Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis, Biological Activity and DFT Studies of 1,3,4-oxadiazole Ring in Combination with Pyridinium Salt

Author(s): Mohammad H. Rababa, Majd M. Alsaleh, Alaa A. Abusamhadaneh, Eyad A. Younes, Iyad Y. Natsheh and Anas J. Rasras*

Volume 27, Issue 1, 2023

Published on: 06 March, 2023

Page: [62 - 70] Pages: 9

DOI: 10.2174/1385272827666230227120641

Price: $65

Abstract

Aims: In this study, the synthesis and biological activity of new 1,3,4-oxadiazole derivatives will be discussed.

Background: Microbial contagion via different bacterial strains discomposes the healthcare system globally. In 2019 E. coli, S. aureus, K. pneumoniae, and S. pneumoniae were reported as the most bacteremia deaths causes. Over time, bacteria develop different ways to overcome antibiotic activity, causing multidrug resistant bacteria (MDR). The MDR is considered one of the biggest concerns to scientists worldwide due to its direct effect on patients' lives. As a result, developing new drugs has become imperative for scientists to protect human life.

Objective: Developing new water soluble antibacterial drugs from cheap and commercially available materials.

Methods: Microdilution Assay Antimicrobial potential was performed based on the reported experimental procedure with slight modifications. Briefly, chemical preparations were serially diluted (2-fold) ten times with Muller Hinton broth. Well number eleven was considered a negative control of bacterial growth, while well number twelve contained nutrient broth only and was used as a positive control for bacterial growth. The achieved ten concentrations of the chemical solutions were from 10 mg/mL to 9 μg/mL. A serial two-fold dilution of DMSO with Muller Hinton broth was prepared to ensure that the antimicrobial potential was not from DMSO. Moreover, the blank or the background was a two-fold dilution for each chemical with broth. The final bacterial concentration in each well (except positive control) was adjusted to 0.75 × 106 CFU/ml. After the inoculation of bacteria, the plates were covered and incubated overnight at 37°C for 24 hours. The plates were then scanned with an enzyme-linked immunosorbent assay (ELISA) reader at 600 Nano moles to examine the bacterial density. The lowest concentration of the chemical that did not allow any visible microbial growth in the test broth was considered the minimal inhibitory concentration (MIC), which was then further confirmed by culturing each (MIC) well on Muller Henton agar and incubating overnight at 37°C for twenty-four hours. The molecular geometries of compounds 4a, 4e, 4j, and 4p were optimized at the B3LYP/6-311+G(d,p) level of theory using DFT calculations.

Results: The antimicrobial examination results show that compound 4j has an interesting activity against E. faecium with MIC value of 9 μg/mL. However, it was found to have low activity against E.coli and K. pneumoniae with an MIC value of 625 μg/mL. On the other hand, compound 4e showed very good activity against E.coli with an MIC value of 78 μg/mL and good activity against K. pneumoniae with an MIC value of 312 μg/mL. The structural properties were further investigated by density functional theory (DFT) calculations. The most biologically active compounds 4e and 4j were optimized in the gas phase using B3LYP method and 6-31+G(d,p) as a bases set. The resulting ground-state structures take a V shape as the two conjugated system are connected by methylene group. The molecular electrostatic potential map (MEP) of 4e and 4j was calculated and the results indicate that, the most intense blue region with the largest positive potential is distributed over the pyridinium ring, which indicates its binding with the chloride ion.

« Previous
Graphical Abstract

[1]
World Health Oragnaizatio (WHO). Antibiotic resistance; , 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
[2]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kis-soon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Mturi, N.; Mu-nera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M.M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Peleg, A.Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rudd, K.E.; Russell, N.; Schnall, J.; Scott, J.A.G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thai-prakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[3]
Chebotar’, I.V.; Emelyanova, M.A.; Bocharova, J.A.; Mayansky, N.A.; Kopantseva, E.E.; Mikhailovich, V.M. The classification of bacterial survival strategies in the presence of antimicrobials. Microb. Pathog., 2021, 155, 104901.
[http://dx.doi.org/10.1016/j.micpath.2021.104901] [PMID: 33930413]
[4]
Liu, Y.; Tong, Z.; Shi, J.; Li, R.; Upton, M.; Wang, Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics, 2021, 11(10), 4910-4928.
[http://dx.doi.org/10.7150/thno.56205] [PMID: 33754035]
[5]
Tansarli, G.S.; Karageorgopoulos, D.E.; Kapaskelis, A.; Falagas, M.E. Impact of antimicrobial multidrug resistance on inpatient care cost: An evaluation of the evidence. Expert Rev. Anti Infect. Ther., 2013, 11(3), 321-331.
[http://dx.doi.org/10.1586/eri.13.4] [PMID: 23458771]
[6]
(a) Yao, W.; Wang, J.; Zhong, A.; Li, J.; Yang, J. Combined KOH/BEt 3 catalyst for selective deaminative hydroboration of aromatic carboxamides for construction of luminophores. Org. Lett., 2020, 22(20), 8086-8090.
[http://dx.doi.org/10.1021/acs.orglett.0c03033] [PMID: 33026813];
(b) Wang, Y.F.; Wang, C.J.; Feng, Q.Z.; Zhai, J.J.; Qi, S.S.; Zhong, A.G.; Chu, M.M.; Xu, D.Q. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para -quinone methides with β-ketoesters. Chem. Commun., 2022, 58(46), 6653-6656.
[http://dx.doi.org/10.1039/D2CC00146B] [PMID: 35593224]
[7]
(a) Khalilullah, H.; Khan, S.; Nomani, M.S.; Ahmed, B. Synthesis, characterization and antimicrobial activity of benzodioxane ring containing 1,3,4-oxadiazole deriva-tives. Arab. J. Chem., 2016, 9, S1029-S1035.
[http://dx.doi.org/10.1016/j.arabjc.2011.11.009];
(b) Rasras, A.J.; El-Naggar, M.; Safwat, N.A.; Al-Qawasmeh, R.A. Cholyl 1,3,4-oxadiazole hybrid compounds: Design, synthesis and antimicrobial assessment. Beilstein J. Org. Chem., 2022, 18, 631-638.
[http://dx.doi.org/10.3762/bjoc.18.63] [PMID: 35706993]
[8]
Capoci, I.R.G.; Sakita, K.M.; Faria, D.R.; Rodrigues-Vendramini, F.A.V.; Arita, G.S.; de Oliveira, A.G.; Felipe, M.S.; Maigret, B.; Bonfim-Mendonça, P.S.; Kioshima, E.S.; Svidzinski, T.I.E. Two new 1,3,4-Oxadiazoles with effective antifungal activity against Candida albicans. Front. Microbiol., 2019, 10(2130), 2130.
[http://dx.doi.org/10.3389/fmicb.2019.02130] [PMID: 31572335]
[9]
Stecoza, C.E.; Nitulescu, G.M.; Draghici, C.; Caproiu, M.T.; Olaru, O.T.; Bostan, M.; Mihaila, M. Synthesis and anticancer evaluation of new 1,3,4-oxadiazole derivatives. Pharmaceuticals, 2021, 14(5), 438-453.
[http://dx.doi.org/10.3390/ph14050438] [PMID: 34066442]
[10]
Ma, S.; Jiang, W.; Li, Q.; Li, T.; Wu, W.; Bai, H.; Shi, B. Design, synthesis, and study of the insecticidal activity of novel steroidal 1,3,4-oxadiazoles. J. Agric. Food Chem., 2021, 69(39), 11572-11581.
[http://dx.doi.org/10.1021/acs.jafc.1c00088] [PMID: 34554742]
[11]
Chawla, G.; Naaz, B.; Siddiqui, A.A. Exploring 1,3,4-oxadiazole scaffold for anti-inflammatory and analgesic activities: A review of literature from 2005-2016. Mini Rev. Med. Chem., 2018, 18(3), 216-233.
[PMID: 28137242]
[12]
Liu, W.; Li, Q.; Cheng, F.; Shi, D.; Cao, Z. Synthesis of novel glycosyl 1,3,4-oxadiazole derivatives. Heterocycl. Commun., 2014, 20(6), 333-338.
[http://dx.doi.org/10.1515/hc-2014-0166]
[13]
(a) Alptüzün, V.; Parlar, S.; Taşlı, H.; Erciyas, E. Synthesis and antimicrobial activity of some pyridinium salts. Molecules, 2009, 14(12), 5203-5215.
[http://dx.doi.org/10.3390/molecules14125203] [PMID: 20032886];
(b) Hympanova, M.; Terlep, S.; Markova, A.; Prchal, L.; Dogsa, I.; Pulkrabkova, L.; Benkova, M.; Marek, J.; Stopar, D. The antibacterial effects of new N-Alkylpyridinium salts on planktonic and biofilm bacteria. Front. Microbiol., 2020, 11, 573951.
[http://dx.doi.org/10.3389/fmicb.2020.573951] [PMID: 33193183]
[14]
Kourai, H. Antimicrobial activities of alkylallyldimethylammonium iodides and alkylallyl-diethylammonium iodides. J. Antibact. Antifung. Angents, 1995, 23, 271-280.
[15]
Kolawole, D.O. Resistance mechanisms of mucoid-grown Staphylococcus aureus to the antibacterial action of some disinfectants and antiseptics. FEMS Microbiol. Lett., 1984, 25(2-3), 205-209.
[http://dx.doi.org/10.1111/j.1574-6968.1984.tb01457.x]
[16]
Maeda, T.; Goto, S.; Manabe, Y.; Okazaki, K.; Nagamune, H.; Kourai, H. Bactericidal action of n-alkylcyanopyridinium bromides against Escherichia coli K12 W3110. Biocontrol Sci., 1996, 1(1), 41-49.
[http://dx.doi.org/10.4265/bio.1.41]
[17]
Shirai, A.; Maeda, T.; Nagamune, H.; Matsuki, H.; Kaneshina, S.; Kourai, H. Biological and physicochemical properties of gemini quaternary ammonium compounds in which the positions of a cross-linking sulfur in the spacer differ. Eur. J. Med. Chem., 2005, 40(1), 113-123.
[http://dx.doi.org/10.1016/j.ejmech.2004.09.015] [PMID: 15642416]
[18]
Paul, R.; Paul, S. Exploration on the drug solubility enhancement in aqueous medium with the help of endo-functionalized molecular tubes: A computational approach. Phys. Chem. Chem. Phys., 2021, 23(34), 18999-19010.
[http://dx.doi.org/10.1039/D1CP01187A] [PMID: 34612438]
[19]
Rasras, A.J.M.; Al-Tel, T.H.; Al-Aboudi, A.F.; Al-Qawasmeh, R.A. Synthesis and antimicrobial activity of cholic acid hydrazone analogues. Eur. J. Med. Chem., 2010, 45(6), 2307-2313.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.006] [PMID: 20181416]
[20]
Leung, D.; Du, W.; Hardouin, C.; Cheng, H.; Hwang, I.; Cravatt, B.F.; Boger, D.L. Discovery of an exceptionally potent and selective class of fatty acid amide hydrolase inhibitors enlisting proteome-wide selectivity screening: Concurrent optimization of enzyme inhibitor potency and selectivity. Bioorg. Med. Chem. Lett., 2005, 15(5), 1423-1428.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.085] [PMID: 15713400]
[21]
Majd, M.A-S.; Rida, A.S.; Hamzah, M.A-Q.; Reham, W.T.; Maysaa, M.D.; Tamara, S.A-Q. Investigating the antimicrobial potential of in vitro grown microshoots and callus cultures of Ammi visnaga (L.). Lam. Jordan J. Biol. Sci., 2019, 12(1), 43-48.
[22]
Karaman, İ.; Şahin, F.; Güllüce, M.; Öǧütçü, H.; Şengül, M.; Adıgüzel, A. Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J. Ethnopharmacol., 2003, 85(2-3), 231-235.
[http://dx.doi.org/10.1016/S0378-8741(03)00006-0] [PMID: 12639746]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy