Abstract
Background: The spiro entity and heterocyclic scaffolds are decorated with a variety of biological and pharmaceutical properties. Therefore, the fusion of spiro compounds with individual moieties. Thus, the designing and expansion of the methods for the synthesis of various spiro-fused heterocyclic scaffolds are significantly important for synthetic organic chemistry.
Methods: A variety of spiro-fused heterocyclic scaffolds are synthesized through different strategies and methods, such as one-pot multi-components synthesis, and multi-step methods via different organic reactions.
Results: The wide range of the applications and their interesting biological and medicinal properties encouraged the interest of the researchers to design and construct advanced strategies and methodologies for synthesizing novel spiro-fused heterocyclic molecules which resulted in the publication of numerous research papers and review articles in the literature. In this review article, we have access to the various Schemes for the synthesis of different spiro-fused heterocyclic molecules and their biological importance.
Graphical Abstract
[http://dx.doi.org/10.1351/pac199971030531]
[http://dx.doi.org/10.1039/C1CS15156H] [PMID: 21975423]
[http://dx.doi.org/10.1039/D1RA01170G] [PMID: 35480788]
[http://dx.doi.org/10.1021/acs.joc.1c00103] [PMID: 33818095]
[http://dx.doi.org/10.1248/cpb.45.48];
(b) Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K. Carbazole alkaloids from roots of Glycosmis arborea. Phytochemistry, 1999, 50(7), 1263-1266.
[http://dx.doi.org/10.1016/S0031-9422(98)00666-9];
(c) Ito, C.; Katsuno, S.; Itoigawa, M.; Ruangrungsi, N.; Mukainaka, T.; Okuda, M.; Kitagawa, Y.; Tokuda, H.; Nishino, H.; Furukawa, H. New carbazole alkaloids from Clausena anisata with antitumor promoting activity. J. Nat. Prod., 2000, 63(1), 125-128.
[http://dx.doi.org/10.1021/np990285x] [PMID: 10650093];
(d) Wang, Y.S.; He, H.P.; Shen, Y.M.; Hong, X.; Hao, X.J. Two new carbazole alkaloids from Murraya koenigii. J. Nat. Prod., 2003, 66(3), 416-418.
[http://dx.doi.org/10.1021/np020468a] [PMID: 12662104];
(e) Thevissen, K.; Marchand, A.; Chaltin, P.; Meert, E.; Cammue, B. Antifungal Carbazoles. Curr. Med. Chem., 2009, 16(17), 2205-2211.
[http://dx.doi.org/10.2174/092986709788612701] [PMID: 19519387];
(f) Dhara, K.; Mandal, T.; Das, J.; Dash, J. Synthesis of carbazole alkaloids by ring‐closing metathesis and ring rearrangement–aromatization. Angew. Chem. Int. Ed., 2015, 54(52), 15831-15835.
[http://dx.doi.org/10.1002/anie.201508746] [PMID: 26768698];
(g) He, W.; Wang, P.; Chen, J.; Xie, W. Recent progress in the total synthesis of Strychnos alkaloids. Org. Biomol. Chem., 2020, 18(6), 1046-1056.
[http://dx.doi.org/10.1039/C9OB02627D] [PMID: 31971201];
(h) Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155.
[http://dx.doi.org/10.1021/cr300135y] [PMID: 22950860];
(i) Hong, L.; Wang, R. Recent advances in asymmetric organocatalytic construction of 3,3′-spirocyclic oxindoles. Adv. Synth. Catal., 2013, 355(6), 1023-1052.
[http://dx.doi.org/10.1002/adsc.201200808];
(j) Cao, Z.Y.; Wang, Y.H.; Zeng, X.P.; Zhou, J. Catalytic asymmetric synthesis of 3,3-disubstituted oxindoles: Diazooxindole joins the field. Tetrahedron Lett., 2014, 55(16), 2571-2584.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.084];
(k) Cheng, D. Q.; Ishihara, Y.; Tan, B.; Barbas, C. B. III organocatalytic asymmetric assembly reactions: Synthesis of spirooxindoles via organocascade strategies. ACS Catal., 2014, 4, 743-762.;
(l) Pawar, T.J.; Maqueda-Cabrera, E.E.; Alonso-Castro, A.J.; Olivares-Romero, J.L.; Cruz Cruz, D.; Villegas Gómez, C. Enantioselective synthesis of tetrahydrocarbazoles via trienamine catalysis and their anxiolytic-like activity. Bioorg. Med. Chem. Lett., 2020, 30(9), 127063.
[http://dx.doi.org/10.1016/j.bmcl.2020.127063] [PMID: 32139323];
(m) Choi, T.A.; Czerwonka, R.; Fröhner, W.; Krahl, M.P.; Reddy, K.R.; Franzblau, S.G.; Knölker, H.J. Synthesis and activity of carbazole derivatives against Mycobacterium tuberculosis. Chem. Med. Chem., 2006, 1(8), 812-815.
[http://dx.doi.org/10.1002/cmdc.200600002] [PMID: 16902934]
[http://dx.doi.org/10.1021/acs.orglett.8b02731] [PMID: 30354166]
[http://dx.doi.org/10.1021/acs.joc.0c02467] [PMID: 33433216]
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[http://dx.doi.org/10.1177/1747519820916926]
[http://dx.doi.org/10.1021/jm100410f] [PMID: 20568778];
(b) Thangamani, A. Regiospecific synthesis and biological evaluation of spirooxindolopyrrolizidines via [3+2] cycloaddition of azomethine ylide. Eur. J. Med. Chem., 2010, 45(12), 6120-6126.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.051] [PMID: 20947223];
(c) Cingolani, G.; Gualtieri, F.; Pigini, M. Researches in the field of antiviral compounds. Mannich Bases of 3-hydroxycoumarin. J. Med. Chem., 1969, 12(3), 531-532.
[http://dx.doi.org/10.1021/jm00303a616] [PMID: 5788176];
(d) Wu, J.Y.C.; Fong, W.F.; Zhang, J.X.; Kashman, Y.; Gustafson, K.R.; Fuller, R.W. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem., 1992, 35, 2735.
[http://dx.doi.org/10.1021/jm00093a004] [PMID: 1379639];
(e) Patil, A.D.; Freyer, A.J.; Eggleston, D.S.; Haltiwanger, R.C.; Bean, M.F.; Taylor, P.B.; Caranfa, M.J.; Breen, A.L.; Bartus, H.R.; Johnson, R.K. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem., 1993, 36(26), 4131-4138.
[http://dx.doi.org/10.1021/jm00078a001] [PMID: 7506311];
(f) Baraldi, P.G.; Manfredini, S.; Simoni, D.; Tabrizi, M.A.; Balzarini, J.; De Clercq, E. Geiparvarin Analogs 3. Synthesis and cytostatic activity of 3(2H)-furanone and 4,5-dihydro-3(2H)-furanone congeners of geiparvarin, containing a geraniol-like fragment in the side chain. J. Med. Chem., 1992, 35(10), 1877-1882.
[http://dx.doi.org/10.1021/jm00088a025] [PMID: 1588564];
(g) Perrella, F.W.; Chen, S.F.; Behrens, D.L.; Kaltenbach, R.F.I.I.I., III; Seitz, S.P. Phospholipase C inhibitors: A new class of cytotoxic agents. J. Med. Chem., 1994, 37(14), 2232-2237.
[http://dx.doi.org/10.1021/jm00040a016] [PMID: 8035430]
[http://dx.doi.org/10.1021/acs.orglett.0c00158] [PMID: 32073279]
[http://dx.doi.org/10.1021/jm201079g] [PMID: 22029285]
[http://dx.doi.org/10.1021/acs.joc.9b00808] [PMID: 31070030]
[http://dx.doi.org/10.1016/j.ejmech.2012.02.024] [PMID: 22405285]
[http://dx.doi.org/10.1021/acs.orglett.0c00181] [PMID: 31990194]
[http://dx.doi.org/10.1039/b316241a] [PMID: 15692618]
[http://dx.doi.org/10.1021/acs.orglett.8b03741] [PMID: 30698442]
[http://dx.doi.org/10.1021/acs.orglett.7b02150] [PMID: 28849657]
[http://dx.doi.org/10.1021/acs.jmedchem.6b00900] [PMID: 27775892]
[http://dx.doi.org/10.1016/j.bioorg.2021.105128]
[http://dx.doi.org/10.1021/jo500144z] [PMID: 24693861]
[http://dx.doi.org/10.1002/slct.201803507]
[http://dx.doi.org/10.1016/j.ultsonch.2009.09.009] [PMID: 19836289]
[PMID: 19863100]
[http://dx.doi.org/10.1016/j.tet.2018.04.092]
[http://dx.doi.org/10.1021/cc800167h] [PMID: 19239200]
[http://dx.doi.org/10.1248/cpb.56.1617] [PMID: 18981618]
[http://dx.doi.org/10.1021/cc8001958] [PMID: 19425616]
[http://dx.doi.org/10.1155/2015/982404]
[http://dx.doi.org/10.1021/co1000053] [PMID: 21247132]
[http://dx.doi.org/10.1016/j.cclet.2016.03.015]
[http://dx.doi.org/10.1021/acsomega.0c01934] [PMID: 32743203]
[http://dx.doi.org/10.1039/c1cc15015d] [PMID: 21952527]
[http://dx.doi.org/10.1039/C9TB02733E] [PMID: 31998931]
[http://dx.doi.org/10.1021/ol402420w] [PMID: 23984707]
[http://dx.doi.org/10.1039/D0NJ02817G]
[http://dx.doi.org/10.1039/D0RA10219A] [PMID: 35424118]
[http://dx.doi.org/10.1021/acs.joc.6b02505] [PMID: 28004934]
[http://dx.doi.org/10.1021/acs.joc.5b01399] [PMID: 26291879]
[http://dx.doi.org/10.1016/j.bmcl.2009.10.107] [PMID: 19900810];
(b) Periyasami, G.; Raghunathan, R.; Surendiran, G.; Mathivanan, N. Synthesis of novel spiropyrrolizidines as potent antimicrobial agents for human and plant pathogens. Bioorg. Med. Chem. Lett., 2008, 18(7), 2342-2345.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.065] [PMID: 18342506];
(c) Mhaske, P.C.; Shelke, S.H.; Jadhav, R.P.; Raundal, H.N.; Patil, S.V.; Patil, A.A.; Bobade, V.D. Synthesis, characterization, and antimicrobial activity of 3′-(4-(2-substituted thiazol-4-yl)phenyl)spiro[indoline-3,2′-thiazolidine]-2,4′-diones. J. Heterocycl. Chem., 2010, 47(6), 1415-1420.
[http://dx.doi.org/10.1002/jhet.503];
(d) Raj, A.A.; Raghunathan, R.; Sridevi Kumari, M.R.; Raman, N. Synthesis, antimicrobial and antifungal activity of a new class of spiro pyrrolidines. Bioorg. Med. Chem., 2003, 11, 407-419.;
(e) Jiang, T.; Kuhen, K.L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Wu, Y.; He, Y. Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part I. Bioorg. Med. Chem. Lett., 2006, 16, 2105-2108.;
(f) García Prado, E.; García Gimenez, M.D.; De la Puerta Vázquez, R.; Espartero Sánchez, J.L.; Saenz Rodríguez, M.T. Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines. Phytomedicine, 2007, 14, 280-284.;
(g) Cui, C-B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron, 1996, 52, 12651-12666.
[http://dx.doi.org/10.1021/cc100035q] [PMID: 20608736]
[http://dx.doi.org/10.1021/acs.orglett.7b03661] [PMID: 29513018]
[http://dx.doi.org/10.1021/ol701533d] [PMID: 17877359]
[http://dx.doi.org/10.1021/co400096c] [PMID: 24517857]
[http://dx.doi.org/10.1039/C6RA25869G]
[http://dx.doi.org/10.1016/j.tetlet.2018.05.087]
[http://dx.doi.org/10.1039/C7NJ02993D]
[http://dx.doi.org/10.1016/j.poly.2019.02.032]
[http://dx.doi.org/10.1002/jhet.1604]
[http://dx.doi.org/10.1055/s-0030-1258506]
[http://dx.doi.org/10.1039/C9GC01751H]
[http://dx.doi.org/10.1016/j.tetlet.2007.02.045]
[http://dx.doi.org/10.1039/C6NJ02869A]
[http://dx.doi.org/10.1016/j.tetlet.2015.03.069]
[http://dx.doi.org/10.1021/jm00062a022] [PMID: 8496916]
[http://dx.doi.org/10.1016/j.molstruc.2019.05.023]
[http://dx.doi.org/10.1039/D0RA06148D] [PMID: 35518245]
[http://dx.doi.org/10.1021/acs.joc.9b00746] [PMID: 31066280]
[http://dx.doi.org/10.1021/acs.orglett.0c02372] [PMID: 32808793]
[http://dx.doi.org/10.1021/acs.orglett.0c01429] [PMID: 32383593]
[http://dx.doi.org/10.1039/D1QO00629K]
[http://dx.doi.org/10.1021/ja905302f] [PMID: 19736987]
[http://dx.doi.org/10.1021/acs.orglett.0c00779] [PMID: 32281799]
[http://dx.doi.org/10.1021/acs.orglett.9b03282] [PMID: 31603337]
[http://dx.doi.org/10.1021/jo5012625] [PMID: 25054839]
[http://dx.doi.org/10.1021/jm800545k] [PMID: 18714980]