-6] [PMID: 22553051]
[26]
Parikh, P.K.; Ghate, M.D. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur. J. Med. Chem., 2018, 143, 1103-1138.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.044] [PMID: 29157685]
[27]
Luo, G.; Ma, Y.; Liang, X.; Xie, G.; Luo, Y.; Zha, D.; Wang, S.; Yu, L.; Zheng, X.; Wu, W.; Zhang, C. Design, synthesis and antitumor evaluation of novel 5-methylpyrazolo[1,5-a]pyrimidine derivatives as potential c-Met inhibitors. Bioorg. Chem., 2020, 104, 104356.
[http://dx.doi.org/10.1016/j.bioorg.2020.104356] [PMID: 33142417]
[28]
Grafone, T.; Palmisano, M.; Nicci, C.; Storti, S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: Biology and treatment. Oncol. Rev., 2012, 6(1), 8.
[http://dx.doi.org/10.4081/oncol.2012.e8] [PMID: 25992210]
[29]
Gilliland, D.G.; Griffin, J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood, 2002, 100(5), 1532-1542.
[http://dx.doi.org/10.1182/blood-2002-02-0492] [PMID: 12176867]
[30]
Daver, N.; Schlenk, R.F.; Russell, N.H.; Levis, M.J. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia, 2019, 33(2), 299-312.
[http://dx.doi.org/10.1038/s41375-018-0357-9] [PMID: 30651634]
[31]
Chen, Y.; Bai, G.; Li, Y.; Ning, Y.; Cao, S.; Zhou, J.; Ding, J.; Zhang, H.; Xie, H.; Duan, W. Discovery and structure - activity relationship exploration of pyrazolo[1,5-a]pyrimidine derivatives as potent FLT3-ITD inhibitors. Bioorg. Med. Chem., 2021, 48, 116422.
[http://dx.doi.org/10.1016/j.bmc.2021.116422] [PMID: 34583130]
[32]
Zhong, B.; Yang, Y.; Li, S.; Wang, Y.Y.; Li, Y.; Diao, F.; Lei, C.; He, X.; Zhang, L.; Tien, P.; Shu, H.B. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity, 2008, 29(4), 538-550.
[http://dx.doi.org/10.1016/j.immuni.2008.09.003] [PMID: 18818105]
[33]
Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455(7213), 674-678.
[http://dx.doi.org/10.1038/nature07317] [PMID: 18724357]
[34]
Woo, S.R.; Fuertes, M.B.; Corrales, L.; Spranger, S.; Furdyna, M.J.; Leung, M.Y.K.; Duggan, R.; Wang, Y.; Barber, G.N.; Fitzgerald, K.A.; Alegre, M.L.; Gajewski, T.F. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity, 2014, 41(5), 830-842.
[http://dx.doi.org/10.1016/j.immuni.2014.10.017] [PMID: 25517615]
[35]
Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; Huang, X.; Gajewski, T.F.; Chen, Z.J.; Fu, Y.X.; Weichselbaum, R.R. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity, 2014, 41(5), 843-852.
[http://dx.doi.org/10.1016/j.immuni.2014.10.019] [PMID: 25517616]
[36]
Xia, T.; Konno, H.; Ahn, J.; Barber, G.N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep., 2016, 14(2), 282-297.
[http://dx.doi.org/10.1016/j.celrep.2015.12.029] [PMID: 26748708]
[37]
Cherney, E.C.; Zhang, L.; Lo, J.; Huynh, T.; Wei, D.; Ahuja, V.; Quesnelle, C.; Schieven, G.L.; Futran, A.; Locke, G.A.; Lin, Z.; Monereau, L.; Chaudhry, C.; Blum, J.; Li, S.; Fereshteh, M.; Li-Wang, B.; Gangwar, S.; Pan, C.; Chong, C.; Zhu, X.; Posy, S.L.; Sack, J.S.; Zhang, P.; Ruzanov, M.; Harner, M.; Akhtar, F.; Schroeder, G.M.; Vite, G.; Fink, B. Discovery of non-nucleotide small-molecule STING agonists via chemotype hybridization. J. Med. Chem., 2022, 65(4), 3518-3538.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01986] [PMID: 35108011]
[38]
Putney, J.W. Physiological mechanisms of TRPC activation. Pflugers Arch., 2005, 451(1), 29-34.
[http://dx.doi.org/10.1007/s00424-005-1416-4] [PMID: 16133266]
[39]
Qu, C.; Ding, M.; Zhu, Y.; Lu, Y.; Du, J.; Miller, M.; Tian, J.; Zhu, J.; Xu, J.; Wen, M.; Er-Bu, A.G.A.; Wang, J.; Xiao, Y.; Wu, M.; McManus, O.B.; Li, M.; Wu, J.; Luo, H.R.; Cao, Z.; Shen, B.; Wang, H.; Zhu, M.X.; Hong, X. Pyrazolopyrimidines as potent stimulators for transient receptor potential canonical 3/6/7 channels. J. Med. Chem., 2017, 60(11), 4680-4692.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00304] [PMID: 28395140]
[40]
Dietrich, A.; Gudermann, T. TRPC6: physiological function and pathophysiological relevance. Handb. Exp. Pharmacol., 2014, 222, 157-188.
[http://dx.doi.org/10.1007/978-3-642-54215-2_7] [PMID: 24756706]
[41]
Ding, X.; He, Z.; Shi, Y.; Wang, Q.; Wang, Y. Targeting TRPC6 channels in oesophageal carcinoma growth. Expert Opin. Ther. Targets, 2010, 14(5), 513-527.
[http://dx.doi.org/10.1517/14728221003733602] [PMID: 20235901]
[42]
Bernichtein, S.; Pigat, N.; Barry Delongchamps, N.; Boutillon, F.; Verkarre, V.; Camparo, P.; Reyes-Gomez, E.; Méjean, A.; Oudard, S.M.; Lepicard, E.M.; Viltard, M.; Souberbielle, J.C.; Friedlander, G.; Capiod, T.; Goffin, V. Vitamin D3 prevents calcium-induced progression of early-stage prostate tumors by counteracting TRPC6 and calcium sensing receptor upregulation. Cancer Res., 2017, 77(2), 355-365.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0687] [PMID: 27879271]
[43]
Rodrigues, T.; Sieglitz, F.; Bernardes, G.J.L. Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents. Chem. Soc. Rev., 2016, 45(22), 6130-6137.
[http://dx.doi.org/10.1039/C5CS00916B] [PMID: 26890476]
[44]
Ding, M.; Wang, H.; Qu, C.; Xu, F.; Zhu, Y.; Lv, G.; Lu, Y.; Zhou, Q.; Zhou, H.; Zeng, X.; Zhang, J.; Yan, C.; Lin, J.; Luo, H.R.; Deng, Z.; Xiao, Y.; Tian, J.; Zhu, M.X.; Hong, X. Pyrazolo[1,5-a]pyrimidine TRPC6 antagonists for the treatment of gastric cancer. Cancer Lett., 2018, 432, 47-55.
[http://dx.doi.org/10.1016/j.canlet.2018.05.041] [PMID: 29859875]
[45]
Hiruma, Y.; Sacristan, C.; Pachis, S.T.; Adamopoulos, A.; Kuijt, T.; Ubbink, M.; von Castelmur, E.; Perrakis, A.; Kops, G.J.P.L. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science, 2015, 348(6240), 1264-1267.
[http://dx.doi.org/10.1126/science.aaa4055] [PMID: 26068855]
[46]
Janssen, A.; Kops, G.J.; Medema, R.H. Targeting the mitotic checkpoint to kill tumor cells. Horm. Cancer, 2011, 2(2), 113-116.
[http://dx.doi.org/10.1007/s12672-010-0059-x] [PMID: 21475725]
[47]
Hewitt, L.; Tighe, A.; Santaguida, S.; White, A.M.; Jones, C.D.; Musacchio, A.; Green, S.; Taylor, S.S. Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1–C-Mad2 core complex. J. Cell Biol., 2010, 190(1), 25-34.
[http://dx.doi.org/10.1083/jcb.201002133] [PMID: 20624899]
[48]
Jemaà, M.; Galluzzi, L.; Kepp, O.; Senovilla, L.; Brands, M.; Boemer, U.; Koppitz, M.; Lienau, P.; Prechtl, S.; Schulze, V.; Siemeister, G.; Wengner, A.M.; Mumberg, D.; Ziegelbauer, K.; Abrieu, A.; Castedo, M.; Vitale, I.; Kroemer, G. Characterization of novel MPS1 inhibitors with preclinical anticancer activity. Cell Death Differ., 2013, 20(11), 1532-1545.
[http://dx.doi.org/10.1038/cdd.2013.105] [PMID: 23933817]
[49]
Tannous, B.A.; Kerami, M.; Van der Stoop, P.M.; Kwiatkowski, N.; Wang, J.; Zhou, W.; Kessler, A.F.; Lewandrowski, G.; Hiddingh, L.; Sol, N.; Lagerweij, T.; Wedekind, L.; Niers, J.M.; Barazas, M.; Nilsson, R.J.A.; Geerts, D.; De Witt Hamer, P.C.; Hagemann, C.; Vandertop, W.P.; Van Tellingen, O.; Noske, D.P.; Gray, N.S.; Würdinger, T. Effects of the selective MPS1 inhibitor MPS1-IN-3 on glioblastoma sensitivity to antimitotic drugs. J. Natl. Cancer Inst., 2013, 105(17), 1322-1331.
[http://dx.doi.org/10.1093/jnci/djt168] [PMID: 23940287]
[50]
Tardif, K.D.; Rogers, A.; Cassiano, J.; Roth, B.L.; Cimbora, D.M.; McKinnon, R.; Peterson, A.; Douce, T.B.; Robinson, R.; Dorweiler, I.; Davis, T.; Hess, M.A.; Ostanin, K.; Papac, D.I.; Baichwal, V.; McAlexander, I.; Willardsen, J.A.; Saunders, M.; Christophe, H.; Kumar, D.V.; Wettstein, D.A.; Carlson, R.O.; Williams, B.L. Characterization of the cellular and antitumor effects of MPI-0479605, a small-molecule inhibitor of the mitotic kinase Mps1. Mol. Cancer Ther., 2011, 10(12), 2267-2275.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0453] [PMID: 21980130]
[51]
Liu, Y.; Laufer, R.; Patel, N.K.; Ng, G.; Sampson, P.B.; Li, S.W.; Lang, Y.; Feher, M.; Brokx, R.; Beletskaya, I.; Hodgson, R.; Plotnikova, O.; Awrey, D.E.; Qiu, W.; Chirgadze, N.Y.; Mason, J.M.; Wei, X.; Lin, D.C.C.; Che, Y.; Kiarash, R.; Fletcher, G.C.; Mak, T.W.; Bray, M.R.; Pauls, H.W. Discovery of pyrazolo [1, 5-a] pyrimidine TTK inhibitors: CFI-402257 is a potent, selective, bioavailable anticancer agent. ACS Med. Chem. Lett., 2016, 7(7), 671-675.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00485] [PMID: 27437075]
[52]
Berry, W.L.; Janknecht, R. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res., 2013, 73(10), 2936-2942.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4300] [PMID: 23644528]
[53]
Zoabi, M.; Nadar-Ponniah, P.T.; Khoury-Haddad, H.; Usaj, M.; Budowski-Tal, I.; Haran, T.; Henn, A.; Mandel-Gutfreund, Y.; Ayoub, N. RNA-dependent chromatin localization of KDM4D lysine demethylase promotes H3K9me3 demethylation. Nucleic Acids Res., 2014, 42(21), 13026-13038.
[http://dx.doi.org/10.1093/nar/gku1021] [PMID: 25378304]
[54]
Wu, R.; Wang, Z.; Zhang, H.; Gan, H.; Zhang, Z. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res., 2017, 45(1), 169-180.
[http://dx.doi.org/10.1093/nar/gkw848] [PMID: 27679476]
[55]
Whetstine, J.R.; Nottke, A.; Lan, F.; Huarte, M.; Smolikov, S.; Chen, Z.; Spooner, E.; Li, E.; Zhang, G.; Colaiacovo, M.; Shi, Y. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell, 2006, 125(3), 467-481.
[http://dx.doi.org/10.1016/j.cell.2006.03.028] [PMID: 16603238]
[56]
Bur, H.; Haapasaari, K.M.; Turpeenniemi-Hujanen, T.; Kuittinen, O.; Auvinen, P.; Marin, K.; Soini, Y.; Karihtala, P. Strong KDM4B and KDM4D expression associates with radioresistance and aggressive phenotype in classical Hodgkin lymphoma. Anticancer Res., 2016, 36(9), 4677-4684.
[http://dx.doi.org/10.21873/anticanres.11020] [PMID: 27630312]
[57]
Kim, T.D.; Oh, S.; Shin, S.; Janknecht, R. Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS One, 2012, 7(4), e34618.
[http://dx.doi.org/10.1371/journal.pone.0034618] [PMID: 22514644]
[58]
Fang, Z.; Wang, T.; Li, H.; Zhang, G.; Wu, X.; Yang, L.; Peng, Y.; Zou, J.; Li, L.; Xiang, R.; Yang, S. Discovery of pyrazolo[1,5-a]pyrimidine-3-carbonitrile derivatives as a new class of histone lysine demethylase 4D (KDM4D) inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(14), 3201-3204.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.002] [PMID: 28539219]
[59]
Li, Z.; Liu, F.; Wu, S.; Ding, S.; Chen, Y.; Liu, J. Research progress on the drug resistance of ALK kinase inhibitors. ChemMedChem, 2021, 29(14), 2456-2475.
[60]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[61]
Mossé, Y.P.; Wood, A.; Maris, J.M. Inhibition of ALK signaling for cancer therapy. Clin. Cancer Res., 2009, 15(18), 5609-5614.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2762] [PMID: 19737948]
[62]
Barreca, A.; Lasorsa, E.; Riera, L.; Machiorlatti, R.; Piva, R.; Ponzoni, M.; Kwee, I.; Bertoni, F.; Piccaluga, P.P.; Pileri, S.A.; Inghirami, G. Anaplastic lymphoma kinase in human cancer. J. Mol. Endocrinol., 2011, 47(1), R11-R23.
[http://dx.doi.org/10.1530/JME-11-0004] [PMID: 21502284]
[63]
Jiang, J.; Huang, X.; Shamim, K.; Patel, P.R.; Lee, A.; Wang, A.Q.; Nguyen, K.; Tawa, G.; Cuny, G.D.; Yu, P.B.; Zheng, W.; Xu, X.; Sanderson, P.; Huang, W. Discovery of 3-(4-sulfamoylnaphthyl)pyrazolo[1,5-a]pyrimidines as potent and selective ALK2 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(20), 3356-3362.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.006] [PMID: 30227946]
[64]
Theo Cuypers, H.; Selten, G.; Quint, W.; Zijlstra, M.; Maandag, E.R.; Boelens, W.; van Wezenbeek, P.; Melief, C.; Berns, A. Murine leukemia virus-induced T-cell lymphomagenesis: Integration of proviruses in a distinct chromosomal region. Cell, 1984, 37(1), 141-150.
[http://dx.doi.org/10.1016/0092-8674(84)90309-X] [PMID: 6327049]
[65]
Xie, Y.; Bayakhmetov, S. PIM1 kinase as a promise of targeted therapy in prostate cancer stem cells. Mol. Clin. Oncol., 2016, 4(1), 13-17.
[http://dx.doi.org/10.3892/mco.2015.673] [PMID: 26835011]
[66]
Wang, J.; Anderson, P.D.; Luo, W.; Gius, D.; Roh, M.; Abdulkadir, S.A. Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells. Oncogene, 2012, 31(14), 1794-1803.
[http://dx.doi.org/10.1038/onc.2011.371] [PMID: 21860423]
[67]
Zhu, X.; Xu, J.; Hu, S.; Feng, J.; Jiang, L.; Hou, X.; Cao, J.; Han, J.; Ling, Z.; Ge, M. Pim-1 acts as an oncogene in human salivary gland adenoid cystic carcinoma. J. Exp. Clin. Cancer Res., 2014, 33(1), 114.
[http://dx.doi.org/10.1186/s13046-014-0114-5] [PMID: 25551195]
[68]
Mawas, A.S.; Amatya, V.J.; Suzuki, R.; Kushitani, K.; Mohi El-Din, M.M.; Takeshima, Y. PIM1 knockdown inhibits cell proliferation and invasion of mesothelioma cells. Int. J. Oncol., 2017, 50(3), 1029-1034.
[http://dx.doi.org/10.3892/ijo.2017.3863] [PMID: 28197633]
[69]
Anizon, F.; Shtil, A.A.; Danilenko, V.N.; Moreau, P. Fighting tumor cell survival: advances in the design and evaluation of PIM inhibitors. Curr. Med. Chem., 2010, 17(34), 4114-4133.
[http://dx.doi.org/10.2174/092986710793348554] [PMID: 20939820]
[70]
Asati, V.; Agarwal, S.; Mishra, M.; Das, R.; Kashaw, S.K. Structural prediction of novel pyrazolo-pyrimidine derivatives against PIM-1 kinase: In-silico drug design studies. J. Mol. Struct., 2020, 1217, 128375.
[http://dx.doi.org/10.1016/j.molstruc.2020.128375]
[71]
Philoppes, J.N.; Khedr, M.A.; Hassan, M.H.A.; Kamel, G.; Lamie, P.F. New pyrazolopyrimidine derivatives with anticancer activity: Design, synthesis, PIM-1 inhibition, molecular docking study and molecular dynamics. Bioorg. Chem., 2020, 100, 103944.
[http://dx.doi.org/10.1016/j.bioorg.2020.103944] [PMID: 32450389]
[72]
Malumbres, M.; Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci., 2005, 30(11), 630-641.
[http://dx.doi.org/10.1016/j.tibs.2005.09.005] [PMID: 16236519]
[73]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[74]
Almehmadi, S.J.; Alsaedi, A.M.R.; Harras, M.F.; Farghaly, T.A. Synthesis of a new series of pyrazolo[1,5-a]pyrimidines as CDK2 inhibitors and anti-leukemia. Bioorg. Chem., 2021, 117, 105431.
[http://dx.doi.org/10.1016/j.bioorg.2021.105431] [PMID: 34688130]
[75]
Phillipson, L.J.; Segal, D.H.; Nero, T.L.; Parker, M.W.; Wan, S.S.; de Silva, M.; Guthridge, M.A.; Wei, A.H.; Burns, C.J. Discovery and SAR of novel pyrazolo[1,5-a]pyrimidines as inhibitors of CDK9. Bioorg. Med. Chem., 2015, 23(19), 6280-6296.
[http://dx.doi.org/10.1016/j.bmc.2015.08.035] [PMID: 26349627]
[76]
Hylsová, M.; Carbain, B.; Fanfrlík, J.; Musilová, L.; Haldar, S. Köprülüoğlu, C.; Ajani, H.; Brahmkshatriya, P.S.; Jorda, R.; Kryštof, V.; Hobza, P.; Echalier, A.; Paruch, K.; Lepšík, M. Explicit treatment of active-site waters enhances quantum mechanical/implicit solvent scoring: Inhibition of CDK2 by new pyrazolo[1,5-a]pyrimidines. Eur. J. Med. Chem., 2017, 126, 1118-1128.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.023] [PMID: 28039837]
[77]
Metwally, N.H.; Mohamed, M.S.; Deeb, E.A. Synthesis, anticancer evaluation, CDK2 inhibition, and apoptotic activity assessment with molecular docking modeling of new class of pyrazolo[1,5-a]pyrimidines. Res. Chem. Intermed., 2021, 47(12), 5027-5060.
[http://dx.doi.org/10.1007/s11164-021-04564-x]
[78]
Sabita, G.; Savitha, R.; Divya, K.; Bhaskar, K. Synthesis and biological evaluation of aryl sulfonyl linked isoxazol-(pyridin-4-yl)pyrazolo [1,5-a]pyrimidines as cytotoxicity agents. Chem. Data Collect., 2022, 38, 100822.
[http://dx.doi.org/10.1016/j.cdc.2021.100822]
[79]
Husseiny, E.M. Synthesis, cytotoxicity of some pyrazoles and pyrazolo[1,5-a]pyrimidines bearing benzothiazole moiety and investigation of their mechanism of action. Bioorg. Chem., 2020, 102, 104053.
[http://dx.doi.org/10.1016/j.bioorg.2020.104053] [PMID: 32673889]
[80]
Bondock, S.; Alqahtani, S.; Fouda, A.M. Synthesis and anticancer evaluation of some new pyrazolo[3,‐4 d][1,2,3]triazin-4-ones, pyrazolo[1,5- a]pyrimidines, and imidazo[1,2- b]pyrazoles clubbed with carbazole. J. Heterocycl. Chem., 2021, 58(1), 56-73.
[http://dx.doi.org/10.1002/jhet.4148]
[81]
Ajeesh Kumar, A.K.; Bodke, Y.D.; Lakra, P.S.; Sambasivam, G.; Bhat, K.G. Design, synthesis and anti-cancer evaluation of a novel series of pyrazolo [1, 5-a] pyrimidine substituted diamide derivatives. Med. Chem. Res., 2017, 26(4), 714-744.
[http://dx.doi.org/10.1007/s00044-016-1770-0]
[82]
Ajeesh Kumar, A.K.; Nair, K.B.; Bodke, Y.D.; Sambasivam, G.; Bhat, K.G. Design, synthesis, and evaluation of the anticancer properties of a novel series of carboxamides, sulfonamides, ureas, and thioureas derived from 1,2,4-oxadiazol-3-ylmethyl-piperazin-1-yl substituted with pyrazolo[1,5-a]pyrimidine derivatives. Monatsh. Chem., 2016, 147(12), 2221-2234.
[http://dx.doi.org/10.1007/s00706-016-1723-9]
[83]
Hassan, A.S.; Mady, M.F.; Awad, H.M.; Hafez, T.S. Synthesis and antitumor activity of some new pyrazolo[1,5- a]pyrimidines. Chin. Chem. Lett., 2017, 28(2), 388-393.
[http://dx.doi.org/10.1016/j.cclet.2016.10.022]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy