Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Advances in Nanogel as Drug Delivery System for Cancer Therapeutics: An Overview

Author(s): Devyani Rajput, Mandeep Singh, Prashant Sahu, Dharmendra Jain, Sushil Kumar Kashaw* and Umesh Kumar Patil*

Volume 23, Issue 21, 2023

Published on: 14 April, 2023

Page: [2053 - 2072] Pages: 20

DOI: 10.2174/1389557523666230222124438

Price: $65

Abstract

Nanogels have gotten much attention as nanoscopic drug carriers, especially for delivering bioactive mediators to specific sites or at certain times. The versatility of polymer systems and the ease with which their physicochemical properties can be changed have resulted in versatile nano gel formulations. Nanogels offer exceptional stability, drug-loading capacity, biological consistency, strong penetration ability, and the ability to respond to environmental stimuli. Nanogels have shown great promise in various sectors, including gene delivery, chemotherapeutic medication delivery, diagnostics, organ targeting, and many more. This review focuses on various types of nanogels, preparation methods, including drug loading methods, various modes of biodegradation mechanisms, and primary mechanisms of drug release from nanogels. The article also focuses on the historical data for herb-related nanogels that are used to treat various disorders with great patient compliance, delivery rate, and efficacy.

Graphical Abstract

[1]
Mishra, N.; Wani, T.U.; Rashid, M.; Kumar, M.; Chaudhary, S.; Kumar, P. Targeting aspects of nanogels: An overview. Int. J. Pharm. Sci. Nanotechnol., 2014, 7(4), 2612-2630.
[http://dx.doi.org/10.37285/ijpsn.2014.7.4.3]
[2]
Chaudhari, PM Herbal nanogel formulation : A novel approch. J. Sci. Technol., 2020, 5(5), 149-153.
[http://dx.doi.org/10.46243/jst.2020.v5.i5.pp149-153]
[3]
Sultana, F; Arafat, M; Sharmin, S An overview of nanogel drug delivery system. J. Appl. Pharm. Sci., 2013, 3(S8), S95-S105.
[http://dx.doi.org/10.7324/JAPS.2013.38.S15]
[4]
Tariq, L.; Arafah, A.; Ali, S.; Beigh, S.; Dar, M.A.; Dar, T.H.; Dar, A.I.; Alsaffar, R.M.; Masoodi, M.H.; Rehman, M.U. Nanogel-based transdermal drug delivery system: A therapeutic strategy with under discussed potential. Curr. Top. Med. Chem., 2022, 23(1), 44-61.
[http://dx.doi.org/10.2174/1568026622666220818112728] [PMID: 35984019]
[5]
Hajebi, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Roghani-Mamaqani, H. Stimulus-responsive polymeric nanogels as smart drug delivery systems. School Dent. Faculty Res. Pub., 2019, 92, 1-18.
[http://dx.doi.org/10.1016/j.actbio.2019.05.018]
[6]
Stawicki, B.; Schacher, T.; Cho, H. Nanogels as a versatile drug delivery system for brain cancer. Gels, 2021, 7(2), 63.
[http://dx.doi.org/10.3390/gels7020063] [PMID: 34073626]
[7]
Kabanov, A.V.; Vinogradov, A.V. Nanogels as pharmaceutical carriers : Finite networks of infinite capabilities angewandte. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5418-5429.
[http://dx.doi.org/10.1002/anie.200900441] [PMID: 19562807]
[8]
Huang, D.; Qian, H.; Qiao, H.; Chen, W.; Feijen, J.; Zhong, Z. Bioresponsive functional nanogels as an emerging platform for cancer thera-py. Expert Opin. Drug Deliv., 2018, 15(07), 703-716.
[http://dx.doi.org/10.1080/17425247.2018.1497607]
[9]
Han, L.; Guo, K.; Gu, F.; Zhang, Y.F.; Li, K.; Mu, X.X.; Liu, H.J.; Zhou, X.D.; Luo, W. Effects of silibinin-loaded thermosensitive lipo-some-microbubble complex on inhibiting rabbit liver VX2 tumors in sub-hyperthermia fields. Exp. Ther. Med., 2018, 15(2), 1233-1240.
[PMID: 29434709]
[10]
Kousalová, J.; Etrych, T. Polymeric nanogels as drug delivery systems. Physiol. Res., 2018, 67(S2), S305-S317.
[http://dx.doi.org/10.33549/physiolres.933979] [PMID: 30379552]
[11]
Grewal, I.K.; Singh, S.; Arora, S.; Sharma, N. Polymeric nanoparticles for breast cancer therapy: A comprehensive review. Biointerface Res. Appl. Chem., 2021, 1(4), 11151-11171.
[http://dx.doi.org/10.33263/BRIAC114.1115111171]
[12]
Zhang, J.; Hu, K.; Di, L.; Wang, P.; Liu, Z.; Zhang, J. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. In: Advanced Drug Delivery Reviews; Elsevier B.V; Amesterdam, 2021, p. 178.
[http://dx.doi.org/10.1016/j.addr.2021.113964]
[13]
Neerooa, B.N.H.M.; Ooi, L.T.; Shameli, K.; Dahlan, N.A.; Islam, J.M.M.; Pushpamalar, J.; Teow, S.Y. Development of polymer-assisted nanoparticles and nanogels for cancer therapy: An update. Gels, 2021, 7(2), 60.
[http://dx.doi.org/10.3390/gels7020060] [PMID: 34067587]
[14]
Idumah, C.I. Recently emerging advancements in polymeric nanogel nanoarchitectures for drug delivery applications. Int. J. Polym. Mater., 2022, 1-13.
[http://dx.doi.org/10.1080/00914037.2022.2124256]
[15]
Chouhan, C.; Rajput, R.P.S.; Sahu, R.; Verma, P.; Sahu, S. An updated review on nanoparticle based approach for nanogel drug delivery system. J. Drug Deliv. Ther., 2020, 10(5-s), 254-266.
[http://dx.doi.org/10.22270/jddt.v10i5-s.4465]
[16]
Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci., 2019, 263, 131-194.
[http://dx.doi.org/10.1016/j.cis.2018.11.008] [PMID: 30530176]
[17]
Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci., 2020, 21(2), 487.
[http://dx.doi.org/10.3390/ijms21020487] [PMID: 31940963]
[18]
Ghaz-Jahanian, M.A.; Abbaspour-Aghdam, F.; Anarjan, N.; Berenjian, A.; Jafarizadeh-Malmiri, H. Application of chitosan-based nanoca-rriers in tumor-targeted drug delivery. Molecular Biotechnology; Humana Press Inc., 2015, 57, pp. 201-18.
[http://dx.doi.org/10.1007/s12033-014-9816-3]
[19]
Sahu, P.; Kashaw, S.K.; Kushwah, V.; Sau, S.; Jain, S.; Iyer, A.K. pH responsive biodegradable nanogels for sustained release of bleomy-cin. Bioorg. Med. Chem., 2017, 25(17), 4595-4613.
[http://dx.doi.org/10.1016/j.bmc.2017.06.038] [PMID: 28734664]
[20]
Nagarkar, R.; Patel, J. Polyvinyl alcohol: A comprehensive study. Acta Scientif. Pharmac. Sci., 2019, 03(04), 34-44.
[21]
Halima, N. Poly(vinyl alcohol): Review of its promising applications and insights into biodegradation. RSC Advances, 2016, 6(46), 39823-39832.
[http://dx.doi.org/10.1039/C6RA05742J]
[22]
Cao, L.; Shao, G.; Ren, F.; Yang, M.; Nie, Y.; Peng, Q.; Zhang, P. Cerium oxide nanoparticle-loaded polyvinyl alcohol nanogels delivery for wound healing care systems on surgery. Drug Deliv., 2021, 28(1), 390-399.
[http://dx.doi.org/10.1080/10717544.2020.1858998] [PMID: 33594917]
[23]
Jana, S.; Kumar Sen, K.; Gandhi, A. Alginate based nanocarriers for drug delivery applications. Curr. Pharm. Des., 2016, 22(22), 3399-3410.
[http://dx.doi.org/10.2174/1381612822666160510125718] [PMID: 27160752]
[24]
Chen, Y.B.; Zhang, Y.B.; Wang, Y.L.; Kaur, P.; Yang, B.G.; Zhu, Y.; Ye, L.; Cui, Y.L. A novel inhalable quercetin-alginate nanogel as a promising therapy for acute lung injury. J. Nanobiotech., 2022, 20(1), 272.
[http://dx.doi.org/10.1186/s12951-022-01452-3] [PMID: 35690763]
[25]
Patel, D.D.; Anderson, B.D. Adsorption of polyvinylpyrrolidone and its impact on maintenance of aqueous supersaturation of indometha-cin via crystal growth inhibition. J. Pharm. Sci., 2015, 104(9), 2923-2933.
[http://dx.doi.org/10.1002/jps.24493] [PMID: 26037309]
[26]
Munjulury, V.S.D.; Calico, R. Assessment of modern excipients in controlled delivery of proteins and peptides. J. Drug Deliv. Ther., 2020, 10(6-s), 134-138.
[http://dx.doi.org/10.22270/jddt.v10i6-s.4631]
[27]
Minhas, M.U.; Khan, K.U.; Sarfraz, M.; Badshah, S.F.; Munir, A.; Barkat, K. Polyvinylpyrrolidone K-30-based crosslinked fast swelling nano-gels: An impeccable approach for drug’s solubility improvement. BioMed Res. Int., 2022, 2022, 5883239.
[http://dx.doi.org/10.1155/2022/5883239]
[28]
Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(Nisopropylacrylamide)- based smart hydrogels: Design, properties and applications. In: Progress in Materials Science; Elsevier Ltd, Amsterdam 2021, 115, p. 100702.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100702]
[29]
Montaser, A.S.; Rehan, M.; El-Naggar, M.E. pH-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acry-lamide composite for treating re-infected wounds. Int. J. Biol. Macromol., 2019, 124, 1016-1024.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.252] [PMID: 30500494]
[30]
Zha, L.; Banik, B.; Alexis, F. Stimulus responsive nanogels for drug delivery. Soft Matter. Royal Soci. chem., 2011, 7, 5908-5916.
[http://dx.doi.org/10.1039/c0sm01307b]
[31]
Meng, Q.; Zhong, S.; Xu, L.; Wang, J.; Zhang, Z.; Gao, Y.; Cui, X. Review on design strategies and considerations of polysaccharide-based smart drug delivery systems for cancer therapy. Carbohydr. Polym., 2022, 279119013.
[http://dx.doi.org/10.1016/j.carbpol.2021.119013] [PMID: 34980356]
[32]
Ghaeini-Hesaroeiye, S.; Bagtash, H.R.; Boddohi, S.; Vasheghani-Farahani, E.; Jabbari, E. Thermoresponsive nanogels based on different polymeric moieties for biomedical applications. Gels, 2020, 6(3), 20, pp. 1-32.
[http://dx.doi.org/10.3390/gels6030020]
[33]
Giulbudagian, M.; Rancan, F.; Klossek, A.; Yamamoto, K.; Jurisch, J.; Neto, V.C.; Schrade, P.; Bachmann, S.; Rühl, E.; Blume-Peytavi, U.; Vogt, A.; Calderón, M. Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin ba-rrier. J. Control. Release, 2016, 243, 323-332.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.022] [PMID: 27793686]
[34]
Vicario-De-la-torre, M.; Forcada, J. The potential of stimuli-responsive nanogels in drug and active molecule delivery for targeted therapy. Gels, 2017, 3(2), 16.
[http://dx.doi.org/10.3390/gels3020016] [PMID: 30920515]
[35]
Li, Z.; Huang, J.; Wu, J. PH-Sensitive nanogels for drug delivery in cancer therapy. Biomater. Sci., 2021, 09, pp. 574-589.
[36]
Preman, N.K.; Barki, R.R.; Vijayan, A.; Sanjeeva, S.G.; Johnson, R.P. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur. J. Pharm. Biopharm., 2020, 157, 121-153.
[http://dx.doi.org/10.1016/j.ejpb.2020.10.009] [PMID: 33091554]
[37]
Wang, B.; Chen, K.; Yang, R.; Yang, F.; Liu, J. Photoresponsive nanogels synthesized using spiropyrane-modified pullulan as potential drug carriers. J. Appl. Polym. Sci., 2014, 131(10)
[http://dx.doi.org/10.1002/app.40288]
[38]
Xu, X.; Wang, X.; Luo, W.; Qian, Q.; Li, Q.; Han, B.; Li, Y. Triple cell-responsive nanogels for delivery of drug into cancer cells. Colloids Surf. B Biointerfaces, 2018, 163, 362-368.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.047] [PMID: 29335198]
[39]
Sultana, F. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci., 2013, 3(8), S95-S105.
[http://dx.doi.org/10.7324/JAPS.2013.38.S15]
[40]
Rajput, R.; Narkhede, J.; Naik, J.B. Nanogels as nanocarriers for drug delivery: A review. ADMET DMPK, 2020, 8(1), 1-15.
[http://dx.doi.org/10.5599/admet.724] [PMID: 35299773]
[41]
Alhaique, F.; Matricardi, P.; Di Meo, C.; Coviello, T.; Montanari, E. Polysaccharide-based self-assembling nanohydrogels: An overview on 25-years research on pullulan. J. Drug Deliv. Sci. Technol., 2015, 30, 300-309.
[http://dx.doi.org/10.1016/j.jddst.2015.06.005]
[42]
Zhang, T.; Yang, R.; Yang, S.; Guan, J.; Zhang, D.; Ma, Y.; Liu, H. Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives. Drug Deliv., 2018, 25(1), 278-292.
[http://dx.doi.org/10.1080/10717544.2018.1425776] [PMID: 29334800]
[43]
Wei, H.; Zhang, X.Z.; Zhou, Y.; Cheng, S.X.; Zhuo, R.X. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials, 2006, 27(9), 2028-2034.
[http://dx.doi.org/10.1016/j.biomaterials.2005.09.028] [PMID: 16225918]
[44]
Suhail, M.; Rosenholm, J.M.; Minhas, M.U.; Badshah, S.F.; Naeem, A.; Khan, K.U. Nanogels as drug-delivery systems: A comprehensive overview. Ther. Deliv., 2019, 10(11), pp. 697-717.
[45]
Bontha, S.; Kabanov, A.V.; Bronich, T.K. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J. Control. Release, 2006, 114(2), 163-174.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.015] [PMID: 16914223]
[46]
Jatoi, W. B.; Balouch, A. H.; Khaskheli, M. I.; Shahani, N. K.; Shaikh, Q. U. A.; Katohar, N. A. Facile synthesis of substituted trifluorome-thyl piperidines with diversifying functionalization. Lett. Org. Chem., 2021, 18(11), 843-848.
[http://dx.doi.org/10.2174/1570178618666210805102419]
[47]
Tang, Z.; Lyu, X.; Xiao, A.; Shen, Z.; Fan, X. High-performance double-network ion gels with fast thermal healing capability via dynamic covalent bonds. Chem. Mater., 2018, 30(21), 7752-7759. [Available from http://pubs.acs.org
[http://dx.doi.org/10.1021/acs.chemmater.8b03104]
[48]
Maddiboyina, B.; Desu, P.K.; Vasam, M.; Challa, V.T.; Surendra, A.V.; Rao, R.S.; Alagarsamy, S.; Jhawat, V. An insight of nanogels as novel drug delivery system with potential hybrid nanogel applications. J. Biomater. Sci. Polym. Ed., 2022, 33(2), 262-278.
[http://dx.doi.org/10.1080/09205063.2021.1982643] [PMID: 34547214]
[49]
Zarekar, N.S.; Lingayat, V.J. Nanogel as a novel platform for smart drug delivery system. Nanosci. Nanotechnol. Res., 2017, 4(1), 25-31.pubs.sciepub.com/nnr/4/1/4
[50]
Kendre, P.N.; Satav, T.S. Current trends and concepts in the design and development of nanogel carrier systems. Polym. Bull., 2019, 76, 1595-1617.
[http://dx.doi.org/10.1007/s00289-018-2430-y]
[51]
Zhang, H.; Zhai, Y.; Wang, J.; Zhai, G. New progress and prospects: The application of nanogel in drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 60, 560-568.
[http://dx.doi.org/10.1016/j.msec.2015.11.041] [PMID: 26706564]
[52]
Anooj, E.S.; Charumathy, M.; Sharma, V.; Vibala, B.V.; Gopukumar, S.T.; Jainab, S.I.B.; Vallinayagam, S. Nanogels: An overview of properties, biomedical applications, future research trends and developments. J. Mol. Struct., 2021, 1239, 130446.
[http://dx.doi.org/10.1016/j.molstruc.2021.130446]
[53]
Sasaki, Y.; Akiyoshi, K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem. Rec., 2010, 10(6), 366, 367.
[http://dx.doi.org/10.1002/tcr.201000008] [PMID: 20836092]
[54]
Wu, H.Q.; Wang, C.C. Biodegradable smart nanogels: A new platform for targeting drug delivery and biomedical diagnostics. Langmuir, 2016, 32(25), 6211-6225.
[http://dx.doi.org/10.1021/acs.langmuir.6b00842] [PMID: 27255455]
[55]
Ruyter, E. Effect of polymerization temperature and time on the residual monomer content of denture base polymers. Eur. J. Oral Sci., 1998, 106(1), 588-593.
[http://dx.doi.org/10.1046/j.0909-8836.1998.eos106109.x] [PMID: 9527360]
[56]
Donini, C.; Robinson, D.N.; Colombo, P.; Giordano, F.; Peppas, N.A. Preparation of poly(methacrylic acid-g-poly(ethylene glycol)) nanospheres from methacrylic monomers for pharmaceutical applications. Int. J. Pharmace., 245(1-2), 83-91.
[57]
Suzuki, M.; Hanabusa, K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem. Soc. Rev., 2010, 39(2), 455-463.
[http://dx.doi.org/10.1039/B910604A] [PMID: 20111770]
[58]
Yu, S.; Yao, P.; Jiang, M.; Zhang, G. Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers, 2006, 83(2), 148-158.
[http://dx.doi.org/10.1002/bip.20539] [PMID: 16718679]
[59]
Yan, L.; Tao, W. One-step synthesis of pegylated cationic nanogels of poly(N,N′-dimethylaminoethyl methacrylate) in aqueous solution via self-stabilizing micelles using an amphiphilic macroRAFT agent. Polymer, 2010, 51(10), 2161-2167.
[http://dx.doi.org/10.1016/j.polymer.2010.03.036]
[60]
Kohli, E.; Han, H.Y.; Zeman, A.D.; Vinogradov, S.V. Formulations of biodegradable Nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. J. Control. Release, 2007, 121(1-2), 19-27.
[http://dx.doi.org/10.1016/j.jconrel.2007.04.007] [PMID: 17509713]
[61]
Xu, D.M.; Yao, S.D.; Liu, Y.B.; Sheng, K.L.; Hong, J.; Gong, P.J.; Dong, L. Size-dependent properties of M-PEIs nanogels for gene deli-very in cancer cells. Int. J. Pharm., 2007, 338(1-2), 291-296.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.050] [PMID: 17367967]
[62]
Mok, H.; Park, T.G. PEG-assisted DNA solubilization in organic solvents for preparing cytosol specifically degradable PEG/DNA nano-gels. Bioconjug. Chem., 2006, 17(6), 1369-1372.
[http://dx.doi.org/10.1021/bc060119i] [PMID: 17105212]
[63]
Alles, N.; Soysa, N.S.; Hussain, M.D.A.; Tomomatsu, N.; Saito, H.; Baron, R.; Morimoto, N.; Aoki, K.; Akiyoshi, K.; Ohya, K. Polysac-charide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. Eur. J. Pharm. Sci., 2009, 37(2), 83-88.
[http://dx.doi.org/10.1016/j.ejps.2009.01.002] [PMID: 19429414]
[64]
Hasegawa, U.; Sawada, S.; Shimizu, T.; Kishida, T.; Otsuji, E.; Mazda, O.; Akiyoshi, K. Raspberry-like assembly of cross-linked nanogels for protein delivery. J. Control. Release, 2009, 140(3), 312-317.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.025] [PMID: 19573568]
[65]
Lee, J.I.; Kim, H.S.; Yoo, H.S. DNA nanogels composed of chitosan and Pluronic with thermo-sensitive and photo-crosslinking proper-ties. Int. J. Pharm., 2009, 373(1-2), 93-99.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.016] [PMID: 19429293]
[66]
Sun, H.; Zhang, L.; Zhu, X.; Kong, C.; Zhang, C.; Yao, S. Poly(PEGMA) magnetic nanogels: preparation via photochemical method, cha-racterization and application as drug carrier. Sci. China B Chem., 2009, 52(1), 69-75.
[http://dx.doi.org/10.1007/s11426-008-0136-y]
[67]
Yadav, H.K.; Halabi, A.; Alsalloum, N.A. Nanogels as novel drug delivery systems-a review. J. Pharm. Pharmacogn. Res., 2017, 01, 5.
[68]
Larsson, M.; Bergstrand, A.; Mesiah, L.; van Vooren, C.; Larsson, A. Nanocomposites of polyacrylic acid nanogels and biodegradable polyhydroxybutyrate for bone regeneration and drug delivery. J. Nanomater., 2014, 2014, 371307.
[http://dx.doi.org/10.1155/2014/371307]
[69]
Capek, I. On inverse miniemulsion polymerization of conventional water-soluble monomers. Adv. Colloid Interface Sci., 2010, 156(1-2), 35-61.
[http://dx.doi.org/10.1016/j.cis.2010.02.006] [PMID: 20199767]
[70]
Dadashi-Silab, S.; Lorandi, F.; DiTucci, M.J.; Sun, M.; Szczepaniak, G.; Liu, T.; Matyjaszewski, K. Conjugated Cross-linked Phenothiazi-nes as Green or Red Light Heterogeneous Photocatalysts for Copper-Catalyzed Atom Transfer Radical Polymerization. J. Am. Chem. Soc., 2021, 143(25), 9630-9638.
[http://dx.doi.org/10.1021/jacs.1c04428] [PMID: 34152140]
[71]
Boutonnet, M.; Lögdberg, S.; Elm Svensson, E. Recent developments in the application of nanoparticles prepared from w/o microemul-sions in heterogeneous catalysis. Curr. Opin. Colloid Interface Sci., 2008, 13(4), 270-286.
[http://dx.doi.org/10.1016/j.cocis.2007.10.001]
[72]
Guha, S.; Ray, B.; Mandal, B.M. Anomalous solubility of polyacrylamide prepared by dispersion (precipitation) polymerization in aqueous tert-butyl alcohol. J. Polym. Sci., 2001, 39(19), 3434-3442.
[http://dx.doi.org/10.1002/pola.1325]
[73]
Liu, T.; DeSimone, J.M.; Roberts, G.W. Continuous precipitation polymerization of acrylic acid in supercritical carbon dioxide: The poly-merization rate and the polymer molecular weight. J. Polym. Sci. A Polym. Chem., 2005, 43(12), 2546-2555.
[http://dx.doi.org/10.1002/pola.20728]
[74]
Perez de Vargas-Sansalvador, I.M.; Canfarotta, F.; Piletsky, S.A. Synthesis of monodisperse polymeric nano- and microparticles and their application in bioanalysis. Bioanal. Rev., 2014, 1, 131-154.
[75]
Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev., 2001, 101(9), 2921-2990.
[http://dx.doi.org/10.1021/cr940534g] [PMID: 11749397]
[76]
Xu, Y.; Li, Y.; Cao, X.; Chen, Q.; An, Z. Versatile RAFT dispersion polymerization in cononsolvents for the synthesis of thermorespon-sive nanogels with controlled composition, functionality and architecture. Polym. Chem., 2014, 5(21), 6244-6255.
[http://dx.doi.org/10.1039/C4PY00867G]
[77]
Kawaguchi, S.; Ito, K. Dispersion Polymerization. Adv. Polym. Sci., 2005, 175, 299-328.
[http://dx.doi.org/10.1007/b100118]
[78]
Kawaguchi, S.; Ito, K. Dispersion polymerization. In Polymer Particles; Springer Berlin Heidelberg: Berlin, Heidelberg, 2005, pp. 299-328.
[79]
Ferreira, S.A.; Coutinho, P.J.G.; Gama, F.M. Self-assembled nanogel made of mannan: Synthesis and characterization. Langmuir, 2010, 26(13), 11413-11420.
[http://dx.doi.org/10.1021/la100903j] [PMID: 20518563]
[80]
Oh, J.K.; Siegwart, D.J.; Lee, H.; Sherwood, G.; Peteanu, L.; Hollinger, J.O.; Kataoka, K.; Matyjaszewski, K. Biodegradable nanogels pre-pared by atom transfer radical polymerization as potential drug delivery carriers: Synthesis, biodegradation, in vitro release, and bioconju-gation. J. Am. Chem. Soc., 2007, 129(18), 5939-5945.
[http://dx.doi.org/10.1021/ja069150l] [PMID: 17439215]
[81]
Oh, J.K.; Siegwart, D.J.; Matyjaszewski, K. Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs. Biomacromolecules, 2007, 8(11), 3326-3331.
[http://dx.doi.org/10.1021/bm070381+]
[82]
Article, R.; Dorwal, D. Nanogels as novel and versatile pharmaceuticals. Int. J. Pharm. Pharm. Sci., 2012, 4, 67-74.
[83]
Fomina, N.; Sankaranarayanan, J.; Almutairi, A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev., 2012, 64(11), 1005-1020.
[http://dx.doi.org/10.1016/j.addr.2012.02.006] [PMID: 22386560]
[84]
Patnaik, S.; Sharma, A.K.; Garg, B.S.; Gandhi, R.P.; Gupta, K.C. Photoregulation of drug release in azo-dextran nanogels. Int. J. Pharm., 2007, 342(1-2), 184-193.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.038] [PMID: 17574354]
[85]
Karunamoorthi, K.; Jegajeevanram, K.; Vijayalakshmi, J.; Mengistie, E. Traditional Medicinal Plants. J. Evid. Based Complementary Altern. Med., 2013, 18(1), 67-74.
[http://dx.doi.org/10.1177/2156587212460241]
[86]
Sahoo, N.; Manchikanti, P.; Dey, S. Herbal drugs: Standards and regulation. Fitoterapia, 2010, 81(6), 462-471.
[http://dx.doi.org/10.1016/j.fitote.2010.02.001] [PMID: 20156530]
[87]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16, 71.
[88]
Gao, L.; Zabihi, F.; Ehrmann, S.; Hedtrich, S.; Haag, R. Supramolecular nanogels fabricated via host–guest molecular recognition as pene-tration enhancer for dermal drug delivery. J. Control. Release, 2019, 300, 64-72.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.011] [PMID: 30797001]
[89]
Sabitha, M.; Sanoj Rejinold, N.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydr. Polym., 2013, 91(1), 48-57.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.060] [PMID: 23044104]
[90]
Soni, K.; Mujtaba, A.; Akhter, M.H.; Zafar, A.; Kohli, K. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. J. Microencapsul., 2020, 37(2), 91-108.
[http://dx.doi.org/10.1080/02652048.2019.1701114] [PMID: 31810417]
[91]
Sindhu, R.K.; Gupta, R.; Wadhera, G.; Kumar, P. Modern herbal nanogels: Formulation, delivery methods, and applications. Gels, 2022, 8(2), 97.
[http://dx.doi.org/10.3390/gels8020097] [PMID: 35200478]
[92]
Mosafer, S.; Tafvizi, F.; Mirzaie, A. Industrial crops & products encapsulation of artemisia scoparia extract in chitosan-myristate nanogel with enhanced cytotoxicity and apoptosis against hepatocellular carcinoma. Ind. Crops Prod., 2020, 155, 112790.
[http://dx.doi.org/10.1016/j.indcrop.2020.112790]
[93]
Liwinska, W.; Waleka-Bagiel, E.; Stojek, Z.; Karbarz, M.; Zabost, E. Enzyme-triggered- and tumor-targeted delivery with tunable, methacrylated poly(ethylene glycols) and hyaluronic acid hybrid nanogels. Drug Deliv., 2022, 29(1), 2561-2578.
[http://dx.doi.org/10.1080/10717544.2022.2105443] [PMID: 35938558]
[94]
Jangdey, M.S.; Kaur, C.D.; Saraf, S.; Saraf, S. Efficacy of Concanavalin-A conjugated nanotransfersomal gel of apigenin for enhanced targeted delivery of UV induced skin malignant melanoma. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 904-916.
[http://dx.doi.org/10.1080/21691401.2019.1578784] [PMID: 30856018]
[95]
Alhakamy, NA; Aldawsari, HM; Ali, J; Gupta, DK; Warsi, MH; Bilgrami, AL Brucine loaded transliposomes nanogel for topical delivery in skin cancer : Statistical optimization , in vitro and dermatokinetic evaluation. 3 Biotech, 2021, 11(6), 1-13.
[http://dx.doi.org/10.1007/s13205-021-02841-5]
[96]
Cells, M.L. Effects of apigenin and apigenin- loaded nanogel on induction of apoptosis in human chronic myeloid leukemia cells. Galen Med. J., 2018, 7, e1008.
[http://dx.doi.org/10.22086/gmj.v0i0.1008]
[97]
Jangdey, M.S.; Gupta, A.; Saraf, S. Fabrication, in-vitro characterization, and enhanced in-vivo evaluation of carbopol-based nanoemulsion gel of apigenin for UV-induced skin carcinoma. Drug Deliv., 2017, 24(1), 1026-1036.
[http://dx.doi.org/10.1080/10717544.2017.1344333] [PMID: 28687053]
[98]
Jeswani, G.; Das, S.; Deshmukh, R. Journal of drug delivery science and technology design of vincristine sulfate loaded poloxamer in situ nanogel : Formulation and in vitro evaluation. J. Drug Deliv. Sci. Technol., 2021, 61(10), 102246.
[http://dx.doi.org/10.1016/j.jddst.2020.102246]
[99]
Luckanagul, J.A.; Pitakchatwong, C.; Ratnatilaka Na Bhuket, P.; Muangnoi, C.; Rojsitthisak, P.; Chirachanchai, S.; Wang, Q.; Rojsitthisak, P. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr. Polym., 2018, 181, 1119-1127.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.027] [PMID: 29253940]
[100]
Reeves, A.; Vinogradov, S.V.; Morrissey, P.; Chernin, M.; Ahmed, M.M. Vinogradov S v., Morrissey P, Chernin M, Ahmed MM. Curcu-min-encapsulating nanogels as an effective anticancer formulation for intracellular uptake. Mol. Cell. Pharmacol., 2015, 7(3), 25-40.
[PMID: 26937266]
[101]
Raj, S.; Muthu, D.; Isaac, R.S.R.; Ramakrishnan, S. S, A.E.; Vallinayagam, S. Nanomedicinary evaluation of calotropis procera mediated silver nanoparticle on skin cancer cell line for microbes-front line analysis. J. Mol. Struct., 2021, 1235, 130237. Internet.
[http://dx.doi.org/10.1016/j.molstruc.2021.130237]
[102]
Pinelli, F.; Ortolà, Ó.F.; Makvandi, P.; Perale, G.; Rossi, F. In vivo drug delivery applications of nanogels: A review. Nanomedicine, 2020, 15, 2707-2727.
[http://dx.doi.org/10.2217/nnm-2020-0274] [PMID: 33103960]
[103]
Dalir Abdolahinia, E.; Barati, G.; Ranjbar-Navazi, Z.; Kadkhoda, J.; Islami, M.; Hashemzadeh, N.; Maleki Dizaj, S.; Sharifi, S. Application of nanogels as drug delivery systems in multicellular spheroid tumor model. J. Drug Deliv. Sci. Technol., 2022, 68103109.
[http://dx.doi.org/10.1016/j.jddst.2022.103109]
[104]
Zhang, F.; Gong, S.; Wu, J.; Li, H.; Oupicky, D.; Sun, M. CXCR4- targeted and redox responsive dextrin nanogel for metastatic breast cancer therapy. Available from: http://pubs.acs.org
[105]
Chen, J.; He, H.; Deng, C.; Yin, L.; Zhong, Z. Saporin-loaded CD44 and EGFR dual-targeted nanogels for potent inhibition of metastatic breast cancer in vivo. Int. J. Pharm., 2019, 560, 57-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.040] [PMID: 30699364]
[106]
Si, X.; Ma, S.; Xu, Y.; Zhang, D.; Shen, N.; Yu, H.; Zhang, Y.; Song, W.; Tang, Z.; Chen, X. Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic. J. Control. Release, 2020, 320, 83-95.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.021] [PMID: 31954730]
[107]
Shimizu, T.; Kishida, T.; Hasegawa, U.; Ueda, Y.; Imanishi, J.; Yamagishi, H.; Akiyoshi, K.; Otsuji, E.; Mazda, O. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem. Biophys. Res. Commun., 2008, 367(2), 330-335.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.112] [PMID: 18158918]
[108]
Fujii, H.; Shin-Ya, M.; Takeda, S.; Hashimoto, Y.; Mukai, S.; Sawada, S.; Adachi, T.; Akiyoshi, K.; Miki, T.; Mazda, O. Cycloamylose‐nanogel drug delivery system‐mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tu-mor microenvironment. Cancer Sci., 2014, 105(12), 1616-1625.
[http://dx.doi.org/10.1111/cas.12547] [PMID: 25283373]
[109]
Zhao, W.; Hu, J.; Gao, W. Glucose Oxidase–Polymer Nanogels for Synergistic Cancer-Starving and Oxidation Therapy. ACS Appl. Mater. Interfaces, 2017, 9(28), 23528-23535.
[http://dx.doi.org/10.1021/acsami.7b06814] [PMID: 28650613]
[110]
Zhang, Y.; Wang, F.; Li, M.; Yu, Z.; Qi, R.; Ding, J.; Zhang, Z.; Chen, X. Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv. Sci. (Weinh.), 2018, 5(5), 1700821.
[http://dx.doi.org/10.1002/advs.201700821]
[111]
Seok, H.Y.; Sanoj Rejinold, N.; Lekshmi, K.M.; Cherukula, K.; Park, I.K.; Kim, Y.C. CD44 targeting biocompatible and biodegradable hyaluronic acid cross-linked zein nanogels for curcumin delivery to cancer cells: In vitro and in vivo evaluation. J. Control. Release, 2018, 280, 20-30.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.050] [PMID: 29723613]
[112]
Huang, K.; Shi, B.; Xu, W.; Ding, J.; Yang, Y.; Liu, H.; Zhuang, X.; Chen, X. Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomater., 2015, 27, 179-193.
[http://dx.doi.org/10.1016/j.actbio.2015.08.049] [PMID: 26320542]
[113]
Zheng, Y.; Lv, X.; Xu, Y.; Cheng, X.; Wang, X.; Tang, R. pH-sensitive and pluronic-modified pullulan nanogels for greatly improved anti-tumor in vivo. Int. J. Biol. Macromol., 2019, 139, 277-289.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.220] [PMID: 31377289]
[114]
Cheng, X.; Qin, J.; Wang, X.; Zha, Q.; Yao, W.; Fu, S.; Tang, R. Acid-degradable lactobionic acid-modified soy protein nanogels crosslin-ked by ortho ester linkage for efficient antitumor in vivo. Eur. J. Pharm. Biopharm., 2018, 128, 247-258.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.011] [PMID: 29730261]
[115]
Van Norman, G.A.; Eisenkot, R. Technology Transfer: From the Research Bench to Commercialization. JACC Basic Transl. Sci., 2017, 2(1), 85-97.
[http://dx.doi.org/10.1016/j.jacbts.2017.01.003] [PMID: 30167556]
[116]
Fahmy Tarck, M. Methods of treating inflammatory and autoimmune diseases and disorders using nanolipogels. Patent WO2013155493, 2017.
[117]
Vinod, L.; Sivakumar, V. Nanogel mediated drug delivery. Patent US20190091161A1, 2014.
[118]
Ding, Xuzhe Nanogel comprising water soluble active ingredients. Patent EP2866588B1, 2017.
[119]
Rainer, H.; Dirk, S.; Wolfgang, F.; Sarah, K.; Madeleine, W. Method for producing a polyglycerin nanogel for encapsulation and release of biologically active substances. Patent WO2014037429A3, 2014.
[120]
Andrew, L.L.; Jotan, M.; Beth, D.E.; Blackburn, W.E. Nanogels for cellular delivery of therapeutics. Patent WO2010005741A1, 2013.
[121]
Soane David, S.; Linford Mathhew, R. Nanoscopic hair care product. Patent CN1436068A, 2012.
[122]
Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, L.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carriers for medical ap-plications. Drug Deliv., 2017, 24(1), 539-557.
[http://dx.doi.org/10.1080/10717544.2016.1276232]
[123]
Preman, N.K.; Jain, S.; Johnson, R.P. “Smart ” Polymer nanogels as pharmaceutical carriers: A versatile platform for programmed delivery and diagnostics. ACS Omega, 2021, 6, 5075-5090.
[http://dx.doi.org/ 10.1021/acsomega.0c05276]
[124]
Large, D.E.; Soucy, J.R.; Hebert, J.; Auguste, D.T. Advances in receptor-mediated, tumor-targeted drug delivery. Adv. Therap., 2019, 2(1), 1800091.
[http://dx.doi.org/10.1002/adtp.201800091]
[125]
Pinelli, F.; Saadati, M.; Zare, E.N.; Makvandi, P.; Masi, M.; Sacchetti, A.; Rossi, F. A perspective on the applications of functionalized nanogels: Promises and challenges. Int. Mater. Rev., 2022, 68(01), 1-25.
[http://dx.doi.org/10.1080/09506608.2022.2026864]
[126]
Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: Design, deve-lopment and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010.
[http://dx.doi.org/10.1039/c2cs15344k] [PMID: 22388185]
[127]
Miao, T.; Wang, J.; Zeng, Y.; Liu, G.; Chen, X. Polysaccharide-based controlled release systems for therapeutics delivery and tissue engi-neering: from bench to bedside. Adv. Sci., 2018, 5(4), 1700513.
[http://dx.doi.org/10.1002/advs.201700513] [PMID: 29721408]
[128]
Alam, A.; Jawaid, T.; Alsanad, S.M.; Kamal, M.; Rawat, P.; Singh, V.; Alam, P.; Alam, P. Solubility enhancement, formulation develop-ment, and antibacterial activity of xanthan-gum-stabilized colloidal gold nanogel of hesperidin against proteus vulgaris. Gels, 2022, 8(10), 655.
[http://dx.doi.org/10.3390/gels8100655] [PMID: 36286156]
[129]
Papagiannopoulos, A.; Sotiropoulos, K. Current advances of polysaccharide-based nanogels and microgels in food and biomedical scien-ces. Polymers, 2022, 14(4), 813.
[http://dx.doi.org/10.3390/polym14040813] [PMID: 35215726]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy