Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

CCRMDA: MiRNA-disease Association Prediction Based on Cascade Combination Recommendation Method on a Heterogeneous Network

Author(s): Yuan-Lin Ma, Dong-Ling Yu, Ya-Fei Liu and Zu-Guo Yu*

Volume 18, Issue 4, 2023

Published on: 27 March, 2023

Page: [310 - 319] Pages: 10

DOI: 10.2174/1574893618666230222124311

Price: $65

Abstract

Background: MicroRNAs (miRNAs) are a class of short and endogenous single-stranded non-coding RNAs, with a length of 21-25nt. Many studies have proved that miRNAs are closely related to human diseases. Many algorithms based on network structure have been proposed to predict potential miRNA-disease associations.

Methods: In this work, a cascade combination method based on network topology is developed to explore disease-related miRNAs. We name our method as CCRMDA. First, the hybrid recommendation algorithm is used for a rough recommendation, and then the structural perturbation method is used for a precise recommendation. A special perturbation set is constructed to predict new miRNA-disease associations in the miRNA-disease heterogeneous network.

Results: To verify the effectiveness of CCRMDA, experimental analysis is performed on HMDD V2.0 and V3.2 datasets, respectively. For HMDD V2.0 dataset, CCRMDA is compared with several state-ofthe- art algorithms based on network structure, and the results show that CCRMDA has the best performance. The CCRMDA method also achieves excellent performance with an average AUC of 0.953 on HMDD V3.2 dataset. In addition, case studies further prove the effectiveness of CCRMDA.

Conclusion: CCRMDA is a reliable method for predicting miRNA-disease.

Graphical Abstract

[1]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[2]
Zhao XM, Liu KQ, Zhu G, et al. Identifying cancer-related microRNAs based on gene expression data. Bioinformatics 2015; 31(8): 1226-34.
[http://dx.doi.org/10.1093/bioinformatics/btu811] [PMID: 25505085]
[3]
Wu D, Huang Y, Kang J, et al. ncRDeathDB: A comprehensive bioinformatics resource for deciphering network organization of the ncRNA-mediated cell death system. Autophagy 2015; 11(10): 1917-26.
[http://dx.doi.org/10.1080/15548627.2015.1089375] [PMID: 26431463]
[4]
Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005; 132(21): 4653-62.
[http://dx.doi.org/10.1242/dev.02073] [PMID: 16224045]
[5]
Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015; 87: 3-14.
[http://dx.doi.org/10.1016/j.addr.2015.05.001] [PMID: 25979468]
[6]
Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005; 33(4): 1290-7.
[http://dx.doi.org/10.1093/nar/gki200] [PMID: 15741182]
[7]
Karp X, Ambros V. Developmental biology. Encountering microRNAs in cell fate signaling. Science 2005; 310(5752): 1288-9.
[http://dx.doi.org/10.1126/science.1121566] [PMID: 16311325]
[8]
Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 2005; 15(5): 563-8.
[http://dx.doi.org/10.1016/j.gde.2005.08.005] [PMID: 16099643]
[9]
Jiang Q, Hao Y, Wang G, et al. Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 2010; 4(S1) (Suppl. 1): S2.
[http://dx.doi.org/10.1186/1752-0509-4-S1-S2] [PMID: 20522252]
[10]
Shi H, Xu J, Zhang G, et al. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst Biol 2013; 7(1): 101.
[http://dx.doi.org/10.1186/1752-0509-7-101] [PMID: 24103777]
[11]
Mørk S, Pletscher-Frankild S, Palleja Caro A, Gorodkin J, Jensen LJ. Protein-driven inference of miRNA-disease associations. Bioinformatics 2014; 30(3): 392-7.
[http://dx.doi.org/10.1093/bioinformatics/btt677] [PMID: 24273243]
[12]
Chen X, Liu MX, Yan GY. RWRMDA: predicting novel human microRNA–disease associations. Mol Biosyst 2012; 8(10): 2792-8.
[http://dx.doi.org/10.1039/c2mb25180a] [PMID: 22875290]
[13]
Xuan P, Han K, Guo Y, et al. Prediction of potential disease-associated microRNAs based on random walk. Bioinformatics 2015; 31(11): 1805-15.
[http://dx.doi.org/10.1093/bioinformatics/btv039] [PMID: 25618864]
[14]
Luo J, Xiao Q. A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network. J Biomed Inform 2017; 66: 194-203.
[http://dx.doi.org/10.1016/j.jbi.2017.01.008] [PMID: 28104458]
[15]
Chen X, Niu YW, Wang GH, Yan GY. HAMDA: hybrid approach for MiRNA-disease association prediction. J Biomed Inform 2017; 76: 50-8.
[http://dx.doi.org/10.1016/j.jbi.2017.10.014] [PMID: 29097278]
[16]
Zeng X, Liu L, Lü L, Zou Q. Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics 2018; 34(14): 2425-32.
[http://dx.doi.org/10.1093/bioinformatics/bty112] [PMID: 29490018]
[17]
Chen X, Yin J, Qu J, Huang L. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction. PLOS Comput Biol 2018; 14(8): e1006418.
[http://dx.doi.org/10.1371/journal.pcbi.1006418] [PMID: 30142158]
[18]
Yan C, Wang J, Ni P, Lan W, Wu F, Pan Y. DNRLMFMDA: Predicting microRNA-disease associations based on similarities of microRNAs and diseases. IEEE/ACM Trans Comput Biol Bioinform 2019; 16(1): 233-43.
[19]
Yu DL, Ma YL, Yu ZG. Inferring microRNA-disease association by hybrid recommendation algorithm and unbalanced bi-random walk on heterogeneous network. Sci Rep 2019; 9(1): 2474.
[http://dx.doi.org/10.1038/s41598-019-39226-x] [PMID: 30792474]
[20]
Chen X, Yan GY. Semi-supervised learning for potential human microRNA-disease associations inference. Sci Rep 2015; 4(1): 5501.
[http://dx.doi.org/10.1038/srep05501] [PMID: 24975600]
[21]
Xuan P, Sun H, Wang X, Zhang T, Pan S. Inferring the disease-associated miRNAs based on network representation learning and convolutional neural networks. Int J Mol Sci 2019; 20(15): 3648.
[http://dx.doi.org/10.3390/ijms20153648] [PMID: 31349729]
[22]
Chen X, Li TH, Zhao Y, Wang CC, Zhu CC. Deep-belief network for predicting potential miRNA-disease associations. Brief Bioinform 2021; 22(3)bbaa186,
[http://dx.doi.org/10.1093/bib/bbaa186] [PMID: 34020550]
[23]
Li Y, Qiu C, Tu J, et al. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 2014; 42(D1): D1070-4.
[http://dx.doi.org/10.1093/nar/gkt1023] [PMID: 24194601]
[24]
Huang Z, Shi J, Gao Y, et al. HMDD v3.0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res 2019; 47(D1): D1013-7.
[http://dx.doi.org/10.1093/nar/gky1010] [PMID: 30364956]
[25]
Kim CY, Baek S, Cha J, et al. HumanNet v3: an improved database of human gene networks for disease research. Nucleic Acids Res 2022; 50(D1): D632-9.
[http://dx.doi.org/10.1093/nar/gkab1048] [PMID: 34747468]
[26]
Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017; 45(D1): D833-9.
[http://dx.doi.org/10.1093/nar/gkw943] [PMID: 27924018]
[27]
Yang Z, Wu L, Wang A, et al. dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res 2017; 45(D1): D812-8.
[http://dx.doi.org/10.1093/nar/gkw1079] [PMID: 27899556]
[28]
Freudenberg J, Propping P. A similarity-based method for genome-wide prediction of disease-relevant human genes.Bioinformatics 2002; 18 (supp1-2): S110-5.
[http://dx.doi.org/10.1093/bioinformatics/18.suppl_2.S110]
[29]
Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF. A new method to measure the semantic similarity of GO terms. Bioinformatics 2007; 23(10): 1274-81.
[http://dx.doi.org/10.1093/bioinformatics/btm087] [PMID: 17344234]
[30]
Zhou T, Kuscsik Z, Liu JG, Medo M, Wakeling JR, Zhang YC. Solving the apparent diversity-accuracy dilemma of recommender systems. Proc Natl Acad Sci USA 2010; 107(10): 4511-5.
[http://dx.doi.org/10.1073/pnas.1000488107] [PMID: 20176968]
[31]
Zhou T, Ren J, Medo M, Zhang YC. Bipartite network projection and personal recommendation. Phys Rev E Stat Nonlin Soft Matter Phys 2007; 76(4): 046115.
[http://dx.doi.org/10.1103/PhysRevE.76.046115] [PMID: 17995068]
[32]
Wang C, Wang K, Wei T. Personalized Recommendation via Suppressing by Users and Items. Journal of Physics: Conference Series 2019; 1237(4): 042020.
[http://dx.doi.org/10.1088/1742-6596/1237/4/042020]
[33]
Lü L, Pan L, Zhou T, Zhang YC, Stanley HE. Toward link predictability of complex networks. Proc Natl Acad Sci USA 2015; 112(8): 2325-30.
[http://dx.doi.org/10.1073/pnas.1424644112] [PMID: 25659742]
[34]
Xuan P, Han K, Guo M, et al. Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. PLoS One 2013; 8(8): e70204.
[http://dx.doi.org/10.1371/journal.pone.0070204] [PMID: 23950912]
[35]
Liang AL, Zhang TT, Zhou N, Wu CY, Lin MH, Liu YJ. miRNA-10b sponge: An anti-breast cancer study in vitro. Oncol Rep 2016; 35(4): 1950-8.
[http://dx.doi.org/10.3892/or.2016.4596] [PMID: 26820121]
[36]
Tao J, Jiang L, Chen X. Roles of microRNA in liver cancer. Liver Res 2018; 2(2): 61-72.
[http://dx.doi.org/10.1016/j.livres.2018.06.002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy