Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Review on the Synthesis of Bio-Active Spiro-Fused Heterocyclic Molecules

Author(s): Geetika Patel, Ashok Raj Patel, Sameera Kheti, Parimal Kumar Sao, Gargee Rathore and Subhash Banerjee*

Volume 10, Issue 3, 2023

Published on: 12 April, 2023

Page: [180 - 208] Pages: 29

DOI: 10.2174/2213337210666230224114001

Price: $65

Abstract

Background: The spiro entity and heterocyclic scaffolds are decorated with a variety of biological and pharmaceutical properties. Therefore, the fusion of spiro compounds with individual moieties. Thus, the designing and expansion of the methods for the synthesis of various spiro-fused heterocyclic scaffolds are significantly important for synthetic organic chemistry.

Methods: A variety of spiro-fused heterocyclic scaffolds are synthesized through different strategies and methods, such as one-pot multi-components synthesis, and multi-step methods via different organic reactions.

Results: The wide range of the applications and their interesting biological and medicinal properties encouraged the interest of the researchers to design and construct advanced strategies and methodologies for synthesizing novel spiro-fused heterocyclic molecules which resulted in the publication of numerous research papers and review articles in the literature. In this review article, we have access to the various Schemes for the synthesis of different spiro-fused heterocyclic molecules and their biological importance.

Graphical Abstract

[1]
Moss, G.P. Extension and revision of the nomenclature for spiro compounds. Pure Appl. Chem., 1999, 71(3), 531-558.
[http://dx.doi.org/10.1351/pac199971030531]
[2]
Rios, R. Enantioselective methodologies for the synthesis of spiro compounds. Chem. Soc. Rev., 2012, 41(3), 1060-1074.
[http://dx.doi.org/10.1039/C1CS15156H] [PMID: 21975423]
[3]
Acosta-Quiroga, K.; Rojas-Peña, C.; Nerio, L.S.; Gutiérrez, M.; Polo-Cuadrado, E. Spirocyclic derivatives as antioxidants: A review. RSC Advances, 2021, 11(36), 21926-21954.
[http://dx.doi.org/10.1039/D1RA01170G] [PMID: 35480788]
[4]
Wang, D.; Sun, J.; Liu, R.Z.; Wang, Y.; Yan, C.G. Diastereoselective synthesis of tetrahydrospiro[carbazole-1,3′-indolines] via an inbr3-catalyzed domino diels–alder reaction. J. Org. Chem., 2021, 86(8), 5616-5629.
[http://dx.doi.org/10.1021/acs.joc.1c00103] [PMID: 33818095]
[5]
a) Ito, C.; Katsuno, S.; Ohta, H.; Omura, M.; Kajiura, I.; Furukawa, H. Constituents of Clausena excavata. Isolation and structural elucidation of new carbazole alkaloids. Chem. Pharm. Bull. (Tokyo), 1997, 45(1), 48-52.
[http://dx.doi.org/10.1248/cpb.45.48];
(b) Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K. Carbazole alkaloids from roots of Glycosmis arborea. Phytochemistry, 1999, 50(7), 1263-1266.
[http://dx.doi.org/10.1016/S0031-9422(98)00666-9];
(c) Ito, C.; Katsuno, S.; Itoigawa, M.; Ruangrungsi, N.; Mukainaka, T.; Okuda, M.; Kitagawa, Y.; Tokuda, H.; Nishino, H.; Furukawa, H. New carbazole alkaloids from Clausena anisata with antitumor promoting activity. J. Nat. Prod., 2000, 63(1), 125-128.
[http://dx.doi.org/10.1021/np990285x] [PMID: 10650093];
(d) Wang, Y.S.; He, H.P.; Shen, Y.M.; Hong, X.; Hao, X.J. Two new carbazole alkaloids from Murraya koenigii. J. Nat. Prod., 2003, 66(3), 416-418.
[http://dx.doi.org/10.1021/np020468a] [PMID: 12662104];
(e) Thevissen, K.; Marchand, A.; Chaltin, P.; Meert, E.; Cammue, B. Antifungal Carbazoles. Curr. Med. Chem., 2009, 16(17), 2205-2211.
[http://dx.doi.org/10.2174/092986709788612701] [PMID: 19519387];
(f) Dhara, K.; Mandal, T.; Das, J.; Dash, J. Synthesis of carbazole alkaloids by ring‐closing metathesis and ring rearrangement–aromatization. Angew. Chem. Int. Ed., 2015, 54(52), 15831-15835.
[http://dx.doi.org/10.1002/anie.201508746] [PMID: 26768698];
(g) He, W.; Wang, P.; Chen, J.; Xie, W. Recent progress in the total synthesis of Strychnos alkaloids. Org. Biomol. Chem., 2020, 18(6), 1046-1056.
[http://dx.doi.org/10.1039/C9OB02627D] [PMID: 31971201];
(h) Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155.
[http://dx.doi.org/10.1021/cr300135y] [PMID: 22950860];
(i) Hong, L.; Wang, R. Recent advances in asymmetric organocatalytic construction of 3,3′-spirocyclic oxindoles. Adv. Synth. Catal., 2013, 355(6), 1023-1052.
[http://dx.doi.org/10.1002/adsc.201200808];
(j) Cao, Z.Y.; Wang, Y.H.; Zeng, X.P.; Zhou, J. Catalytic asymmetric synthesis of 3,3-disubstituted oxindoles: Diazooxindole joins the field. Tetrahedron Lett., 2014, 55(16), 2571-2584.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.084];
(k) Cheng, D. Q.; Ishihara, Y.; Tan, B.; Barbas, C. B. III organocatalytic asymmetric assembly reactions: Synthesis of spirooxindoles via organocascade strategies. ACS Catal., 2014, 4, 743-762.;
(l) Pawar, T.J.; Maqueda-Cabrera, E.E.; Alonso-Castro, A.J.; Olivares-Romero, J.L.; Cruz Cruz, D.; Villegas Gómez, C. Enantioselective synthesis of tetrahydrocarbazoles via trienamine catalysis and their anxiolytic-like activity. Bioorg. Med. Chem. Lett., 2020, 30(9), 127063.
[http://dx.doi.org/10.1016/j.bmcl.2020.127063] [PMID: 32139323];
(m) Choi, T.A.; Czerwonka, R.; Fröhner, W.; Krahl, M.P.; Reddy, K.R.; Franzblau, S.G.; Knölker, H.J. Synthesis and activity of carbazole derivatives against Mycobacterium tuberculosis. Chem. Med. Chem., 2006, 1(8), 812-815.
[http://dx.doi.org/10.1002/cmdc.200600002] [PMID: 16902934]
[6]
You, Z.H.; Chen, Y.H.; Tang, Y.; Liu, Y.K. Organocatalytic asymmetric synthesis of spiro-bridged and spiro-fused heterocyclic compounds containing chromane, indole, and oxindole moieties. Org. Lett., 2018, 20(21), 6682-6686.
[http://dx.doi.org/10.1021/acs.orglett.8b02731] [PMID: 30354166]
[7]
Shinde, V.N.; Rangan, K.; Kumar, D.; Kumar, A. Rhodium(III)-catalyzed dehydrogenative annulation and spirocyclization of 2-arylindoles and 2-(1 H -Pyrazol-1-yl)-1 H -indoles with maleimides: A facile access to isogranulatimide alkaloid analogues. J. Org. Chem., 2021, 86(3), 2328-2338.
[http://dx.doi.org/10.1021/acs.joc.0c02467] [PMID: 33433216]
[8]
Thanikachalam, P.V.; Maurya, R.K.; Garg, V.; Monga, V.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur. J. Med. Chem., 2019, 180, 562-612.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[9]
Zangouei, M.; Esmaeili, A.A. One-pot, catalyst-free synthesis of novel spiro[indole-3,4′-pyrano[2′3′4,5]pyrimido [2,1- b][1,3]benzothiazole] derivatives. J. Chem. Res., 2020, 44(11-12), 646-652.
[http://dx.doi.org/10.1177/1747519820916926]
[10]
Marti, C.; Carreira, E.M. Construction of Spiro[pyrrolidine-3,3′-oxindoles] −. Recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem., 2003, 63, 2209.
[11]
a) Yeung, B.K.S.; Zou, B.; Rottmann, M.; Lakshminarayana, S.B.; Ang, S.H.; Leong, S.Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E.K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E.A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T.T.; Keller, T.H. Spirotetrahydro beta-carbolines (spiroindolones): A new class of potent and orally efficacious compounds for the treatment of malaria. J. Med. Chem., 2010, 53(14), 5155-5164.
[http://dx.doi.org/10.1021/jm100410f] [PMID: 20568778];
(b) Thangamani, A. Regiospecific synthesis and biological evaluation of spirooxindolopyrrolizidines via [3+2] cycloaddition of azomethine ylide. Eur. J. Med. Chem., 2010, 45(12), 6120-6126.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.051] [PMID: 20947223];
(c) Cingolani, G.; Gualtieri, F.; Pigini, M. Researches in the field of antiviral compounds. Mannich Bases of 3-hydroxycoumarin. J. Med. Chem., 1969, 12(3), 531-532.
[http://dx.doi.org/10.1021/jm00303a616] [PMID: 5788176];
(d) Wu, J.Y.C.; Fong, W.F.; Zhang, J.X.; Kashman, Y.; Gustafson, K.R.; Fuller, R.W. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem., 1992, 35, 2735.
[http://dx.doi.org/10.1021/jm00093a004] [PMID: 1379639];
(e) Patil, A.D.; Freyer, A.J.; Eggleston, D.S.; Haltiwanger, R.C.; Bean, M.F.; Taylor, P.B.; Caranfa, M.J.; Breen, A.L.; Bartus, H.R.; Johnson, R.K. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem., 1993, 36(26), 4131-4138.
[http://dx.doi.org/10.1021/jm00078a001] [PMID: 7506311];
(f) Baraldi, P.G.; Manfredini, S.; Simoni, D.; Tabrizi, M.A.; Balzarini, J.; De Clercq, E. Geiparvarin Analogs 3. Synthesis and cytostatic activity of 3(2H)-furanone and 4,5-dihydro-3(2H)-furanone congeners of geiparvarin, containing a geraniol-like fragment in the side chain. J. Med. Chem., 1992, 35(10), 1877-1882.
[http://dx.doi.org/10.1021/jm00088a025] [PMID: 1588564];
(g) Perrella, F.W.; Chen, S.F.; Behrens, D.L.; Kaltenbach, R.F.I.I.I., III; Seitz, S.P. Phospholipase C inhibitors: A new class of cytotoxic agents. J. Med. Chem., 1994, 37(14), 2232-2237.
[http://dx.doi.org/10.1021/jm00040a016] [PMID: 8035430]
[12]
Dong, W.; Qi, L.; Song, J.Y.; Chen, J.M.; Guo, J.X.; Shen, S.; Li, L.J.; Li, W.; Wang, L.J. Direct synthesis of sulfonylated spiro[indole-3,3′-pyrrolidines] by silver-mediated sulfonylation of acrylamides coupled with indole dearomatization. Org. Lett., 2020, 22(5), 1830-1835.
[http://dx.doi.org/10.1021/acs.orglett.0c00158] [PMID: 32073279]
[13]
Ivachtchenko, A.V.; Golovina, E.S.; Kadieva, M.G.; Kysil, V.M.; Mitkin, O.D.; Tkachenko, S.E.; Okun, I.M. Synthesis and structure-activity relationship (SAR) of (5,7-disubstituted 3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methylamines as potent serotonin 5-HT(6) receptor (5-HT(6)R) antagonists. J. Med. Chem., 2011, 54(23), 8161-8173.
[http://dx.doi.org/10.1021/jm201079g] [PMID: 22029285]
[14]
Aksenov, A.V.; Aksenov, D.A.; Arutiunov, N.A.; Aksenov, N.A.; Aleksandrova, E.V.; Zhao, Z.; Du, L.; Kornienko, A.; Rubin, M. Synthesis of Spiro[indole-3,5′-isoxazoles] with anticancer activity via a formal [4 + 1]-spirocyclization of nitroalkenes to indoles. J. Org. Chem., 2019, 84(11), 7123-7137.
[http://dx.doi.org/10.1021/acs.joc.9b00808] [PMID: 31070030]
[15]
Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.; Perumal, P.T. Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity. Eur. J. Med. Chem., 2012, 51(51), 79-91.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.024] [PMID: 22405285]
[16]
Pan, Z.; Liu, Y.; Hu, F.; Liu, Q.; Shang, W.; Ji, X.; Xia, C. Enantioselective synthesis of spiroindolines via cascade isomerization/spirocyclization/dearomatization reaction. Org. Lett., 2020, 22(4), 1589-1593.
[http://dx.doi.org/10.1021/acs.orglett.0c00181] [PMID: 31990194]
[17]
Somei, M.; Yamada, F. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat. Prod. Rep., 2005, 22(1), 73-103.
[http://dx.doi.org/10.1039/b316241a] [PMID: 15692618]
[18]
Zhen, X.; Wan, X.; Zhang, W.; Li, Q.; Zhang-Negrerie, D.; Du, Y. Synthesis of spirooxindoles from N-arylamide derivatives via oxidative C(sp2)–C(sp3) bond formation mediated by PhI(OMe)2 generated in situ. Org. Lett., 2019, 21(4), 890-894.
[http://dx.doi.org/10.1021/acs.orglett.8b03741] [PMID: 30698442]
[19]
Hajra, S.; Jana, B. Quinine-based trifunctional organocatalyst for tandem aza-henry reaction-cyclization: Asymmetric synthesis of spiroxindole-pyrrolidine/piperidines. Org. Lett., 2017, 19(18), 4778-4781.
[http://dx.doi.org/10.1021/acs.orglett.7b02150] [PMID: 28849657]
[20]
Gollner, A.; Rudolph, D.; Arnhof, H.; Bauer, M.; Blake, S.M.; Boehmelt, G.; Cockroft, X.L.; Dahmann, G.; Ettmayer, P.; Gerstberger, T.; Karolyi-Oezguer, J.; Kessler, D.; Kofink, C.; Ramharter, J.; Rinnenthal, J.; Savchenko, A.; Schnitzer, R.; Weinstabl, H.; Weyer-Czernilofsky, U.; Wunberg, T.; McConnell, D.B. Discovery of novel spiro[3 H -indole-3,2′-pyrrolidin]-2(1 H)-one compounds as chemically stable and orally active inhibitors of the MDM2–p53 interaction. J. Med. Chem., 2016, 59(22), 10147-10162.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00900] [PMID: 27775892]
[21]
de Silva, N.H.; Pyreddy, S.; Blanch, E.W.; Hügel, H.M.; Maniam, S. Microwave-assisted rapid synthesis of spirooxindole-pyrrolizidine analogues and their activity as anti-amyloidogenic agents. Bioorg. Chem., 2021, 114, 105128.
[http://dx.doi.org/10.1016/j.bioorg.2021.105128]
[22]
Gao, H.; Sun, J.; Yan, C.G. Selective synthesis of functionalized spiro[indoline-3,2′-pyridines] and spiro[indoline-3,4′-pyridines] by Lewis acid catalyzed reactions of acetylenedicarboxylate, arylamines, and isatins. J. Org. Chem., 2014, 79(9), 4131-4136.
[http://dx.doi.org/10.1021/jo500144z] [PMID: 24693861]
[23]
Balaboina, R.; Thirukovela, N.S.; Kankala, S.; Balasubramanian, S.; Bathula, S.R.; Vadde, R.; Jonnalagadda, S.B.; Vasam, C.S. Synergistic catalysis of Ag(I) and Organo‐ N ‐heterocyclic Carbenes: One‐pot synthesis of new anticancer spirooxindole‐1,4‐dihydropyridines. Chemist. Select, 2019, 4(9), 2562-2567.
[http://dx.doi.org/10.1002/slct.201803507]
[24]
Bazgir, A.; Ahadi, S.; Ghahremanzadeh, R.; Khavasi, H.R.; Mirzaei, P. Ultrasound-assisted one-pot, three-component synthesis of spiro[indoline-3,40 -pyrazolo[3,4-b]pyridine]-2,60 (10 H)-diones in water. Ultrason. Sonochem., 2010, 17, 447-452.
[http://dx.doi.org/10.1016/j.ultsonch.2009.09.009] [PMID: 19836289]
[25]
Bhuyan, D.; Sarmah, M. M.; Dommaraju, Y.; Prajapati, D. Microwave-promoted efficient synthesis of spiroindenotetrahydropyridine derivatives via a catalyst- and solvent-free pseudo-one-pot five-component tandem Knoevenagel/aza-Diels–Alder reaction 2014, 55(37), 5133.
[26]
Nourallah, M.S.; Malek, H.; Maghsoodlou, T.; Lashkari, M. Pseudo three-component synthesis of substituted 1,2,4-triazolo[1,5-a]pyridines. J. Comb. Chem., 2010, 12(1), 191-194.
[PMID: 19863100]
[27]
Jannati, S.; Esmaeili, A.A. Synthesis of novel spiro[benzo[4,5]thiazolo[3,2-a]chromeno[2,3-d] pyrimidine-14,30 -indoline]-1,20, 13(2H)-triones via three component reaction. Tetrahedron, 2018, 74, 2967-2972.
[http://dx.doi.org/10.1016/j.tet.2018.04.092]
[28]
Jadidi, K.; Ghahremanzadeh, R.; Bazgir, A. Efficient Synthesis of Spiro[chromeno[2,3- d]pyrimidine-5,3′-indoline]-tetraones by a one-pot and three-component reaction. J. Comb. Chem., 2009, 11(3), 341-344.
[http://dx.doi.org/10.1021/cc800167h] [PMID: 19239200]
[29]
Ghahremanzadeh, R.; Azimi, S.C.; Gholami, N.; Bazgir, A. Clean synthesis and antibacterial activities of spiro[pyrimido[4,5-b]quinoline-5,5′-pyrrolo[2,3-d]pyrimidine]-pentaones. Chem. Pharm. Bull. (Tokyo), 2008, 56(11), 1617-1620.
[http://dx.doi.org/10.1248/cpb.56.1617] [PMID: 18981618]
[30]
Ghahremanzadeh, R.; Sayyafi, M.; Ahadi, S.; Bazgir, A. Novel one-pot, three-component synthesis of spiro[indoline-pyrazolo[4′3′5,6]pyrido[2,3-d]pyrimidine]trione library. J. Comb. Chem., 2009, 11(3), 393-396.
[http://dx.doi.org/10.1021/cc8001958] [PMID: 19425616]
[31]
El Fal, M.; Ramli, Y.; Zerzouf, A.; Talbaoui, A.; Bakri, Y.; Essassi, E.M. Synthesis and antibacterial activity of new spiro[thiadiazoline-(pyrazolo[3,4-d]pyrimidine)] derivatives. J. Chem., 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/982404]
[32]
Imani Shakibaei, G.; Feiz, A.; Reza Khavasi, H.; Abolhasani Soorki, A.; Bazgir, A. Simple three-component method for the synthesis of spiroindeno[1,2- b]pyrido[2,3- d]pyrimidine-5,3′-indolines. ACS Comb. Sci., 2011, 13(1), 96-99.
[http://dx.doi.org/10.1021/co1000053] [PMID: 21247132]
[33]
Sabouri, N.; Mahdavinia, G.H.; Notash, B. A synthesis of spirofuran-indenoquinoxalines via isocyanid-based one-pot four-component reaction. Chin. Chem. Lett., 2016, 27(7), 1040-1043.
[http://dx.doi.org/10.1016/j.cclet.2016.03.015]
[34]
Mousavi, S.H.; Mohammadizadeh, M.R.; Roshan, Z.; Jamaleddini, A.; Arimitsu, S. One-pot synthesis of spiro-isobenzofuran compounds via the sequential condensation/oxidation reaction of ninhydrin with 4-amino-1,2-naphthoquinones/2-amino-1,4-naphthoquinones under mild conditions. ACS Omega, 2020, 5(29), 18273-18288.
[http://dx.doi.org/10.1021/acsomega.0c01934] [PMID: 32743203]
[35]
Ngatimin, M.; Frey, R.; Andrews, C.; Lupton, D.W.; Hutt, O.E. Iodobenzene catalysed synthesis of spirofurans and benzopyrans by oxidative cyclisation of vinylogous esters. Chem. Commun. (Camb.), 2011, 47(42), 11778-11780.
[http://dx.doi.org/10.1039/c1cc15015d] [PMID: 21952527]
[36]
Zhang, L.; Deng, Y.; Tang, Z.; Zheng, N.; Zhang, C.; Xie, C.; Wu, Z. One-pot synthesis of spiropyrans. J. Org. Chem., 2019, 8(10), 1866-1869.
[37]
Murase, N.; Ando, T.; Ajiro, H. Synthesis of spiropyran with methacrylate at the benzopyran moiety and control of the water repellency and cell adhesion of its polymer film. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(7), 1489-1495.
[http://dx.doi.org/10.1039/C9TB02733E] [PMID: 31998931]
[38]
Dai, Y.; Di, J.; Hao, Z.; Meng, X.; Zhang, L. Synthesis of spiro[benzo[b]thiophene-2(3H),1′-cyclopropan]-3-ones via domino reaction between thioaurones and sulfur ylides asian. J. Org. Chem., 2021, 10, 1-6.
[39]
Pozzi, G.; Orlandi, S.; Cavazzini, M.; Minudri, D.; Macor, L.; Otero, L.; Fungo, F. Synthesis and photovoltaic applications of a 4,4′-spirobi[cyclopenta[2,1-b;3,4-b′]dithiophene]-bridged donor/acceptor dye. Org. Lett., 2013, 15(18), 4642-4645.
[http://dx.doi.org/10.1021/ol402420w] [PMID: 23984707]
[40]
Nagaraju, S.; Sathish, K.; Satyanarayana, N.; Paplal, B.; Kashinath, D. Regioselective synthesis of spiro isoxazole ‐oxindoletetrahydrothiophene hybrids via cascade reactions under catalyst‐free conditions. J. Heterocyclic. Chem., 2019, 57(1), 469-476.
[41]
Nikolay, S.; Zimnitskiy, A.Y.; Barkov, M.V.; Ulitko, I.B. Kutyashev, Korotaev, V.; Vyacheslav, Y.; Sosnovskikh, Y. An expedient synthesis of novel spiro [indenoquinoxalinepyrrolizidine]‒ pyrazole conjugates with anticancer activity from1,5-diarylpent-4-ene-1,3-diones through 1,3-dipolar cycloaddition/cyclo condensation sequence. New J. Chem., 2020, 44, 16185-16199.
[http://dx.doi.org/10.1039/D0NJ02817G]
[42]
Aksenov, A.V.; Aksenov, D.A.; Aksenov, N.A.; Skomorokhov, A.A.; Aleksandrova, E.V.; Rubin, M. Preparation of spiro[indole-3,5′-isoxazoles] via Grignard conjugate addition/spirocyclization sequence. RSC Advances, 2021, 11(3), 1783-1793.
[http://dx.doi.org/10.1039/D0RA10219A] [PMID: 35424118]
[43]
Filatov, A.S.; Knyazev, N.A.; Molchanov, A.P.; Panikorovsky, T.L.; Kostikov, R.R.; Larina, A.G.; Boitsov, V.M.; Stepakov, A.V. Synthesis of Functionalized 3-Spiro[cyclopropa[ a]pyrrolizine]- and 3-Spiro[3-azabicyclo[3.1.0]hexane]oxindoles from Cyclopropenes and Azomethine Ylides via [3 + 2]-. Cycloaddition. J. Org. Chem., 2017, 82(2), 959-975.
[http://dx.doi.org/10.1021/acs.joc.6b02505] [PMID: 28004934]
[44]
Haddad, S.; Boudriga, S.; Porzio, F.; Soldera, A.; Askri, M.; Knorr, M.; Rousselin, Y.; Kubicki, M.M.; Golz, C.; Strohmann, C. Regio- and stereoselective synthesis of spiropyrrolizidines and piperazines through azomethine ylide cycloaddition reaction. J. Org. Chem., 2015, 80(18), 9064-9075.
[http://dx.doi.org/10.1021/acs.joc.5b01399] [PMID: 26291879]
[45]
(a) Karthikeyan, S.V.; Bala, B.D.; Raja, V.P.A.; Perumal, S.; Yogeeswari, P.; Sriram, D. A highly atom economic, chemo-, regio- and stereoselective synthesis and evaluation of spiro-pyrrolothiazoles as antitubercular agents. Bioorg. Med. Chem. Lett., 2010, 20(1), 350-353.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.107] [PMID: 19900810];
(b) Periyasami, G.; Raghunathan, R.; Surendiran, G.; Mathivanan, N. Synthesis of novel spiropyrrolizidines as potent antimicrobial agents for human and plant pathogens. Bioorg. Med. Chem. Lett., 2008, 18(7), 2342-2345.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.065] [PMID: 18342506];
(c) Mhaske, P.C.; Shelke, S.H.; Jadhav, R.P.; Raundal, H.N.; Patil, S.V.; Patil, A.A.; Bobade, V.D. Synthesis, characterization, and antimicrobial activity of 3′-(4-(2-substituted thiazol-4-yl)phenyl)spiro[indoline-3,2′-thiazolidine]-2,4′-diones. J. Heterocycl. Chem., 2010, 47(6), 1415-1420.
[http://dx.doi.org/10.1002/jhet.503];
(d) Raj, A.A.; Raghunathan, R.; Sridevi Kumari, M.R.; Raman, N. Synthesis, antimicrobial and antifungal activity of a new class of spiro pyrrolidines. Bioorg. Med. Chem., 2003, 11, 407-419.;
(e) Jiang, T.; Kuhen, K.L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Wu, Y.; He, Y. Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part I. Bioorg. Med. Chem. Lett., 2006, 16, 2105-2108.;
(f) García Prado, E.; García Gimenez, M.D.; De la Puerta Vázquez, R.; Espartero Sánchez, J.L.; Saenz Rodríguez, M.T. Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines. Phytomedicine, 2007, 14, 280-284.;
(g) Cui, C-B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron, 1996, 52, 12651-12666.
[46]
Liu, H.; Dou, G.; Shi, D. Regioselective synthesis of novel spiropyrrolidines and spirothiapyrrolizidines through multicomponent 1,3-dipolar cycloaddition reaction of azomethine ylides. J. Comb. Chem., 2010, 12(5), 633-637.
[http://dx.doi.org/10.1021/cc100035q] [PMID: 20608736]
[47]
Pandya, V.G.; Mhaske, S.B.; Divergent, M. Divergent synthesis of oxindolylidene acetates and spirooxindolopyrrolidones from arynes. Org. Lett., 2018, 20(6), 1483-1486.
[http://dx.doi.org/10.1021/acs.orglett.7b03661] [PMID: 29513018]
[48]
Shanmugam, P.; Viswambharan, B.; Madhavan, S. Synthesis of novel functionalized 3-spiropyrrolizidine and 3-spiropyrrolidine oxindoles from Baylis-Hillman adducts of isatin and heteroaldehydes with azomethine ylides via [3+2]-cycloaddition. Org. Lett., 2007, 9(21), 4095-4098.
[http://dx.doi.org/10.1021/ol701533d] [PMID: 17877359]
[49]
Yang, J.M.; Hu, Y.; Li, Q.; Yu, F.; Cao, J.; Fang, D.; Huang, Z.B.; Shi, D.Q. Efficient and regioselective synthesis of novel functionalized dispiropyrrolidines and their cytotoxic activities. ACS Comb. Sci., 2014, 16(3), 139-145.
[http://dx.doi.org/10.1021/co400096c] [PMID: 24517857]
[50]
Zaki, M.; Oukhrib, A.; Akssira, M.; Berteina-Raboin, S. Synthesis of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of tomentosin. RSC Advances, 2017, 7(11), 6523-6529.
[http://dx.doi.org/10.1039/C6RA25869G]
[51]
Pattanaik, P.; Nayak, S.; Ranjan Mishra, D.; Panda, P.; Prasad Raiguru, B.; Priyadarsini Mishra, N.; Mohapatra, S.; Arjunreddy Mallampudi, N.; Purohit, C.S. One pot, three component 1,3 dipolar cycloaddition: Regio and diastereoselective synthesis of spiropyrrolidinyl indenoquinoxaline derivatives. Tetrahedron Lett., 2018, 59(27), 2688-2694.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.087]
[52]
Saravana Mani, K.; Kaminsky, W.; Rajendran, S.P. A facile atom economic one pot multicomponent synthesis of bioactive spiro-indenoquinoxaline pyrrolizines as potent antioxidants and anti-cancer agents. New J. Chem., 2018, 42(1), 301-310.
[http://dx.doi.org/10.1039/C7NJ02993D]
[53]
Hosseini Nasab, N.; Safari, J. An efficient protocol for the synthesis of spiroindenoquinoxaline derivatives using novel NiFe2O4/Ag3PO4 as a nano magnetically heterogeneous catalyst. Polyhedron, 2019, 164, 74-79.
[http://dx.doi.org/10.1016/j.poly.2019.02.032]
[54]
Hasaninejad, A.; Golzar, N.; Zare, A. One-Pot, four-component synthesis of novel spiro[indeno[2,1- b]quinoxaline-11,4′-pyran]-2′-amines. J. Heterocycl. Chem., 2013, 50(3), 608-614.
[http://dx.doi.org/10.1002/jhet.1604]
[55]
Rad-Moghadam, K.; Youseftabar-Miri, L. Synthesis of novel spiro[dihydropyridine-oxindole] compounds in water. Synlett, 2010, 2010(13), 1969-1973.
[http://dx.doi.org/10.1055/s-0030-1258506]
[56]
Shi, T.; Teng, S.; Wei, Y.; Guo, X.; Hu, W. Synthesis of spiro[2,3-dihydrofuran-3,3′-oxindole] derivatives via a multi-component cascade reaction of α-diazo esters, water, isatins and malononitrile/ethyl cyanoacetate. Green Chem., 2019, 21(18), 4936-4940.
[http://dx.doi.org/10.1039/C9GC01751H]
[57]
Savitha, G.; Niveditha, S.K.; Muralidharan, D.; Perumal, P.T. An efficient one-pot synthesis of spiro dihydrofuran oxindole and spiro 2-hydroxytetrahydrofuran oxindole derivatives via (3+2) oxidative cycloaddition mediated by CAN. Tetrahedron Lett., 2007, 48(16), 2943-2947.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.045]
[58]
Akondi, A.M.; Mekala, S.; Kantam, M.L.; Trivedi, R.; Raju Chowhan, L.; Das, A. An expedient microwave assisted regio- and stereoselective synthesis of spiroquinoxaline pyrrolizine derivatives and their AChE inhibitory activity. New J. Chem., 2017, 41(2), 873-878.
[http://dx.doi.org/10.1039/C6NJ02869A]
[59]
Naga Siva Rao, J.; Raghunathan, R.; Raghunathan, R. A facile synthesis of glyco 3-nitrochromane hybrid pyrrolidinyl spiro heterocycles via [3+2] cycloaddition of azomethine ylides. Tetrahedron Lett., 2015, 56(17), 2276-2279.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.069]
[60]
Gadwood, R.C.; Kamdar, B.V.; Dubray, L.A.C.; Wolfe, M.L.; Smith, M.P.; Watt, W.; Mizsak, S.A.; Groppi, V.E. Synthesis and biological activity of spirocyclic benzopyran imidazolone potassium channel openers. J. Med. Chem., 1993, 36(10), 1480-1487.
[http://dx.doi.org/10.1021/jm00062a022] [PMID: 8496916]
[61]
Hosseini Nasab, N.; Safari, J. Synthesis of a wide range of biologically important spiropyrans and spiroacenaphthylenes, using NiFe2O4@SiO2@Melamine magnetic nanoparticles as an efficient, green and reusable nanocatalyst. J. Mol. Struct., 2019, 1193, 118-124.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.023]
[62]
Das, P.; Boone, S.; Mitra, D.; Turner, L.; Tandon, R.; Raucher, D.; Hamme, A.T., II Synthesis and biological evaluation of fluoro-substituted spiro-isoxazolines as potential anti-viral and anti-cancer agents. RSC Advances, 2020, 10(50), 30223-30237.
[http://dx.doi.org/10.1039/D0RA06148D] [PMID: 35518245]
[63]
Das, P.; Hasan, M.H.; Mitra, D.; Bollavarapu, R.; Valente, E.J.; Tandon, R.; Raucher, D.; Hamme, A.T. II Design, synthesis, and preliminary studies of spiro-isoxazoline-peroxides against human cytomegalovirus and glioblastoma. J. Org. Chem., 2019, 84(11), 6992-7006.
[http://dx.doi.org/10.1021/acs.joc.9b00746] [PMID: 31066280]
[64]
Chen, D.; Wang, Y.; Cai, X.M.; Cao, X.; Jiang, P.; Wang, F.; Huang, S. Synthesis of spiroisoxazolines via TEMPO/NaNO2 -catalyzed aerobic oxidative dearomatization. Org. Lett., 2020, 22(17), 6847-6851.
[http://dx.doi.org/10.1021/acs.orglett.0c02372] [PMID: 32808793]
[65]
Luo, Y.; Liu, H.; Zhang, J.; Liu, M.; Dong, L. Rh(III)-Catalyzed [3+2] Spirocyclization of 2H-Imidazoles with 1,3- diynes for the synthesis of spiro-[imidazole-indene] derivatives. J. Org. Chem., 2012, 77, 10228-10234.
[66]
Chen, D.; He, T.; Huang, Y.; Luo, J.; Wang, F.; Huang, S. Synthesis of spiroisoxazolines via an oximation/dearomatization cascade under air. Org. Lett., 2020, 22(11), 4429-4434.
[http://dx.doi.org/10.1021/acs.orglett.0c01429] [PMID: 32383593]
[67]
Luo, Y.; Pu, W.Y.; Xu, Y.J.; Dong, L. Formation of diversified spiro-[imidazole-indene] derivatives from 2 H -imidazoles: based on versatile propargyl alcohols. Org. Chem. Front., 2021, 8(16), 4549-4553.
[http://dx.doi.org/10.1039/D1QO00629K]
[68]
Chen, X.H.; Wei, Q.; Luo, S.W.; Xiao, H.; Gong, L.Z. Organocatalytic synthesis of spiro[pyrrolidin-3,3′-oxindoles] with high enantiopurity and structural diversity. J. Am. Chem. Soc., 2009, 131(38), 13819-13825.
[http://dx.doi.org/10.1021/ja905302f] [PMID: 19736987]
[69]
Tang, Q.G.; Cai, S.L.; Wang, C.C.; Lin, G.Q.; Sun, X.W. Organocatalytic aza-michael/michael cyclization cascade reaction: Enantioselective synthesis of spiro-oxindole piperidin-2-one derivatives. Org. Lett., 2020, 22(9), 3351-3355.
[http://dx.doi.org/10.1021/acs.orglett.0c00779] [PMID: 32281799]
[70]
Zhu, L.; Ren, X.; Liao, Z.; Pan, J.; Jiang, C.; Wang, T. Asymmetric three-component cyclizations toward structurally spiro pyrrolidines via bifunctional phosphonium salt catalysis. Org. Lett., 2019, 21(21), 8667-8672.
[http://dx.doi.org/10.1021/acs.orglett.9b03282] [PMID: 31603337]
[71]
Lian, X.; Guo, S.; Wang, G.; Lin, L.; Liu, X.; Feng, X. Asymmetric synthesis of spiro[isoxazolin-3,3′-oxindoles] via the catalytic 1,3-dipolar cycloaddition reaction of nitrile oxides. J. Org. Chem., 2014, 79(16), 7703-7710.
[http://dx.doi.org/10.1021/jo5012625] [PMID: 25054839]
[72]
Kumar, R.R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. Discovery of antimycobacterial spiro-piperidin-4-ones: an atom economic, stereoselective synthesis, and biological intervention. J. Med. Chem., 2008, 51(18), 5731-5735.
[http://dx.doi.org/10.1021/jm800545k] [PMID: 18714980]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy