Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Hepatic Effect of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, the Signature Component of Traditional Chinese Medicine Heshouwu: Advances and Prospects

Author(s): Cheng-Yu Wang, Ying-Huan Hu and Zhen-Xiao Sun*

Volume 24, Issue 1, 2023

Published on: 29 March, 2023

Page: [16 - 27] Pages: 12

DOI: 10.2174/1389200224666230223144826

Price: $65

Abstract

Traditional Chinese medicine Heshouwu, named Polygoni Multiflori Radix in Pharmacopoeia of the People’s Republic of China (PPRC, 2020), is derived from the root tuber of Polygonum multiflorum Thunb., Heshouwu or processed Heshouwu is well known for its function in reducing lipids and nourishing the liver. However, increasing cases of Heshouwu-induced hepatotoxicity were reported in recent years. Researchers have begun to study the paradoxical effects of Heshouwu on the liver. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an abundant functional component of Heshouwu, shows various biological activities, among which its effect on the liver is worthy of attention. This paper reviews the current studies of TSG on hepatoprotection and hepatotoxicity, and summarizes the doses, experimental models, effects, and mechanisms of action involved in TSG’s hepatoprotection and hepatotoxicity, aiming to provide insight for future study of TSG and understanding the effects of Heshouwu on the liver. Emerging evidence suggests that TSG ameliorates both pathological liver injury and chemical-induced liver injury by modulating lipid metabolism, inhibiting the inflammatory response and oxidative stress in the liver. However, with the reports of clinical cases of Heshouwu induced liver injury, it has been found that long-term exposure to a high dose of TSG cause hepatocyte or hepatic tissue damage. Moreover, TSG may cause hepatotoxicity by affecting the transport and metabolism of other possible hepatoxic compounds in Heshouwu. Studies indicate that trans-TSG can be isomerized into cis-TSG under illumination, and cis-TSG had a less detrimental dose to liver function than trans- TSG in LPS-treated rats. In brief, TSG has protective effects on the liver, but liver injury usually occurs under highdose TSG or is idiosyncratic TSG-induced liver injury.

Graphical Abstract

[1]
Cárdenas, A.; Restrepo, J.C.; Sierra, F.; Correa, G. Acute hepatitis due to shen-min: A herbal product derived from Polygonum multiflorum. J. Clin. Gastroenterol., 2006, 40(7), 629-632.
[http://dx.doi.org/10.1097/00004836-200608000-00014] [PMID: 16917407]
[2]
Yang, H.; Ge, Z.; Sun, Z. New progress in pharmacological research on Heshouwu. Zhong Yao Cai, 2013, 36(10), 1713-1717.
[3]
Choi, R.Y.; Lee, H.I.; Ham, J.R.; Yee, S.T.; Kang, K.Y.; Lee, M.K. Heshouwu (Polygonum multiflorum Thunb.) ethanol extract suppresses pre-adipocytes differentiation in 3T3-L1 cells and adiposity in obese mice. Biomed. Pharmacother., 2018, 106, 355-362.
[http://dx.doi.org/10.1016/j.biopha.2018.06.140] [PMID: 29966981]
[4]
Lee, C.C.; Lee, Y.L.; Wang, C.N.; Tsai, H.C.; Chiu, C.L.; Liu, L.F.; Lin, H.Y.; Wu, R. Polygonum multiflorum decreases airway allergic symptoms in a murine model of asthma. Am. J. Chin. Med., 2016, 44(1), 133-147.
[http://dx.doi.org/10.1142/S0192415X16500099] [PMID: 26916919]
[5]
Thang, N.; Diep, P.; Lien, P.H.; Lien, L. Polygonum multiflorum root extract as a potential candidate for treatment of early graying hair. J. Adv. Pharm. Technol. Res., 2017, 8(1), 8-13.
[http://dx.doi.org/10.4103/2231-4040.197332] [PMID: 28217548]
[6]
Lin, L.; Hao, Z.; Zhang, S.; Shi, L.; Lu, B.; Xu, H.; Ji, L. Study on the protection of water extracts of Polygoni Multiflori Radix and Polygoni Multiflori Radix Praeparata against NAFLD and its mechanism. J. Ethnopharmacol., 2020, 252, 112577.
[http://dx.doi.org/10.1016/j.jep.2020.112577] [PMID: 31953200]
[7]
Jung, S.; Son, H.; Hwang, C.E.; Cho, K.M.; Park, S.W.; Kim, H.; Kim, H.J. The root of Polygonum multiflorum Thunb. alleviates non-alcoholic steatosis and insulin resistance in high fat diet-fed mice. Nutrients, 2020, 12(8), 2353.
[http://dx.doi.org/10.3390/nu12082353] [PMID: 32781739]
[8]
Lee, B.H.; Huang, Y.Y.; Duh, P.D.; Wu, S.C. Hepatoprotection of emodin and Polygonum multiflorum against CCl4-induced liver injury. Pharm. Biol., 2012, 50(3), 351-359.
[http://dx.doi.org/10.3109/13880209.2011.604335] [PMID: 22103790]
[9]
Jung, K.A.; Min, H.J.; Yoo, S.S.; Kim, H.J.; Choi, S.N.; Ha, C.Y.; Kim, H.J.; Kim, T.H.; Jung, W.T.; Lee, O.J.; Lee, J.S.; Shim, S.G. Drug-induced liver injury: Twenty five cases of acute hepatitis following ingestion of Polygonum multiflorum Thunb. Gut Liver, 2011, 5(4), 493-499.
[http://dx.doi.org/10.5009/gnl.2011.5.4.493] [PMID: 22195249]
[10]
Wang, Y.; Wang, L.; Saxena, R.; Wee, A.; Yang, R.; Tian, Q.; Zhang, J.; Zhao, X.; Jia, J. Clinicopathological features of He Shou Wu - induced liver injury: This ancient anti-aging therapy is not liver-friendly. Liver Int., 2019, 39(2), 389-400.
[http://dx.doi.org/10.1111/liv.13939] [PMID: 30066422]
[11]
Tu, C.; Gao, D.; Li, X.F.; Li, C.Y.; Li, R.S.; Zhao, Y.L.; Li, N.; Jia, G.L.C.; Pang, J.Y.; Cui, H.R.; Ma, Z.J.; Xiao, X.H.; Wang, J.B. Inflammatory stress potentiates emodin-induced liver injury in rats. Front. Pharmacol., 2015, 6, 233.
[http://dx.doi.org/10.3389/fphar.2015.00233] [PMID: 26557087]
[12]
Wu, X.; Chen, X.; Huang, Q.; Fang, D.; Li, G.; Zhang, G. Toxicity of raw and processed roots of Polygonum multiflorum. Fitoterapia, 2012, 83(3), 469-475.
[http://dx.doi.org/10.1016/j.fitote.2011.12.012] [PMID: 22210538]
[13]
Lv, G.P.; Meng, L.Z.; Han, D.Q.; Li, H.Y.; Zhao, J.; Li, S.P. Effect of sample preparation on components and liver toxicity of Polygonum multiflorum. J. Pharm. Biomed. Anal., 2015, 109, 105-111.
[http://dx.doi.org/10.1016/j.jpba.2015.02.029] [PMID: 25766851]
[14]
Rao, T.; Liu, Y.; Zeng, X.; Li, C.; Ou-Yang, D. The hepatotoxicity of Polygonum multiflorum: The emerging role of the immune-mediated liver injury. Acta Pharmacol. Sin., 2021, 42(1), 27-35.
[http://dx.doi.org/10.1038/s41401-020-0360-3] [PMID: 32123300]
[15]
Li, D.K.; Chen, J.; Ge, Z.Z.; Sun, Z.X. Hepatotoxicity in rats induced by aqueous extract of polygoni multiflori radix, root of Polygonum multiflorum related to the activity inhibition of CYP1A2 or CYP2E1. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/9456785] [PMID: 28626488]
[16]
Hu, Y.; Li, D.; Quan, Z.; Wang, C.; Zhou, M.; Sun, Z. Exploration of components and mechanisms of Polygoni Multiflori Radix-induced hepatotoxicity using siRNA -mediated CYP3A4 or UGT1A1 knockdown liver cells. J. Ethnopharmacol., 2021, 270, 113845.
[http://dx.doi.org/10.1016/j.jep.2021.113845] [PMID: 33485974]
[17]
Hata, K.; Kozawa, M.; Baba, K. A new stilbene glucoside from Chinese crude drug “Heshouwu,” the roots of polygonum multiflorum thunb (author’s transl). Yakugaku Zasshi, 1975, 95(2), 211-213.
[http://dx.doi.org/10.1248/yakushi1947.95.2_211] [PMID: 1170304]
[18]
Liu, Y.; Wang, Q.; Yang, J.; Guo, X.; Liu, W.; Ma, S.; Li, S. Polygonum multiflorum Thunb.: A review on chemical analysis, processing mechanism, quality evaluation, and hepatotoxicity. Front. Pharmacol., 2018, 9, 364.
[http://dx.doi.org/10.3389/fphar.2018.00364] [PMID: 29713283]
[19]
Panis, B.; Wong, D.R.; Hooymans, P.M.; De Smet, P.A.G.M.; Rosias, P.P.R. Recurrent toxic hepatitis in a Caucasian girl related to the use of Shou-Wu-Pian, a Chinese herbal preparation. J. Pediatr. Gastroenterol. Nutr., 2005, 41(2), 256-258.
[http://dx.doi.org/10.1097/01.MPG.0000164699.41282.67] [PMID: 16056110]
[20]
Zhang, L.; Liu, X.; Tu, C.; Li, C.; Song, D.; Zhu, J.; Zhou, Y.; Wang, X.; Li, R.; Xiao, X.; Liu, Y.; Wang, J. Components synergy between stilbenes and emodin derivatives contributes to hepatotoxicity induced by Polygonum multiflorum. Xenobiotica, 2020, 50(5), 515-525.
[http://dx.doi.org/10.1080/00498254.2019.1658138] [PMID: 31424332]
[21]
Coccolini, F.; Catena, F.; Moore, E.E.; Ivatury, R.; Biffl, W.; Peitzman, A.; Coimbra, R.; Rizoli, S.; Kluger, Y.; Abu-Zidan, F.M.; Ceresoli, M.; Montori, G.; Sartelli, M.; Weber, D.; Fraga, G.; Naidoo, N.; Moore, F.A.; Zanini, N.; Ansaloni, L. WSES classification and guidelines for liver trauma. World J. Emerg. Surg., 2016, 11(1), 50.
[http://dx.doi.org/10.1186/s13017-016-0105-2] [PMID: 27766112]
[22]
Casiero, D.C. Closed liver injury. Clin. Sports Med., 2013, 32(2), 229-238.
[http://dx.doi.org/10.1016/j.csm.2012.12.007] [PMID: 23522504]
[23]
Gu, X.; Manautou, J.E. Molecular mechanisms underlying chemical liver injury. Expert Rev. Mol. Med., 2012, 14, e4.
[http://dx.doi.org/10.1017/S1462399411002110] [PMID: 22306029]
[24]
Hoofnagle, J.H.; Björnsson, E.S. Drug-induced liver injury-types and phenotypes. N. Engl. J. Med., 2019, 381(3), 264-273.
[http://dx.doi.org/10.1056/NEJMra1816149] [PMID: 31314970]
[25]
Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med., 2018, 24(7), 908-922.
[http://dx.doi.org/10.1038/s41591-018-0104-9] [PMID: 29967350]
[26]
Lou, Z.; Xia, B.; Su, J.; Yu, J.; Yan, M.; Huang, Y.; Lv, G. Effect of a stilbene glycoside rich extract from polygoni multiflori radix on experimental non alcoholic fatty liver disease based on principal component and orthogonal partial least squares discriminant analysis. Exp. Ther. Med., 2017, 14(5), 4958-4966.
[http://dx.doi.org/10.3892/etm.2017.5197] [PMID: 29201200]
[27]
Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for developing diabetes. Lancet, 2012, 379(9833), 2279-2290.
[http://dx.doi.org/10.1016/S0140-6736(12)60283-9] [PMID: 22683128]
[28]
Wang, X.; Zeng, J.; Wang, X.; Li, J.; Chen, J.; Wang, N.; Zhang, M.; Feng, Y.; Guo, H. 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside induces autophagy of liver by activating PI3K/Akt and Erk pathway in prediabetic rats. BMC complement. Med. Ther., 2020, 20(1), 177.
[http://dx.doi.org/10.1186/s12906-020-02949-w] [PMID: 32513151]
[29]
Tang, W.; Li, S.; Liu, Y.; Wu, J.C.; Pan, M.H.; Huang, M.T.; Ho, C.T. Anti-diabetic activities of cis - and trans -2,3,5,4′-tetrahydroxystilbene 2- O-β -glucopyranoside from Polygonum multiflorum. Mol. Nutr. Food Res., 2017, 61(8), 1600871.
[http://dx.doi.org/10.1002/mnfr.201600871] [PMID: 28054445]
[30]
Xu, J.; Peng, Y.; Zeng, Y.; Hua, Y.; Xu, X. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glycoside attenuates age- and diet-associated non-alcoholic steatohepatitis and atherosclerosis in LDL receptor knockout mice and its possible mechanisms. Int. J. Mol. Sci., 2019, 20(7), 1617.
[http://dx.doi.org/10.3390/ijms20071617] [PMID: 30939745]
[31]
Tu, W.; Wang, H.; Li, S.; Liu, Q.; Sha, H. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis., 2019, 10(3), 637-651.
[http://dx.doi.org/10.14336/AD.2018.0513] [PMID: 31165007]
[32]
Feng, G.; Shi, L.; Cui, B.; Li, D.; Sun, Z. Effect of water extract and main monomer components of processed Polygonum multiflorum on intracellular tyrosinase and their antioxidant activity. Nat Prod Res Dev, 2015, 27(04), 578-584.
[33]
Wang, C.; Hu, N.H.; Yu, L.Y.; Gong, L.H.; Dai, X.Y.; Peng, C.; Li, Y.X. 2,3,5,4′-tetrahydroxystilbence-2-O-β-D-glucoside attenuates hepatic steatosis via IKKβ/NF-κB and Keap1-Nrf2 pathways in larval zebrafish. Biomed. Pharmacother., 2020, 127, 110138.
[http://dx.doi.org/10.1016/j.biopha.2020.110138] [PMID: 32387861]
[34]
Ye, J.Z.; Li, Y.T.; Wu, W.R.; Shi, D.; Fang, D.Q.; Yang, L.Y.; Bian, X.Y.; Wu, J.J.; Wang, Q.; Jiang, X.W.; Peng, C.G.; Ye, W.C.; Xia, P.C.; Li, L.J. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis. World J. Gastroenterol., 2018, 24(23), 2468-2481.
[http://dx.doi.org/10.3748/wjg.v24.i23.2468] [PMID: 29930468]
[35]
Han, M.; Zhang, T.; Gu, W.; Yang, X.; Zhao, R.; Yu, J. 2,3,5,4′-tetrahydroxy-stilbene-2-O-β-D-glucoside attenuates methionine and choline deficient diet induced non alcoholic fatty liver disease. Exp. Ther. Med., 2018, 16(2), 1087-1094.
[http://dx.doi.org/10.3892/etm.2018.6300] [PMID: 30116360]
[36]
Strowig, T.; Henao-Mejia, J.; Elinav, E.; Flavell, R. Inflammasomes in health and disease. Nature, 2012, 481(7381), 278-286.
[http://dx.doi.org/10.1038/nature10759] [PMID: 22258606]
[37]
Lin, P.; Lu, J.; Wang, Y.; Gu, W.; Yu, J.; Zhao, R. Naturally occurring satilbenoid TSG reverses non-alcoholic fatty liver diseases via gut-liver axis. PLoS One, 2015, 10(10), e0140346.
[http://dx.doi.org/10.1371/journal.pone.0140346] [PMID: 26474417]
[38]
Yu, J.; Lin, P.; Lu, J-M.; Wang, Y-F.; Gu, W.; Zhao, R-H. Prevention mechanism of 2,3,5,4′-tetrahydroxy-stilbene-2-o-β-D-glucoside on lipid accumulation in steatosis hepatic L-02 cell. Pharmacogn. Mag., 2017, 13(50), 245-253.
[http://dx.doi.org/10.4103/0973-1296.204563] [PMID: 28539716]
[39]
Wang, W.; He, Y.; Lin, P.; Li, Y.; Sun, R.; Gu, W.; Yu, J.; Zhao, R. In vitro effects of active components of Polygonum multiflorum Radix on enzymes involved in the lipid metabolism. J. Ethnopharmacol., 2014, 153(3), 763-770.
[http://dx.doi.org/10.1016/j.jep.2014.03.042] [PMID: 24680992]
[40]
Zhang, Y.; Jiang, M.; Cui, B.W.; Jin, C.H.; Wu, Y.L.; Shang, Y.; Yang, H.X.; Wu, M.; Liu, J.; Qiao, C.Y.; Zhan, Z.Y.; Ye, H.; Zheng, G.H.; Jin, Q.; Lian, L.H.; Nan, J.X. P2X7 receptor‐targeted regulation by tetrahydroxystilbene glucoside in alcoholic hepatosteatosis: A new strategy towards macrophage–hepatocyte crosstalk. Br. J. Pharmacol., 2020, 177(12), 2793-2811.
[http://dx.doi.org/10.1111/bph.15007] [PMID: 32022249]
[41]
Meng, F.; Wang, K.; Aoyama, T.; Grivennikov, S.I.; Paik, Y.; Scholten, D.; Cong, M.; Iwaisako, K.; Liu, X.; Zhang, M.; Österreicher, C.H.; Stickel, F.; Ley, K.; Brenner, D.A.; Kisseleva, T. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology, 2012, 143(3), 765-776.e3.
[http://dx.doi.org/10.1053/j.gastro.2012.05.049] [PMID: 22687286]
[42]
Long, T.; Wang, L.; Yang, Y.; Yuan, L.; Zhao, H.; Chang, C.C.; Yang, G.; Ho, C.T.; Li, S. Protective effects of trans-2,3,5,4′-tetrahydroxystilbene 2-O-β-D-glucopyranoside on liver fibrosis and renal injury induced by CCl4 via down-regulating p-ERK1/2 and p-Smad1/2. Food Funct., 2019, 10(8), 5115-5123.
[http://dx.doi.org/10.1039/C9FO01010F] [PMID: 31364649]
[43]
Weiskirchen, R.; Weiskirchen, S.; Tacke, F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol. Aspects Med., 2019, 65, 2-15.
[http://dx.doi.org/10.1016/j.mam.2018.06.003] [PMID: 29958900]
[44]
Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
[45]
Yu, W.; Zhao, J.; Li, W.; Zheng, Y.; Zhu, J.; Liu, J.; Liu, R.; Wang, Z.; Wang, X.; Hai, C. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucoside alleviated the acute hepatotoxicity and DNA damage in diethylnitrosamine-contaminated mice. Life Sci., 2020, 243, 117274.
[http://dx.doi.org/10.1016/j.lfs.2020.117274] [PMID: 31927046]
[46]
Gao, J.; Wang, Z.; Wang, G.J.; Zhang, H.X.; Gao, N.; Wang, J.; Wang, C.E.; Chang, Z.; Fang, Y.; Zhang, Y.F.; Zhou, J.; Jin, H.; Qiao, H.L. Higher CYP2E1 activity correlates with hepatocarcinogenesis induced by diethylnitrosamine. J. Pharmacol. Exp. Ther., 2018, 365(2), 398-407.
[http://dx.doi.org/10.1124/jpet.117.245555] [PMID: 29467309]
[47]
Lee, W.M. Acetaminophen (APAP) hepatotoxicity—Isn’t it time for APAP to go away? J. Hepatol., 2017, 67(6), 1324-1331.
[http://dx.doi.org/10.1016/j.jhep.2017.07.005] [PMID: 28734939]
[48]
Gao, Y.; Li, J.T.; Li, X.; Li, X.; Yang, S.W.; Chen, N.H.; Li, L.; Zhang, L. Tetrahydroxy stilbene glycoside attenuates acetaminophen‐induced hepatotoxicity by UHPLC‐Q‐TOF/MS‐based metabolomics and multivariate data analysis. J. Cell. Physiol., 2021, 236(5), 3832-3862.
[http://dx.doi.org/10.1002/jcp.30127] [PMID: 33111343]
[49]
Leise, M.D.; Poterucha, J.J.; Talwalkar, J.A. Drug-induced liver injury. Mayo Clin. Proc., 2014, 89(1), 95-106.
[http://dx.doi.org/10.1016/j.mayocp.2013.09.016] [PMID: 24388027]
[50]
Sgro, C.; Clinard, F.; Ouazir, K.; Chanay, H.; Allard, C.; Guilleminet, C.; Lenoir, C.; Lemoine, A.; Hillon, P. Incidence of drug-induced hepatic injuries: A french population-based study. Hepatology, 2002, 36(2), 451-455.
[http://dx.doi.org/10.1053/jhep.2002.34857] [PMID: 12143055]
[51]
Suk, K.T.; Kim, D.J. Drug-induced liver injury: Present and future. Clin. Mol. Hepatol., 2012, 18(3), 249-257.
[http://dx.doi.org/10.3350/cmh.2012.18.3.249] [PMID: 23091804]
[52]
Björnsson, E.S.; Bergmann, O.M.; Björnsson, H.K.; Kvaran, R.B.; Olafsson, S. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology, 2013, 144(7), 1419-1425.e3.
[http://dx.doi.org/10.1053/j.gastro.2013.02.006] [PMID: 23419359]
[53]
Shen, T.; Liu, Y.; Shang, J.; Xie, Q.; Li, J.; Yan, M.; Xu, J.; Niu, J.; Liu, J.; Watkins, P.B.; Aithal, G.P.; Andrade, R.J.; Dou, X.; Yao, L.; Lv, F.; Wang, Q.; Li, Y.; Zhou, X.; Zhang, Y.; Zong, P.; Wan, B.; Zou, Z.; Yang, D.; Nie, Y.; Li, D.; Wang, Y.; Han, X.; Zhuang, H.; Mao, Y.; Chen, C. Incidence and etiology of drug-induced liver injury in mainland China. Gastroenterology, 2019, 156(8), 2230-2241.e11.
[http://dx.doi.org/10.1053/j.gastro.2019.02.002] [PMID: 30742832]
[54]
Katarey, D.; Verma, S. Drug-induced liver injury. Clin. Med., 2016, 16(S6), s104-s109.
[http://dx.doi.org/10.7861/clinmedicine.16-6-s104] [PMID: 27956449]
[55]
Chalasani, N.; Björnsson, E. Risk factors for idiosyncratic drug-induced liver injury. Gastroenterology, 2010, 138(7), 2246-2259.
[http://dx.doi.org/10.1053/j.gastro.2010.04.001] [PMID: 20394749]
[56]
Yan, Y.; Dan, M.; Wang, Q.; Wen, H. Hepatotoxicity evaluation of Polygonum Multiflorum based on 2D and 3D hepatocyte models in vitro. Chinese. J. Pharmacovigil., 2019, 16(7), 385-392.
[57]
Hu, W.; Li, M.; Rao, C.; Li, H.; Liu, H. Effect of stilbene glycoside on proliferation and apoptosis of HepG2 cells and its mechanism. J. West China. Med., 2020, 32(2), 216-224.
[58]
Yang, L.; Xing, W.; Xiao, W.Z.; Tang, L.; Wang, L.; Liu, M.J.; Dai, B. 2,3,5,4′-Tetrahydroxy-stilbene-2- O -beta- D -glucoside induces autophagy-mediated apoptosis in hepatocytes by upregulating miR-122 and inhibiting the PI3K/Akt/mTOR pathway: implications for its hepatotoxicity. Pharm. Biol., 2020, 58(1), 806-814.
[http://dx.doi.org/10.1080/13880209.2020.1803367] [PMID: 32881597]
[59]
Sun, M.; Yu, Q.W.; Xiang, T.; Jiang, Z.Z.; Zhang, L.Y. 2,3,5,4′-Tetrahydroxystibane-2-O-β-D-glucoside induces liver injury by disrupting bile acid homeostasis and phospholipids efflux. Zhongguo Zhongyao Zazhi, 2021, 46(1), 139-145.
[PMID: 33645063]
[60]
Hu, X.; Zhuo, J.; Li, Y.; Wang, J.; Wang, L. Effects of stilbene glucoside from Polygonum multiflorum Thunb. On hepatic enzymes and serum albumin of rats. J. Tradit. Chin. Med., 2011, 38(5), 988.
[61]
Li, N.; Song, J.; Li, X.; Wang, Y.; Meng, Y.; Tu, C.; Li, C.; Ma, Z.; Pang, J.; Li, R.; Xiao, X.; Kang, T. WANG, J. Influence of drug metabolizing enzyme inhibitors on liver injury susceptibility to trans-2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside. Yao Xue Xue Bao, 2017, 52(7), 1063-1068.
[62]
Lin, Y.; Xiao, R.; Xia, B.; Zhang, Z.; Li, C.; Wu, P.; Liao, D.; Lin, L. Investigation of the idiosyncratic hepatotoxicity of Polygonum multiflorum Thunb. through metabolomics using GC-MS. BMC Complement. Med. Ther., 2021, 21(1), 120.
[http://dx.doi.org/10.1186/s12906-021-03276-4] [PMID: 33845816]
[63]
Shen, T.; Wang, C.L.; Yang, H.Y. Effect of anthraquinone and stilbene glycoside in polygonum multiflorum on liver function for rats. J. Sichuan Trad. Chin. Med., 2020, 38(12), 47-50.
[64]
Xing, Y.; Wang, L.; Wang, C.; Zhang, Y.; Zhang, Y.; Hu, L.; Gao, X.; Han, L.; Yang, W. Pharmacokinetic studies unveiled the drug–drug interaction between trans-2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucopyranoside and emodin that may contribute to the idiosyncratic hepatotoxicity of Polygoni multiflori Radix. J. Pharm. Biomed. Anal., 2019, 164, 672-680.
[http://dx.doi.org/10.1016/j.jpba.2018.11.034] [PMID: 30472586]
[65]
Yu, Q.; Jiang, L.L.; Luo, N.; Fan, Y.X.; Ma, J.; Li, P.; Li, H.J. Enhanced absorption and inhibited metabolism of emodin by 2, 3, 5, 4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside: Possible mechanisms for Polygoni Multiflori Radix-induced liver injury. Chin. J. Nat. Med., 2017, 15(6), 451-457.
[http://dx.doi.org/10.1016/S1875-5364(17)30067-5] [PMID: 28629535]
[66]
Ma, J.; Zheng, L.; Deng, T.; Li, C.L.; He, Y.S.; Li, H.J.; Li, P. Stilbene glucoside inhibits the glucuronidation of emodin in rats through the down-regulation of UDP-glucuronosyltransferases 1A8: Application to a drug–drug interaction study in Radix polygoni multiflori. J. Ethnopharmacol., 2013, 147(2), 335-340.
[http://dx.doi.org/10.1016/j.jep.2013.03.013] [PMID: 23523942]
[67]
Hu, X.; Li, M.; Yang, H.; Wang, L.; Li, D.; Li, Y.; Zhuo, J. Effects of different ratios of tannin and stilbene glucoside from Polygonum multiflorum on liver biochemical indexes in rats. J. Tradit. Chin. Med., 2011, 45(4), 56-59.
[68]
Zhang, L.; Bai, Z.; Li, C.; Hu, H.; Sha, M.; Liu, Z.; He, Q.; Li, Y.; Liu, Y.; Xiao, X.; Wang, J. Study on idiosyncratic liver injury and content of cis-2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside in radix Polygoni multiflori Preparata. Yao Xue Xue Bao, 2017, 52(7), 1041-1047.
[69]
Meng, Y.; Li, C.; Li, R.; He, L.; Cui, H.; Yin, P.; Zhang, C.; Li, P.; Sang, X.; Wang, Y.; Niu, M.; Zhang, Y.; Guo, Y.; Sun, R.; Wang, J.; Bai, Z.; Xiao, X. Cis-stilbene glucoside in Polygonum multiflorum induces immunological idiosyncratic hepatotoxicity in LPS-treated rats by suppressing PPAR-γ. Acta Pharmacol. Sin., 2017, 38(10), 1340-1352.
[http://dx.doi.org/10.1038/aps.2017.32] [PMID: 28649126]
[70]
Zhang, R.C.; Liu, B.; Sun, Z.X.; Xu, D.Y. Effects of extract of Polygonum multiflorum on cell cycle arrest and apoptosis of human liver cell line L02. J. Chin. Integr. Med., 2010, 8(6), 554-561.
[http://dx.doi.org/10.3736/jcim20100608] [PMID: 20550878]
[71]
Wang, C.; Liu, X.; Li, Y.; Li, D.; Sun, Z. Toxicity of Polygoni multiflori Radix, polygoni cuspidati rhizoma et radix and rhei radix et rhizoma in HepaRG cells. Carcinog. Teratog. Mutagenesis, 2020, 32(3), 215-220.
[72]
Zhang, M.; Lin, L.; Lin, H.; Qu, C.; Yan, L.; Ni, J. Interpretation the hepatotoxicity based on pharmacokinetics investigated through oral administrated different extraction parts of polygonum multiflorum on rats. Front. Pharmacol., 2018, 9, 505.
[http://dx.doi.org/10.3389/fphar.2018.00505] [PMID: 29887801]
[73]
Liu, Y.; Wang, W.; Sun, M.; Ma, B.; Pang, L.; Du, Y.; Dong, X.; Yin, X.; Ni, J. Polygonum multiflorum-induced liver injury: Clinical characteristics, risk factors, material basis, action mechanism and current challenges. Front. Pharmacol., 2019, 10, 1467.
[http://dx.doi.org/10.3389/fphar.2019.01467] [PMID: 31920657]
[74]
Wang, Q.; Zhang, Y.; Dai, Z.; Ma, S. Study on the hepatotoxicity of monomers in Polygoni multiflori Radix on the basis of the inhibition of two-phase metabolic enzymes. Yaowu Fenxi Zazhi, 2016, 36(12), 2120-2124.
[75]
Wang, Q.; Wang, Y.; Wen, H.; Ma, S. Study on toxic effects of cis(trans)-2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside in Polygonum multiflorum based on inhibition of UGT1A1 enzyme in rat liver microsomes. Zhongguo Xiandai Zhongyao, 2019, 21(3), 291-302.
[76]
Wang, Z.J.; Li, H.; Li, D.; Chen, J.; Wu, S.; Zhou, M.; Quan, Z.; Sun, Z. Effects of aqueous extract of Polygoni multiflori Radix and its main constituents on expression of mRNA of CYP1A2, CYP2C9, and CYP2E1 in human liver L02 cells. Chin. Tradit. Herbal Drugs, 2017, 48(23), 4912-4920.
[77]
Wang, Y.Y.; Yang, J.; Liu, H.; Lin, F.Q.; Shi, J.S.; Zhang, F. Effects of tetrahydroxystilbene glucoside on mouse liver cytochrome P450 enzyme expressions. Xenobiotica, 2015, 45(4), 279-285.
[http://dx.doi.org/10.3109/00498254.2014.976779] [PMID: 25350237]
[78]
Jiang, L.L.; Zhao, D.S.; Fan, Y.X.; Yu, Q.; Li, P.; Li, H.J. Detection of emodin derived glutathione adduct in normal rats administered with large dosage of Polygoni multiflori Radix. Front. Pharmacol., 2017, 8, 446.
[http://dx.doi.org/10.3389/fphar.2017.00446] [PMID: 28729838]
[79]
Qin, B.; Xu, Y.; Chen, J.; Huang, W.; Peng, Y.; Zheng, J. Chemical reactivity of emodin and its oxidative metabolites to thiols. Chem. Res. Toxicol., 2016, 29(12), 2114-2124.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00191] [PMID: 27989148]
[80]
Xu, S.; Liu, J.; Shi, J.; Wang, Z.; Ji, L. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside exacerbates acetaminophen-induced hepatotoxicity by inducing hepatic expression of CYP2E1, CYP3A4 and CYP1A2. Sci. Rep., 2017, 7(1), 16511.
[http://dx.doi.org/10.1038/s41598-017-16688-5] [PMID: 29184146]
[81]
Li, C.; Niu, M.; Bai, Z.; Zhang, C.; Zhao, Y.; Li, R.; Tu, C.; Li, H.; Jing, J.; Meng, Y.; Ma, Z.; Feng, W.; Tang, J.; Zhu, Y.; Li, J.; Shang, X.; Zou, Z.; Xiao, X.; Wang, J. Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum multiflorum. Front. Med., 2017, 11(2), 253-265.
[http://dx.doi.org/10.1007/s11684-017-0508-9] [PMID: 28315126]
[82]
Li, R.L.; Gao, F.; Yan, S.T.; Ou, L.; Li, M.; Chen, L.; Wei, P.F.; Gao, Z.Q. Effects of different processed products of Polygonum multiflorum on the liver. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/5235271] [PMID: 32215041]
[83]
Qiao, Y.G.; Zhou, M.; Hu, Y.H.; Wang, C.Y.; Liu, X.X.; Shen, L.L.; Sun, Z.X. Study on the differential effects and mechanism of Polygoni multiflori Radix and Polygoni multiflori Radix praeparata on human urine-derived stem cells. Chin. J. Pharmacovigil., 2021, 18(3), 228-234.
[84]
The Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, 2020, pp. 183-184.
[85]
Zhou, X.; Yang, Q.; Xie, Y.; Sun, J.; Hu, J.; Qiu, P.; Cao, W.; Wang, S. Tetrahydroxystilbene glucoside extends mouse life span via upregulating neural klotho and downregulating neural insulin or insulin-like growth factor 1. Neurobiol. Aging, 2015, 36(3), 1462-1470.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.11.002] [PMID: 25595496]
[86]
Yu, W.; Zhang, X.; Wu, H.; Zhou, Q.; Wang, Z.; Liu, R.; Liu, J.; Wang, X.; Hai, C. HO-1 is essential for tetrahydroxystilbene glucoside mediated mitochondrial biogenesis and anti-inflammation process in LPS-treated RAW 264.7 macrophages. Oxid. Med. Cell. Longev., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/1818575] [PMID: 28473878]
[87]
Xie, M.; Zhang, G.; Yin, W.; Hei, X.X.; Liu, T. Cognitive enhancing and antioxidant effects of tetrahydroxystilbene glucoside in A β 1 - 42 -induced neurodegeneration in mice. J. Integr. Neurosci., 2018, 17(3-4), 355-365.
[http://dx.doi.org/10.3233/JIN-170059] [PMID: 29125494]
[88]
Zeng, C.; Xiao, J.H.; Chang, M.J.; Wang, J.L. Beneficial effects of THSG on acetic acid-induced experimental colitis: Involvement of upregulation of PPAR-γ and inhibition of the Nf-Kb inflammatory pathway. Molecules, 2011, 16(10), 8552-8568.
[http://dx.doi.org/10.3390/molecules16108552] [PMID: 21993246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy