[1]
Ferlay J, Bray F, Pisani P, Parkin DM. Cancer incidence, mortality and prevalence worldwide.GLOBOCAN 2002 IARC Cancer- Base No5, version 20 2004.
[2]
Curado MP, Edwards B, Shin HR, et al. Cancer Incidence in Five
Continents, vol IX. IARC Press, International Agency for Research
on Cancer; 2007.
[3]
Dal Maso L, Bosetti C, La Vecchia C, Franceschi S. Risk factors for thyroid cancer: an epidemiological review focused on nutritional factors. Cancer Causes Control 2009; 20(1): 75-86.
[4]
Ozgun A, Tuncel T, Emirzeoglu L, et al. Malignant melanoma and papillary thyroid carcinoma that were diagnosed concurrently and treated simultaneously: A case report. Oncol Lett 2015; 9(1): 468-70.
[5]
Liska J, Altanerova V, Galbavy S, Stvrtina S, Brtko J. Thyroid tumors: histological classification and genetic factors involved in the development of thyroid cancer. Endocr Regul 2005; 39(3): 73-83.
[6]
Giuffrida D, Gharib H. Current diagnosis and management of medullary thyroid carcinoma. Ann Oncol 1998; 9(7): 695-701.
[7]
Giuffrida D, Gharib H. Anaplastic thyroid carcinoma: current diagnosis and treatment. Ann Oncol 2000; 11(9): 1083-9.
[8]
Matsuo K, Tang SH, Zeki K, et al. Aberrant DNA methylation in human thyroid tumors. J Clin Endocrinol Metab 1993; 77: 991-5.
[9]
Matsuo K, Tang SH, Fagin JA. Allelotype of human thyroid tumors: loss of chromosome 11q13 sequences in follicular neoplasms. Mol Endocrinol 1991; 5(12): 1873-9.
[10]
Giehl K. Oncogenic Ras in tumour progression and metastasis. Biol Chem 2005; 386(3): 193-205.
[11]
Gire V, Wynford-Thomas D. RAS oncogene activation induces proliferation in normal human thyroid epithelial cells without loss of differentiation. Oncogene 2000; 19(6): 737-44.
[12]
Lemoine NR, Mayall ES, Wyllie FS, et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 1989; 4(2): 159-64.
[13]
Suarez HG, Du Villard JA, Severino M, et al. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene 1990; 5(4): 565-70.
[14]
Shi YF, Zou MJ, Schmidt H, et al. High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res 1991; 51(10): 2690-3.
[15]
Amendoeira I, Maia T, Sobrinho-Simões M. 2018 Non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): impact on the reclassification of thyroid nodules. Endocr Relat Cancer 2018; 25: R247-58.
[16]
Na HY, Park SY. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: its updated diagnostic criteria, preoperative cytologic diagnoses and impact on the risk of malignancy. J Pathol Transl Med 2022; 56(6): 319-25.
[17]
Bychkov A, Jung CK, Liu Z, Kakudo K. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features in Asian practice: perspectives for surgical pathology and cytopathology. Endocr Pathol 2018; 29: 276-88.
[18]
Can N, Celik M, Sezer YA, et al. Follicular morphological characteristics may be associated with invasion in follicular thyroid neoplasms with papillary-like nuclear features. Bosn J Basic Med Sci 2017; 17: 211-20.
[19]
Santoro M, Grieco M, Melillo RM, Fusco A, Vecchio G. Molecular defects in thyroid carcinomas: role of the RET oncogene in thyroid neoplastic transformation. Eur J Endocrinol 1995; 133(5): 513-22.
[20]
Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990; 60(4): 557-63.
[21]
Castellone MD, Santoro M. Dysregulated RET signaling in thyroid cancer. Endocrinol Metab Clin North Am 2008; 37(2): 363-74.
[22]
Fusco A, Grieco M, Santoro M. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 1987; 328(6126): 170-2.
[23]
Wirtschafter A, Schmidt R, Rosen D, et al. Expression of the RET/PTC fusion gene as a marker for papillary carcinoma in Hashimoto’s thyroiditis. Laryngoscope 1997; 107(1): 95-100.
[24]
Grieco M, Cerrato A, Santoro M, Fusco A, Melillo RM, Vecchio G. Cloning and characterization of H4(D10S170), a gene involved in RET rearrangements in vivo. Oncogene 1994; 9(9): 2531-5.
[25]
Pierotti MA, Santoro M, Jenkins RB, et al. Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci USA 1992; 89(5): 1616-20.
[26]
Santoro M, Dathan NA, Berlingieri MT, et al. Molecular characterization of RET/PTC3; A novel rearranged version of the RETproto-oncogene in a human thyroid papillary carcinoma. Oncogene 1994; 9(2): 509-16.
[27]
Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 1997; 57(9): 1690-4.
[28]
Caudill CM, Zhu Z, Ciampi R, Stringer JR, Nikiforov YE. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to γ-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J Clin Endocrinol Metab 2005; 90(4): 2364-9.
[29]
Elisei R, Romei C, Vorontsova T, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 2001; 86(7): 3211-6.
[30]
Bongarzone I, Pierotti MA, Monzini N, et al. High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 1989; 4(12): 1457-62.
[31]
Bounacer A, Wicker R, Caillou B, et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 1997; 15(11): 1263-73.
[32]
Santoro M, Carlomagno F, Hay ID, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest 1992; 89(5): 1517-22.
[33]
Viglietto G, Chiappetta G, Martinez-Tello FJ, et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 1995; 11(6): 1207-10.
[34]
Zou M, Shi Y, Farid NR, et al. Low rate of ret proto-oncogene activation (PTC/retTPC) in papillary thyroid carcinomas from Saudi Arabia. Cancer 1994; 73: 176-1780.
[35]
Tallini G, Santoro M, Helie M, et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 1998; 4(2): 287-94.
[36]
Niccoli-Sire P, Murat A, Rohmer V, et al. Familial medullary thyroid carcinoma with noncysteine RET mutations: phenotype-genotype relationship in a large series of patients. J Clin Endocrinol Metab 2001; 86(8): 3746-53.
[38]
Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007; 28(7): 742-62.
[39]
Tezelman S, Clark OH. Current management of thyroid cancer. Adv Surg 1995; 28: 191-221.
[40]
Cooper DS, Doherty GM, Haugen BR, et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2006; 16(2): 109-42.
[41]
Jimenez C, Hu MI, Gagel RF. Management of medullary thyroid carcinoma. Endocrinol Metab Clin North Am 2008; 37: 481-96.
[42]
Yildirim E. A model for predicting outcomes in patients with differentiated thyroid cancer and model performance in comparison with other classification systems. J Am Coll Surg 2005; 200: 378-92.
[43]
Cohen EEW, Needles BM, Cullen KJ, et al. Phase 2 study of sunitinib in refractory thyroid cancer. J Clin Oncol 2008; 26(15): 6025.
[44]
Goulart B, Carr L, Martins R G, et al. Phase II study of sunitinib in iodine refractory, well-differentiated thyroid cancer (WDTC) and metastatic medullary thyroid carcinoma (MTC). J Clin Oncol 2008; 26(15): 6062.
[45]
Carr LL, Mankoff DA, Goulart BH, et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res 2010; 16(21): 5260-8.
[46]
Robbins RJ, Wan Q, Grewal RK, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[ 18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006; 91(2): 498-505.
[47]
Gupta-Abramson V, Troxel AB, Nellore A, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 2008; 26(29): 4714-9.
[48]
Kloos RT, Ringel MD, Knopp MV, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 2009; 27(10): 1675-84.
[49]
Ahmed M, Barbachano Y, Riddell A, et al. Analysis of the efficacy and toxicity of sorafenib in thyroid cancer: a phase II study in a UK based population. Eur J Endocrinol 2011; 165(2): 315-22.
[50]
Lam ET, Ringel MD, Kloos RT, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol 2010; 28(14): 2323-30.
[51]
Cabanillas M E, Kurzrock R, Sherman S I, et al. Phase I trial of combination sorafenib and tipifarnib: the experience in advanced differentiated thyroid cancer (DTC) and medullary thyroid cancer (MTC) J Clin Oncol 2010; 28(15): 5586.
[52]
Wells SA Jr, Gosnell JE, Gagel RF, et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 2010; 28(5): 767-72.
[53]
Robinson BG, Paz-Ares L, Krebs A, Vasselli J, Haddad R. Vandetanib (100 mg) in patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Endocrinol Metab 2010; 95(6): 2664-71.
[54]
Wells SA Jr, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012; 30: 134-41.
[55]
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39(1): 1-10.
[56]
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017; 541(7637): 321-30.
[57]
Cimino-Mathews A, Thompson E, Taube JM, et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 2016; 47(1): 52-63.
[58]
Okubo Y, Yamamoto Y, Sato S, et al. Diagnostic significance of reassessment of prostate biopsy specimens by experienced urological pathologists at a high-volume institution. Virchows Arch 2022; 480(5): 979-87.
[59]
Rudolph N, Dominguez C, Beaulieu A, et al. The morbidity of reoperative surgery for recurrent benign nodular goitre: impact of previous unilateral thyroid lobectomy versus subtotal thyroidectomy. J Thyroid Res 2014; 2014: 231857.
[60]
Leiker AJ, Yen TW, Cheung K, et al. Cost analysis of thyroid lobectomy and intraoperative frozen section versus total thyroidectomy in patients with a cytologic diagnosis of “suspicious for papillary thyroid cancer.”. Surgery 2013; 154: 1307-13.
[61]
Khavanin N, Mlodinow A, Kim JYS, et al. Predictors of 30-day readmission after outpatient thyroidectomy: an analysis of the 2011 NSQIP data set. Am J Otolaryngol 2014; 35: 332-9.
[62]
Terris DJ, Snyder S, Carneiro-Pla D, et al. American Thyroid Association statement on outpatient thyroidectomy. Thyroid 2013; 23: 1193-202.
[63]
Christou N, Mathonnet M. Complications after total thyroidectomy. J Visc Surg 2013; 150: 249-56.
[64]
Schlumberger MJ, Elisei R, Bastholt L, et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol 2009; 27(23): 3794-801.
[65]
Santarpia L, Ye L, Gagel RF. Beyond RET: potential therapeutic approaches for advanced and metastatic medullary thyroid carcinoma. J Intern Med 2009; 266(1): 99-113.
[66]
Rugo HS, Herbst RS, Liu G, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol 2005; 23(24): 5474-83.
[67]
Cohen EEW, Rosen LS, Vokes EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol 2008; 26(29): 4708-13.
[68]
Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol 2011; 29(19): 2660-6.
[69]
Bible KC, Smallridge RC, Maples WJ, et al. Phase II trial of pazopanib in progressive, metastatic, iodine-insensitive differentiated thyroid cancers Proceedings of the American Society of Clinical Oncology vol. 272009
[70]
Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 2008; 14(17): 5459-65.
[71]
Glen H, Boss D, Evans TR, et al. A phase I dose finding study of E7080 in patients with advanced malignancies J Clin Oncol 2007; 25(18): 14073.
[72]
Wirth LJ, Sherman E, Robinson B, et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N Engl J Med 2020; 383(9): 825-35.