Abstract
The synthesis of heterocyclic compounds has drawn considerable attention in the scientific community due to their existence in the majority of medicinal & pharmaceutically important compounds as well as natural products. Among them, the remarkable existence of tetrazoles has been realized in several commercially available drugs. In this regard, various synthetic protocols to access tetrazoles have been developed to address the efficiency and environmental impacts in terms of minimization of the steps, elevating yields, and conducting environmentally benign and sustainable chemistry. The management and detrimental environmental impact of waste has been recognised as a consistent concern, along with the costs associated with its disposal. Among various approaches to minimise unwanted materials from a process, one of the best alternatives is to perform a reaction in the absence of excess chemical reagents and catalysts. Other options include the reactions affected by the application of heat, light, sound, or electrolysis. The multicomponent reactions (MCR) display a unique approach establishing a step forward toward clean, step and atom-economical chemical synthesis. Most of them utilize the required substrates, eliminating the stoichiometric use of reagents, reducing the possibility of forming unwanted side products. The present review displays the concepts of MCR in the synthesis and functionalization of tetrazole, which contributes to green and sustainable chemistry.
Graphical Abstract
(b) Lamberth, C. Heterocyclic chemistry in crop protection. Pest Manag. Sci., 2013, 69(10), 1106-1114.
[http://dx.doi.org/10.1002/ps.3615] [PMID: 23908156];
(c) Miao, J.; Dong, X.; Lin, D.; Wang, Q.; Liu, P.; Chen, F.; Du, Y.; Liu, X. Activity of the novel fungicide oxathiapiprolin against plant-pathogenic oomycetes. Pest Manag. Sci., 2016, 72(8), 1572-1577.
[http://dx.doi.org/10.1002/ps.4189] [PMID: 26577849];
(d) Sulzer-Mosse, S.; Cederbaum, F.; Lamberth, C.; Berthon, G.; Umarye, J.; Grasso, V.; Schlereth, A.; Blum, M.; Waldmeier, R. Synthesis and fungicidal activity of N-thiazol-4-yl-salicylamides, a new family of anti-oomycete compounds. Bioorg. Med. Chem., 2015, 23(9), 2129-2138.
[http://dx.doi.org/10.1016/j.bmc.2015.03.007] [PMID: 25801153]
[http://dx.doi.org/10.1007/s10593-012-0960-z];
(b) Campos, J.F.; Besson, T.; Berteina-Raboin, S.. Review on the synthesis and therapeutic potential of pyrido[2,3-d], [3,2-d], [3,4-d] and [4,3-d]pyrimidine derivatives. Pharmaceuticals, 2022, 15, 352-379.;
(c) Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O.. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396];
(d) Zeng, Y.; Nie, L.; Liu, L.; Niu, C.; Li, Y.; Bozorov, K.; Zhao, J.; Shen, J.; Aisa, H.A.. Design, synthesis, in vitro evaluation of a new pyrrolo[1,2‐ a ]thiazolo[5,4‐ d ]pyrimidinone derivatives as cholinesterase inhibitors against Alzheimer’s disease. J. Heterocycl. Chem., 2022, 59(6), 1086-1101.
[http://dx.doi.org/10.1002/jhet.4452]
[http://dx.doi.org/10.36686/Ariviyal.CSER.2019.01.01.005];
(b) El-Hendawy, M.M.; Kamel, A.M.; Mohamed, M.M.A. The anti-corrosive behavior of benzo-fused N-heterocycles: An in silico study toward developing organic corrosion inhibitors. Phys. Chem. Chem. Phys., 2022, 24(2), 743-756.
[http://dx.doi.org/10.1039/D1CP04820A] [PMID: 34935799];
(c) Goni, L.K.M.O.; Jafar Mazumder, M.A.; Quraishi, M.A.; Mizanur Rahman, M. Bioinspired heterocyclic compounds as corrosion inhibitors: A comprehensive review. Chem. Asian J., 2021, 16(11), 1324-1364.
[http://dx.doi.org/10.1002/asia.202100201] [PMID: 33844882]
[http://dx.doi.org/10.3390/molecules21091151] [PMID: 27589707];
(b) Bojinov, V.B.; Panova, I.P.; Simeonov, D.B. The synthesis of novel photostable fluorescein-based dyes containing an s-triazine UV absorber and a HALS unit and their acrylonitrile copolymers. Dyes Pigments, 2009, 83(2), 135-143.
[http://dx.doi.org/10.1016/j.dyepig.2008.10.007]
[http://dx.doi.org/10.1021/jm4016284] [PMID: 24564525]
[http://dx.doi.org/10.1016/j.ejmech.2010.01.029] [PMID: 20133024]
[http://dx.doi.org/10.1039/C5RA16386B]
[http://dx.doi.org/10.47583/ijpsrr.2021.v69i01.002];
(b) Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317];
(c) Varala, R.; Bollikolla, H.B.; Kurmarayuni, C.M. Synthesis of pharmacological relevant 1,2,3-triazole and its analogues—a review. Curr. Org. Synth., 2021, 18(2), 101-124.
[http://dx.doi.org/10.2174/18756271MTA54OTEc0] [PMID: 32928090]
[http://dx.doi.org/10.1248/cpb.c15-00452] [PMID: 26521851];
(b) Parshikov, I.A.; Silva, E.O.; Furtado, N.A.J.C. Transformation of saturated nitrogen-containing heterocyclic compounds by microorganisms. Appl. Microbiol. Biotechnol., 2014, 98(4), 1497-1506.
[http://dx.doi.org/10.1007/s00253-013-5429-1] [PMID: 24352731];
(c) Mohareb, R.; Mohamed, A.; Abdalla, A. New approaches for the synthesis, cytotoxicity and toxicity of heterocyclic compounds derived from 2-cyanomethyl benzo[c]imidazole. Acta Chim. Slov., 2016, 63(2), 227-240.
[http://dx.doi.org/10.17344/acsi.2015.1668] [PMID: 27333544]
[http://dx.doi.org/10.1002/slct.202001722];
(b) Khandebharad, A.U.; Sarda, S.R.; Gill, C.; Agrawal, B.R. An efficient synthesis of substituted imidazoles catalyzed by 3-N-Morpholinopropanesulfonic Acid (MOPS) under ultrasound irradiation. Org. Prep. Proced. Int., 2020, 52(6), 524-529.
[http://dx.doi.org/10.1080/00304948.2020.1804773];
(c) Kiranmye, T.; Vadivelu, M.; Sampath, S.; Muthu, K.; Karthikeyan, K. Ultrasound-assisted catalyst free synthesis of 1,4- /1,5-disubstituted-1,2,3-triazoles in aqueous medium. Sustain. Chem. Pharm., 2021, 19, 100358.
[http://dx.doi.org/10.1016/j.scp.2020.100358]
[http://dx.doi.org/10.3390/catal10040429];
(b) Prasad, A.; Reddy, B. Cascade synthesis of n-heterocyclic compounds through one-pot MCR over CuII−hydrotalcite catalyst. Curr. Catal., 2013, 2(3), 159-172.
[http://dx.doi.org/10.2174/22115447113029990002];
(c) Bhaskaruni, S.V.H.S.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem., 2020, 13(1), 1142-1178.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.016]
[http://dx.doi.org/10.2174/1386207013331291] [PMID: 11281825];
(b) Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608];
(b) Huang, Y.; Khoury, K.; Chanas, T.; Dömling, A. Multicomponent synthesis of diverse 1,4-benzodiazepine scaffolds. Org. Lett., 2012, 14(23), 5916-5919.
[http://dx.doi.org/10.1021/ol302837h] [PMID: 23157402];
(c) Zhao, T.; Boltjes, A.; Herdtweck, E.; Dömling, A. Tritylamine as an ammonia surrogate in the Ugi tetrazole synthesis. Org. Lett., 2013, 15(3), 639-641.
[http://dx.doi.org/10.1021/ol303348m] [PMID: 23331054]
[http://dx.doi.org/10.1016/j.mcat.2021.111788];
(b) Pirota, V.; Benassi, A.; Doria, F. Lights on 2,5-diaryl tetrazoles: Applications and limits of a versatile photoclick reaction. Photochem. Photobiol. Sci., 2022, 21(5), 879-898.
[http://dx.doi.org/10.1007/s43630-022-00173-8] [PMID: 35188652]
[http://dx.doi.org/10.2174/1871522218666180525100850]
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[http://dx.doi.org/10.2174/1573406418666220127124228] [PMID: 35086456]
[http://dx.doi.org/10.1016/j.bmc.2014.12.021] [PMID: 25630499]
[http://dx.doi.org/10.1021/acs.orglett.6b01826] [PMID: 27610711]
[http://dx.doi.org/10.1002/ange.19820941103];
(b) Ugi, I. Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem., 2001, 73(1), 187-191.
[http://dx.doi.org/10.1351/pac200173010187];
(c) Hulme, C.; Bienaymé, H.; Nixey, T.; Chenera, B.; Jones, W.; Tempest, P.; Smith, A.L. Library generation via postcondensation modifications of isocyanide-based multicomponent reactions. Methods Enzymol., 2003, 369, 469-496.
[http://dx.doi.org/10.1016/S0076-6879(03)69024-5] [PMID: 14722968];
(d) Patil, P.; de Haan, M.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Versatile protecting-group free tetrazolomethane amine synthesis by ugi reaction. ACS Comb. Sci., 2016, 18(3), 170-175.
[http://dx.doi.org/10.1021/acscombsci.5b00189] [PMID: 26848739]
[http://dx.doi.org/10.1021/acs.orglett.6b03807] [PMID: 28102692]
[http://dx.doi.org/10.1039/C6GC03324E]
[http://dx.doi.org/10.1016/j.ejmech.2016.11.029] [PMID: 27907876]
[http://dx.doi.org/10.1021/acs.joc.7b00611] [PMID: 28558241]
[http://dx.doi.org/10.1002/ejoc.201403401] [PMID: 26949370]
[http://dx.doi.org/10.3390/M1194]
[http://dx.doi.org/10.1080/00397911.2019.1616301]
[http://dx.doi.org/10.1021/acs.orglett.7b02319] [PMID: 28901777]
[http://dx.doi.org/10.1016/j.ejmech.2016.06.005] [PMID: 27343853]
[http://dx.doi.org/10.1039/C4DT01664E] [PMID: 25030453]
[http://dx.doi.org/10.1039/c3ra23107k]
[http://dx.doi.org/10.1002/aoc.3988]
[http://dx.doi.org/10.1007/s11164-020-04131-w]
[http://dx.doi.org/10.1002/slct.201901497]
[http://dx.doi.org/10.1002/jhet.3961]
[http://dx.doi.org/10.1002/aoc.3518]
[http://dx.doi.org/10.1016/j.molcata.2014.06.001]
[http://dx.doi.org/10.1016/j.jorganchem.2013.06.019]
[http://dx.doi.org/10.1080/17518253.2020.1726505]
[http://dx.doi.org/10.1080/00304948.2020.1716624]