Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Tight Junctions in the Auditory System: Structure, Distribution and Function

Author(s): Xiang Gao, Changsheng Chen, Shuai Shi, Fuping Qian, Dong Liu* and Jie Gong*

Volume 24, Issue 3, 2023

Published on: 01 March, 2023

Page: [203 - 214] Pages: 12

DOI: 10.2174/1389203724666230222102454

Price: $65

Abstract

Tight junctions act as a barrier between epithelial cells to limit the transport of the paracellular substance, which is a required function in various tissues to sequestrate diverse microenvironments and maintain a normal physiological state. Tight junctions are complexes that contain various proteins, like transmembrane proteins, scaffolding proteins, signaling proteins, etc. Defects in those tight junction- related proteins can lead to hearing loss in humans which is also recapitulated in many model organisms. The disruption of the barrier between the endolymph and perilymph caused by tight junction abnormalities will affect the microenvironment of hair cells; and this could be the reason for this type of hearing loss. Besides their functions as a typical barrier and channel, tight junctions are also involved in many signaling networks to regulate gene expression, cell proliferation, and differentiation. This review will summarize the structures, localization, and related signaling pathways of hearingrelated tight junction proteins and their potential contributions to the hearing disorder.

Graphical Abstract

[1]
Staehelin, L.A.; Mukherjee, T.M.; Williams, A.W. Freeze-etch appearance of the tight junctions in the epithelium of small and large intestine of mice. Protoplasma, 1969, 67(2-3), 165-184.
[http://dx.doi.org/10.1007/BF01248737] [PMID: 5346995]
[2]
Günzel, D.; Yu, A.S.L. Claudins and the modulation of tight junction permeability. Physiol. Rev., 2013, 93(2), 525-569.
[http://dx.doi.org/10.1152/physrev.00019.2012] [PMID: 23589827]
[3]
Anderson, J.M.; Van Itallie, C.M. Physiology and function of the tight junction. Cold Spring Harb. Perspect. Biol., 2009, 1(2), a002584-a002584.
[http://dx.doi.org/10.1101/cshperspect.a002584] [PMID: 20066090]
[4]
Steed, E.; Balda, M.S.; Matter, K. Dynamics and functions of tight junctions. Trends Cell Biol., 2010, 20(3), 142-149.
[http://dx.doi.org/10.1016/j.tcb.2009.12.002] [PMID: 20061152]
[5]
Buckley, A.; Turner, J.R. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb. Perspect. Biol., 2018, 10(1), a029314.
[http://dx.doi.org/10.1101/cshperspect.a029314] [PMID: 28507021]
[6]
Graham, W.V.; He, W.; Marchiando, A.M.; Zha, J.; Singh, G.; Li, H.S.; Biswas, A.; Ong, M.L.D.M.; Jiang, Z.H.; Choi, W.; Zuccola, H.; Wang, Y.; Griffith, J.; Wu, J.; Rosenberg, H.J.; Wang, Y.; Snapper, S.B.; Ostrov, D.; Meredith, S.C.; Miller, L.W.; Turner, J.R. Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nat. Med., 2019, 25(4), 690-700.
[http://dx.doi.org/10.1038/s41591-019-0393-7] [PMID: 30936544]
[7]
Zihni, C.; Mills, C.; Matter, K.; Balda, M.S. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol., 2016, 17(9), 564-580.
[http://dx.doi.org/10.1038/nrm.2016.80] [PMID: 27353478]
[8]
Brunner, J.; Ragupathy, S.; Borchard, G. Target specific tight junction modulators. Adv. Drug Deliv. Rev., 2021, 171, 266-288.
[http://dx.doi.org/10.1016/j.addr.2021.02.008] [PMID: 33617902]
[9]
Krug, S.M.; Schulzke, J.D.; Fromm, M. Tight junction, selective permeability, and related diseases. Semin. Cell Dev. Biol., 2014, 36, 166-176.
[http://dx.doi.org/10.1016/j.semcdb.2014.09.002] [PMID: 25220018]
[10]
Balda, M.S.; Matter, K. Tight junctions and the regulation of gene expression. Biochim. Biophys. Acta Biomembr., 2009, 1788(4), 761-767.
[http://dx.doi.org/10.1016/j.bbamem.2008.11.024] [PMID: 19121284]
[11]
Buchert, M.; Papin, M.; Bonnans, C.; Darido, C.; Raye, W.S.; Garambois, V.; Pélegrin, A.; Bourgaux, J.F.; Pannequin, J.; Joubert, D.; Hollande, F. Symplekin promotes tumorigenicity by up-regulating claudin-2 expression. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2628-2633.
[http://dx.doi.org/10.1073/pnas.0903747107] [PMID: 20133805]
[12]
Pannequin, J.; Delaunay, N.; Darido, C.; Maurice, T.; Crespy, P.; Frohman, M.A.; Balda, M.S.; Matter, K.; Joubert, D.; Bourgaux, J.F.; Bali, J.P.; Hollande, F. Phosphatidylethanol accumulation promotes intestinal hyperplasia by inducing ZONAB-mediated cell density increase in response to chronic ethanol exposure. Mol. Cancer Res., 2007, 5(11), 1147-1157.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0198] [PMID: 18025260]
[13]
Balda, M.S.; Matter, K. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J., 2000, 19(9), 2024-2033.
[http://dx.doi.org/10.1093/emboj/19.9.2024] [PMID: 10790369]
[14]
Sourisseau, T.; Georgiadis, A.; Tsapara, A.; Ali, R.R.; Pestell, R.; Matter, K.; Balda, M.S. Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Mol. Cell. Biol., 2006, 26(6), 2387-2398.
[http://dx.doi.org/10.1128/MCB.26.6.2387-2398.2006] [PMID: 16508013]
[15]
Harder, J.L.; Margolis, B. SnapShot: tight and adherens junction signaling. Cell, 2008, 133(6), 1118-1118.e2.
[http://dx.doi.org/10.1016/j.cell.2008.06.002] [PMID: 18555786]
[16]
Frankel, P.; Aronheim, A.; Kavanagh, E.; Balda, M.S.; Matter, K.; Bunney, T.D.; Marshall, C.J.; Ral, A. RalA interacts with ZONAB in a cell density-dependent manner and regulates its transcriptional activity. EMBO J., 2005, 24(1), 54-62.
[http://dx.doi.org/10.1038/sj.emboj.7600497] [PMID: 15592429]
[17]
Osler, M.E.; Chang, M.S.; Bader, D.M. Bves modulates epithelial integrity through an interaction at the tight junction. J. Cell Sci., 2005, 118(20), 4667-4678.
[http://dx.doi.org/10.1242/jcs.02588] [PMID: 16188940]
[18]
González-Mariscal, L.; Domínguez-Calderón, A.; Raya-Sandino, A.; Ortega-Olvera, J.M.; Vargas-Sierra, O.; Martínez-Revollar, G. Tight junctions and the regulation of gene expression. Semin. Cell Dev. Biol., 2014, 36, 213-223.
[http://dx.doi.org/10.1016/j.semcdb.2014.08.009] [PMID: 25152334]
[19]
Huerta, M.; Muñoz, R.; Tapia, R.; Soto-Reyes, E.; Ramírez, L.; Recillas-Targa, F.; González-Mariscal, L.; López-Bayghen, E. Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc. Mol. Biol. Cell, 2007, 18(12), 4826-4836.
[http://dx.doi.org/10.1091/mbc.e07-02-0109] [PMID: 17881732]
[20]
Angel, P.; Karin, M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta Rev. Cancer, 1991, 1072(2-3), 129-157.
[http://dx.doi.org/10.1016/0304-419X(91)90011-9] [PMID: 1751545]
[21]
Aijaz, S.; D’Atri, F.; Citi, S.; Balda, M.S.; Matter, K. Binding of GEF-H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Dev. Cell, 2005, 8(5), 777-786.
[http://dx.doi.org/10.1016/j.devcel.2005.03.003] [PMID: 15866167]
[22]
Wilcox, E.R.; Burton, Q.L.; Naz, S.; Riazuddin, S.; Smith, T.N.; Ploplis, B.; Belyantseva, I.; Ben-Yosef, T.; Liburd, N.A.; Morell, R.J.; Kachar, B.; Wu, D.K.; Griffith, A.J.; Riazuddin, S.; Friedman, T.B. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell, 2001, 104(1), 165-172.
[http://dx.doi.org/10.1016/S0092-8674(01)00200-8] [PMID: 11163249]
[23]
Krug, S.M.; Amasheh, S.; Richter, J.F.; Milatz, S.; Günzel, D.; Westphal, J.K.; Huber, O.; Schulzke, J.D.; Fromm, M. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol. Biol. Cell, 2009, 20(16), 3713-3724.
[http://dx.doi.org/10.1091/mbc.e09-01-0080] [PMID: 19535456]
[24]
Baltzegar, D.A.; Reading, B.J.; Brune, E.S.; Borski, R.J. Phylogenetic revision of the claudin gene family. Mar. Genomics, 2013, 11, 17-26.
[http://dx.doi.org/10.1016/j.margen.2013.05.001] [PMID: 23726886]
[25]
Jaillon, O.; Aury, J.M.; Brunet, F.; Petit, J.L.; Stange-Thomann, N.; Mauceli, E.; Bouneau, L.; Fischer, C.; Ozouf-Costaz, C.; Bernot, A.; Nicaud, S.; Jaffe, D.; Fisher, S.; Lutfalla, G.; Dossat, C.; Segurens, B.; Dasilva, C.; Salanoubat, M.; Levy, M.; Boudet, N.; Castellano, S.; Anthouard, V.; Jubin, C.; Castelli, V.; Katinka, M.; Vacherie, B.; Biémont, C.; Skalli, Z.; Cattolico, L.; Poulain, J.; de Berardinis, V.; Cruaud, C.; Duprat, S.; Brottier, P.; Coutanceau, J.P.; Gouzy, J.; Parra, G.; Lardier, G.; Chapple, C.; McKernan, K.J.; McEwan, P.; Bosak, S.; Kellis, M.; Volff, J.N.; Guigó, R.; Zody, M.C.; Mesirov, J.; Lindblad-Toh, K.; Birren, B.; Nusbaum, C.; Kahn, D.; Robinson-Rechavi, M.; Laudet, V.; Schachter, V.; Quétier, F.; Saurin, W.; Scarpelli, C.; Wincker, P.; Lander, E.S.; Weissenbach, J.; Roest Crollius, H. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 2004, 431(7011), 946-957.
[http://dx.doi.org/10.1038/nature03025] [PMID: 15496914]
[26]
Loh, Y.H.; Christoffels, A.; Brenner, S.; Hunziker, W.; Venkatesh, B. Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes. Genome Res., 2004, 14(7), 1248-1257.
[http://dx.doi.org/10.1101/gr.2400004] [PMID: 15197168]
[27]
Lal-Nag, M.; Morin, P.J. The claudins. Genome Biol., 2009, 10(8), 235.
[http://dx.doi.org/10.1186/gb-2009-10-8-235] [PMID: 19706201]
[28]
Piorntek, J.; Winkler, L.; Wolburg, H.; Müller, S.L.; Zuleger, N.; Piehl, C.; Wiesner, B.; Krause, G.; Blasig, I.E. Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J., 2008, 22(1), 146-158.
[http://dx.doi.org/10.1096/fj.07-8319com] [PMID: 17761522]
[29]
Hamazaki, Y.; Itoh, M.; Sasaki, H.; Furuse, M.; Tsukita, S. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J. Biol. Chem., 2002, 277(1), 455-461.
[http://dx.doi.org/10.1074/jbc.M109005200] [PMID: 11689568]
[30]
Itoh, M.; Furuse, M.; Morita, K.; Kubota, K.; Saitou, M.; Tsukita, S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J. Cell Biol., 1999, 147(6), 1351-1363.
[http://dx.doi.org/10.1083/jcb.147.6.1351] [PMID: 10601346]
[31]
Kitajiri, S.; Furuse, M.; Morita, K.; Saishin-Kiuchi, Y.; Kido, H.; Ito, J.; Tsukita, S. Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear. Res., 2004, 187(1-2), 25-34.
[http://dx.doi.org/10.1016/S0378-5955(03)00338-1] [PMID: 14698084]
[32]
Ben-Yosef, T.; Belyantseva, I.A.; Saunders, T.L.; Hughes, E.D.; Kawamoto, K.; Van Itallie, C.M.; Beyer, L.A.; Halsey, K.; Gardner, D.J.; Wilcox, E.R.; Rasmussen, J.; Anderson, J.M.; Dolan, D.F.; Forge, A.; Raphael, Y.; Camper, S.A.; Friedman, T.B. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum. Mol. Genet., 2003, 12(16), 2049-2061.
[http://dx.doi.org/10.1093/hmg/ddg210] [PMID: 12913076]
[33]
Nakano, Y.; Kim, S.H.; Kim, H.M.; Sanneman, J.D.; Zhang, Y.; Smith, R.J.H.; Marcus, D.C.; Wangemann, P.; Nessler, R.A.; Bánfi, B. A claudin-9-based ion permeability barrier is essential for hearing. PLoS Genet., 2009, 5(8) e1000610
[http://dx.doi.org/10.1371/journal.pgen.1000610] [PMID: 19696885]
[34]
Hibino, H.; Kurachi, Y. Molecular and physiological bases of the K+ circulation in the mammalian inner ear. Physiology (Bethesda), 2006, 21(5), 336-345.
[http://dx.doi.org/10.1152/physiol.00023.2006] [PMID: 16990454]
[35]
Wangemann, P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J. Physiol., 2006, 576(1), 11-21.
[http://dx.doi.org/10.1113/jphysiol.2006.112888] [PMID: 16857713]
[36]
Gow, A.; Davies, C.; Southwood, C.M.; Frolenkov, G.; Chrustowski, M.; Ng, L.; Yamauchi, D.; Marcus, D.C.; Kachar, B. Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J. Neurosci., 2004, 24(32), 7051-7062.
[http://dx.doi.org/10.1523/JNEUROSCI.1640-04.2004] [PMID: 15306639]
[37]
Elkouby-Naor, L.; Abassi, Z.; Lagziel, A.; Gow, A.; Ben-Yosef, T. Double gene deletion reveals lack of cooperation between claudin 11 and claudin 14 tight junction proteins. Cell Tissue Res., 2008, 333(3), 427-438.
[http://dx.doi.org/10.1007/s00441-008-0621-9] [PMID: 18663477]
[38]
Hardison, A.L.; Lichten, L.; Banerjee-Basu, S.; Becker, T.S.; Burgess, S.M. The zebrafish gene claudinj is essential for normal ear function and important for the formation of the otoliths. Mech. Dev., 2005, 122(7-8), 949-958.
[http://dx.doi.org/10.1016/j.mod.2005.03.009] [PMID: 15925497]
[39]
Li, X.; Song, G.; Zhao, Y.; Zhao, F.; Liu, C.; Liu, D.; Li, Q.; Cui, Z. Claudin7b is required for the formation and function of inner ear in zebrafish. J. Cell. Physiol., 2018, 233(4), 3195-3206.
[http://dx.doi.org/10.1002/jcp.26162] [PMID: 28834538]
[40]
Gong, J.; Qian, P.; Hu, Y.; Guo, C.; Wei, G.; Wang, C.; Cai, C.; Wang, H.; Liu, D. Claudin h Is Essential for Hair Cell Morphogenesis and Auditory Function in Zebrafish. Front. Cell Dev. Biol., 2021, 9, 663995.
[http://dx.doi.org/10.3389/fcell.2021.663995] [PMID: 34046408]
[41]
Leibovici, M.; Verpy, E.; Goodyear, R.J.; Zwaenepoel, I.; Blanchard, S.; Lainé, S.; Richardson, G.P.; Petit, C. Initial characterization of kinocilin, a protein of the hair cell kinocilium. Hear. Res., 2005, 203(1-2), 144-153.
[http://dx.doi.org/10.1016/j.heares.2004.12.002] [PMID: 15855039]
[42]
Jones, C.; Roper, V.C.; Foucher, I.; Qian, D.; Banizs, B.; Petit, C.; Yoder, B.K.; Chen, P. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat. Genet., 2008, 40(1), 69-77.
[http://dx.doi.org/10.1038/ng.2007.54] [PMID: 18066062]
[43]
Nishiyama, K.; Sakaguchi, H.; Hu, J.G.; Bok, D.; Hollyfield, J.G. Claudin localization in cilia of the retinal pigment epithelium. Anat. Rec., 2002, 267(3), 196-203.
[http://dx.doi.org/10.1002/ar.10102] [PMID: 12115268]
[44]
Cordenonsi, M.; D’Atri, F.; Hammar, E.; Parry, D.A.D.; Kendrick-Jones, J.; Shore, D.; Citi, S. Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J. Cell Biol., 1999, 147(7), 1569-1582.
[http://dx.doi.org/10.1083/jcb.147.7.1569] [PMID: 10613913]
[45]
Yano, T.; Matsui, T.; Tamura, A.; Uji, M.; Tsukita, S. The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J. Cell Biol., 2013, 203(4), 605-614.
[http://dx.doi.org/10.1083/jcb.201304194] [PMID: 24385485]
[46]
Jin, M.; Wang, D.; Xu, W.; Wang, H.; Cao, Y. Claudin-7b and Claudin-h are required for controlling cilia morphogenesis in the zebrafish kidney. Mech. Dev., 2020, 161, 103595.
[http://dx.doi.org/10.1016/j.mod.2019.103595] [PMID: 31887432]
[47]
Furuse, M.; Hirase, T.; Itoh, M.; Nagafuchi, A.; Yonemura, S.; Tsukita, S.; Tsukita, S. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol., 1993, 123(6), 1777-1788.
[http://dx.doi.org/10.1083/jcb.123.6.1777] [PMID: 8276896]
[48]
Fanning, A.S.; Jameson, B.J.; Jesaitis, L.A.; Anderson, J.M. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem., 1998, 273(45), 29745-29753.
[http://dx.doi.org/10.1074/jbc.273.45.29745] [PMID: 9792688]
[49]
Itoh, M.; Morita, K.; Tsukita, S. Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and α catenin. J. Biol. Chem., 1999, 274(9), 5981-5986.
[http://dx.doi.org/10.1074/jbc.274.9.5981] [PMID: 10026224]
[50]
Sakakibara, A.; Furuse, M.; Saitou, M.; Ando-Akatsuka, Y.; Tsukita, S. Possible involvement of phosphorylation of occludin in tight junction formation. J. Cell Biol., 1997, 137(6), 1393-1401.
[http://dx.doi.org/10.1083/jcb.137.6.1393] [PMID: 9182670]
[51]
Rao, R. Occludin phosphorylation in regulation of epithelial tight junctions. Ann. N. Y. Acad. Sci., 2009, 1165(1), 62-68.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04054.x] [PMID: 19538289]
[52]
Raleigh, D.R.; Boe, D.M.; Yu, D.; Weber, C.R.; Marchiando, A.M.; Bradford, E.M.; Wang, Y.; Wu, L.; Schneeberger, E.E.; Shen, L.; Turner, J.R. Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J. Cell Biol., 2011, 193(3), 565-582.
[http://dx.doi.org/10.1083/jcb.201010065] [PMID: 21536752]
[53]
Saitou, M.; Fujimoto, K.; Doi, Y.; Itoh, M.; Fujimoto, T.; Furuse, M.; Takano, H.; Noda, T.; Tsukita, S. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell Biol., 1998, 141(2), 397-408.
[http://dx.doi.org/10.1083/jcb.141.2.397] [PMID: 9548718]
[54]
Riazuddin, S.; Ahmed, Z.M.; Fanning, A.S.; Lagziel, A.; Kitajiri, S.; Ramzan, K.; Khan, S.N.; Chattaraj, P.; Friedman, P.L.; Anderson, J.M.; Belyantseva, I.A.; Forge, A.; Riazuddin, S.; Friedman, T.B. Tricellulin is a tight-junction protein necessary for hearing. Am. J. Hum. Genet., 2006, 79(6), 1040-1051.
[http://dx.doi.org/10.1086/510022] [PMID: 17186462]
[55]
Kitajiri, S.; Katsuno, T.; Sasaki, H.; Ito, J.; Furuse, M.; Tsukita, S. Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells. Biol. Open, 2014, 3(8), 759-766.
[http://dx.doi.org/10.1242/bio.20147799] [PMID: 25063198]
[56]
Cording, J.; Arslan, B.; Staat, C.; Dithmer, S.; Krug, S.M.; Krüger, A.; Berndt, P.; Günther, R.; Winkler, L.; Blasig, I.E.; Haseloff, R.F. Trictide, a tricellulin-derived peptide to overcome cellular barriers. Ann. N. Y. Acad. Sci., 2017, 1405(1), 89-101.
[http://dx.doi.org/10.1111/nyas.13392] [PMID: 28633193]
[57]
Westphal, J.K.; Dörfel, M.J.; Krug, S.M.; Cording, J.D.; Piontek, J.; Blasig, I.E.; Tauber, R.; Fromm, M.; Huber, O. Tricellulin forms homomeric and heteromeric tight junctional complexes. Cell. Mol. Life Sci., 2010, 67(12), 2057-2068.
[http://dx.doi.org/10.1007/s00018-010-0313-y] [PMID: 20213273]
[58]
Chishti, M.S.; Bhatti, A.; Tamim, S.; Lee, K.; McDonald, M.L.; Leal, S.M.; Ahmad, W. Splice-site mutations in the TRIC gene underlie autosomal recessive nonsyndromic hearing impairment in Pakistani families. J. Hum. Genet., 2008, 53(2), 101-105.
[http://dx.doi.org/10.1007/s10038-007-0209-3] [PMID: 18084694]
[59]
Šafka Brožková, D.; Laštůvková, J.; Štěpánková, H.; Krůtová, M.; Trková, M.; Myška, P.; Seeman, P. DFNB49 is an important cause of non-syndromic deafness in Czech Roma patients but not in the general Czech population. Clin. Genet., 2012, 82(6), 579-582.
[http://dx.doi.org/10.1111/j.1399-0004.2011.01817.x] [PMID: 22097895]
[60]
Nayak, G.; Lee, S.I.; Yousaf, R.; Edelmann, S.E.; Trincot, C.; Van Itallie, C.M.; Sinha, G.P.; Rafeeq, M.; Jones, S.M.; Belyantseva, I.A.; Anderson, J.M.; Forge, A.; Frolenkov, G.I.; Riazuddin, S. Tricellulin deficiency affects tight junction architecture and cochlear hair cells. J. Clin. Invest., 2013, 123(9), 4036-4049.
[http://dx.doi.org/10.1172/JCI69031] [PMID: 23979167]
[61]
Tsukita, S.; Katsuno, T.; Yamazaki, Y.; Umeda, K.; Tamura, A.; Tsukita, S. Roles of ZO-1 and ZO-2 in establishment of the belt-like adherens and tight junctions with paracellular permselective barrier function. Ann. N. Y. Acad. Sci., 2009, 1165(1), 44-52.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04056.x] [PMID: 19538286]
[62]
Nomme, J.; Antanasijevic, A.; Caffrey, M.; Van Itallie, C.M.; Anderson, J.M.; Fanning, A.S.; Lavie, A. Structural basis of a key factor regulating the affinity between the zonula occludens first PDZ domain and claudins. J. Biol. Chem., 2015, 290(27), 16595-16606.
[http://dx.doi.org/10.1074/jbc.M115.646695] [PMID: 26023235]
[63]
Fanning, A.S.; Lye, M.F.; Anderson, J.M.; Lavie, A. Domain swapping within PDZ2 is responsible for dimerization of ZO proteins. J. Biol. Chem., 2007, 282(52), 37710-37716.
[http://dx.doi.org/10.1074/jbc.M707255200] [PMID: 17928286]
[64]
Itoh, M.; Sasaki, H.; Furuse, M.; Ozaki, H.; Kita, T.; Tsukita, S. Junctional adhesion molecule (JAM) binds to PAR-3. J. Cell Biol., 2001, 154(3), 491-498.
[http://dx.doi.org/10.1083/jcb.200103047] [PMID: 11489913]
[65]
Walsh, T.; Pierce, S.B.; Lenz, D.R.; Brownstein, Z.; Dagan-Rosenfeld, O.; Shahin, H.; Roeb, W.; McCarthy, S.; Nord, A.S.; Gordon, C.R.; Ben-Neriah, Z.; Sebat, J.; Kanaan, M.; Lee, M.K.; Frydman, M.; King, M.C.; Avraham, K.B. Genomic duplication and overexpression of TJP2/ZO-2 leads to altered expression of apoptosis genes in progressive nonsyndromic hearing loss DFNA51. Am. J. Hum. Genet., 2010, 87(1), 101-109.
[http://dx.doi.org/10.1016/j.ajhg.2010.05.011] [PMID: 20602916]
[66]
Wang, H.Y.; Zhao, Y.L.; Liu, Q.; Yuan, H.; Gao, Y.; Lan, L.; Yu, L.; Wang, D.Y.; Guan, J.; Wang, Q.J. Identification of Two Disease-causing Genes TJP2 and GJB2 in a Chinese Family with unconditional autosomal dominant nonsyndromic hereditary hearing impairment. Chin. Med. J. (Engl.), 2015, 128(24), 3345-3351.
[http://dx.doi.org/10.4103/0366-6999.171440] [PMID: 26668150]
[67]
Kazmierczak, M.; Harris, S.L.; Kazmierczak, P.; Shah, P.; Starovoytov, V.; Ohlemiller, K.K.; Schwander, M. Progressive hearing loss in mice carrying a mutation in Usp53. J. Neurosci., 2015, 35(47), 15582-15598.
[http://dx.doi.org/10.1523/JNEUROSCI.1965-15.2015] [PMID: 26609154]
[68]
Citi, S.; Sabanay, H.; Jakes, R.; Geiger, B.; Kendrick-Jones, J. Cingulin, a new peripheral component of tight junctions. Nature, 1988, 333(6170), 272-276.
[http://dx.doi.org/10.1038/333272a0] [PMID: 3285223]
[69]
D’Atri, F.; Citi, S. Cingulin interacts with F-actin in vitro. FEBS Lett., 2001, 507(1), 21-24.
[http://dx.doi.org/10.1016/S0014-5793(01)02936-2] [PMID: 11682052]
[70]
Bazzoni, G.; Martínez-Estrada, O.M.; Orsenigo, F.; Cordenonsi, M.; Citi, S.; Dejana, E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J. Biol. Chem., 2000, 275(27), 20520-20526.
[http://dx.doi.org/10.1074/jbc.M905251199] [PMID: 10877843]
[71]
Raphael, Y.; Altschuler, R.A. Reorganization of cytoskeletal and junctional proteins during cochlear hair cell degeneration. Cell Motil. Cytoskeleton, 1991, 18(3), 215-227.
[http://dx.doi.org/10.1002/cm.970180307] [PMID: 1711932]
[72]
Shaheen, R.; Sebai, M.A.; Patel, N.; Ewida, N.; Kurdi, W.; Altweijri, I.; Sogaty, S.; Almardawi, E.; Seidahmed, M.Z.; Alnemri, A.; Madirevula, S.; Ibrahim, N.; Abdulwahab, F.; Hashem, M.; Al-Sheddi, T.; Alomar, R.; Alobeid, E.; Sallout, B.; AlBaqawi, B.; AlAali, W.; Ajaji, N.; Lesmana, H.; Hopkin, R.J.; Dupuis, L.; Mendoza-Londono, R.; Al Rukban, H.; Yoon, G.; Faqeih, E.; Alkuraya, F.S. The genetic landscape of familial congenital hydrocephalus. Ann. Neurol., 2017, 81(6), 890-897.
[http://dx.doi.org/10.1002/ana.24964] [PMID: 28556411]
[73]
Saleem, I.B.; Masoud, M.S.; Qasim, M.; Ali, M.; Ahmed, Z.M. Identification and computational analysis of rare variants of known hearing loss genes present in five deaf members of a Pakistani kindred. Genes (Basel), 2021, 12(12), 1940.
[http://dx.doi.org/10.3390/genes12121940] [PMID: 34946889]
[74]
Jarysta, A.; Tarchini, B. Multiple PDZ domain protein maintains patterning of the apical cytoskeleton in sensory hair cells. Development, 2021, 148(14), dev199549.
[http://dx.doi.org/10.1242/dev.199549] [PMID: 34228789]
[75]
Hirabayashi, S.; Tajima, M.; Yao, I.; Nishimura, W.; Mori, H.; Hata, Y. JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1. Mol. Cell. Biol., 2003, 23(12), 4267-4282.
[http://dx.doi.org/10.1128/MCB.23.12.4267-4282.2003] [PMID: 12773569]
[76]
Xu, Z.; Peng, A.W.; Oshima, K.; Heller, S. MAGI-1, a candidate stereociliary scaffolding protein, associates with the tip-link component cadherin 23. J. Neurosci., 2008, 28(44), 11269-11276.
[http://dx.doi.org/10.1523/JNEUROSCI.3833-08.2008] [PMID: 18971469]
[77]
Choksi, S.P.; Babu, D.; Lau, D.; Yu, X.; Roy, S. Systematic discovery of novel ciliary genes through functional genomics in the zebrafish. Development, 2014, 141(17), 3410-3419.
[http://dx.doi.org/10.1242/dev.108209] [PMID: 25139857]
[78]
Higashi, T.; Tokuda, S.; Kitajiri, S.; Masuda, S.; Nakamura, H.; Oda, Y.; Furuse, M. Analysis of the ‘angulin’ proteins LSR, ILDR1 and ILDR2 – tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis. J. Cell Sci., 2013, 126(16), 3797.
[http://dx.doi.org/10.1242/jcs.138271] [PMID: 23239027]
[79]
Aslam, M.; Wajid, M.; Chahrour, M.H.; Ansar, M.; Haque, S.; Pham, T.L.; Santos, R.P.; Yan, K.; Ahmad, W.; Leal, S.M. A novel autosomal recessive nonsyndromic hearing impairment locus (DFNB42) maps to chromosome 3q13.31-q22.3. Am. J. Med. Genet. A., 2005, 133A(1), 18-22.
[http://dx.doi.org/10.1002/ajmg.a.30508] [PMID: 15641023]
[80]
Borck, G.; Rehman, A.U.; Lee, K.; Pogoda, H.M.; Kakar, N.; von Ameln, S.; Grillet, N.; Hildebrand, M.S.; Ahmed, Z.M.; Nürnberg, G.; Ansar, M.; Basit, S.; Javed, Q.; Morell, R.J.; Nasreen, N.; Shearer, A.E.; Ahmad, A.; Kahrizi, K.; Shaikh, R.S.; Ali, R.A.; Khan, S.N.; Goebel, I.; Meyer, N.C.; Kimberling, W.J.; Webster, J.A.; Stephan, D.A.; Schiller, M.R.; Bahlo, M.; Najmabadi, H.; Gillespie, P.G.; Nürnberg, P.; Wollnik, B.; Riazuddin, S.; Smith, R.J.H.; Ahmad, W.; Müller, U.; Hammerschmidt, M.; Friedman, T.B.; Riazuddin, S.; Leal, S.M.; Ahmad, J.; Kubisch, C. Loss-of-function mutations of ILDR1 cause autosomal-recessive hearing impairment DFNB42. Am. J. Hum. Genet., 2011, 88(2), 127-137.
[http://dx.doi.org/10.1016/j.ajhg.2010.12.011] [PMID: 21255762]
[81]
Wang, X.; Wang, L.; Peng, H.; Yang, T.; Wu, H. A Novel p.G141R Mutation in ILDR1 Leads to recessive nonsyndromic deafness DFNB42 in two chinese han families. Neural Plast., 2018, 2018, 1-6.
[http://dx.doi.org/10.1155/2018/7272308] [PMID: 29849566]
[82]
Higashi, T.; Katsuno, T.; Kitajiri, S.; Furuse, M. Deficiency of angulin-2/ILDR1, a tricellular tight junction-associated membrane protein, causes deafness with cochlear hair cell degeneration in mice. PLoS One, 2015, 10(3) e0120674
[http://dx.doi.org/10.1371/journal.pone.0120674] [PMID: 25822906]
[83]
Morozko, E.L.; Nishio, A.; Ingham, N.J.; Chandra, R.; Fitzgerald, T.; Martelletti, E.; Borck, G.; Wilson, E.; Riordan, G.P.; Wangemann, P.; Forge, A.; Steel, K.P.; Liddle, R.A.; Friedman, T.B.; Belyantseva, I.A. ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells. Hum. Mol. Genet., 2015, 24(3), 609-624.
[http://dx.doi.org/10.1093/hmg/ddu474] [PMID: 25217574]
[84]
Chandra, R.; Wang, Y.; Shahid, R.A.; Vigna, S.R.; Freedman, N.J.; Liddle, R.A. Immunoglobulin-like domain containing receptor 1 mediates fat-stimulated cholecystokinin secretion. J. Clin. Invest., 2013, 123(8), 3343-3352.
[http://dx.doi.org/10.1172/JCI68587] [PMID: 23863714]
[85]
Hildebrand, J.D.; Soriano, P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell, 1999, 99(5), 485-497.
[http://dx.doi.org/10.1016/S0092-8674(00)81537-8] [PMID: 10589677]
[86]
Hickox, A.E.; Wong, A.C.Y.; Pak, K.; Strojny, C.; Ramirez, M.; Yates, J.R., III; Ryan, A.F.; Savas, J.N. Global analysis of protein expression of inner ear hair cells. J. Neurosci., 2017, 37(5), 1320-1339.
[http://dx.doi.org/10.1523/JNEUROSCI.2267-16.2016] [PMID: 28039372]
[87]
Etournay, R.; Zwaenepoel, I.; Perfettini, I.; Legrain, P.; Petit, C.; El-Amraoui, A. Shroom2, a myosin-VIIa- and actin-binding protein, directly interacts with ZO-1 at tight junctions. J. Cell Sci., 2007, 120(16), 2838-2850.
[http://dx.doi.org/10.1242/jcs.002568] [PMID: 17666436]
[88]
Roman-Naranjo, P.; Moleon, M.D.C.; Aran, I.; Escalera-Balsera, A.; Soto-Varela, A.; Bächinger, D.; Gomez-Fiñana, M.; Eckhard, A.H.; Lopez-Escamez, J.A. Rare coding variants involving MYO7A and other genes encoding stereocilia link proteins in familial meniere disease. Hear. Res., 2021, 409, 108329.
[http://dx.doi.org/10.1016/j.heares.2021.108329] [PMID: 34391192]
[89]
Nunes, F.D.; Lopez, L.N.; Lin, H.W.; Davies, C.; Azevedo, R.B.; Gow, A.; Kachar, B. Distinct subdomain organization and molecular composition of a tight junction with adherens junction features. J. Cell Sci., 2006, 119(23), 4819-4827.
[http://dx.doi.org/10.1242/jcs.03233] [PMID: 17130295]
[90]
Heinemann, U.; Schuetz, A. Structural features of tight-junction proteins. Int. J. Mol. Sci., 2019, 20(23), 6020.
[http://dx.doi.org/10.3390/ijms20236020] [PMID: 31795346]
[91]
Gu, S.; Olszewski, R.; Nelson, L.; Gallego-Martinez, A.; Lopez-Escamez, J.A.; Hoa, M. Identification of potential meniere’s disease targets in the adult Stria Vascularis. Front. Neurol., 2021, 12, 630561.
[http://dx.doi.org/10.3389/fneur.2021.630561] [PMID: 33613436]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy