Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

An Evaluation of Carbon Nanotube-based and Activated Carbon-based Nanocomposites for Fluoride and Other Pollutant Removal from Water: A Review

Author(s): Chandra Prakash Bhasin, Amanullakhan Pathan* and Ruchita V. Patel

Volume 9, Issue 1, 2024

Published on: 17 April, 2023

Page: [16 - 40] Pages: 25

DOI: 10.2174/2405461508666230221143138

Price: $65

Abstract

Water is the most critical component of the earth's ecosystem because it is fundamental to the survival of plants and animals. However, our water supply is continuously polluting. Removing contaminants from water is a crucial part of addressing water scarcity and maintaining a healthy ecosystem for all. This review focuses on adsorption and the CNTs/AC family nano adsorbents and their contribution to the removal of fluoride and other contaminants. Many types of wastewater treatment methods have been employed, including precipitation, ion-exchange, adsorption, membrane filtration, etc. A water technology with great efficiency and low cost, without requiring costly infrastructure, is the most preferred option due to adsorption. Recently, the application of carbon family nanomaterials as adsorbents has been prevalent due to their phenomenal surface properties, simple customization, immense specific surface area, numerous variations in structural type, chemical stability, porosity, low density, ease of regeneration, and the ability to be reused. Hazardous contaminants, such as fluoride, generate major public health risks. Water contamination by heavy metals provides a significant health concern, including an increased chance of getting diseases like cancer, anaemia, carcinogenic effects, and acute effects in children. The increased presence of fluoride in water could cause fluorosis, joint pain, severe anaemia, and other problems. The following review focuses on current findings regarding the utilisation of CNTs and AC nanoparticles in the elimination of harmful contaminants and fluoride.

Graphical Abstract

[1]
Sushma D, Richa S. Use of nanoparticles in water treatment: a review. Int Res J Environ Sci 2015; 4(10): 103-6.
[2]
Ahmad I, Siddiqui WA, Qadir S, Ahmad T. Synthesis and characterization of molecular imprinted nanomaterials for the removal of heavy metals from water. J Mater Res Technol 2018; 7(3): 270-82.
[http://dx.doi.org/10.1016/j.jmrt.2017.04.010]
[3]
Prathna TC, Sharma SK, Kennedy M. Nanoparticles in household level water treatment: an overview. Separ Purif Tech 2018; 199: 260-70.
[http://dx.doi.org/10.1016/j.seppur.2018.01.061]
[4]
Kaur P, Thakur R, Malwal H, Manuja A, Chaudhury A. Biosynthesis of biocompatible and recyclable silver/iron and gold/iron core-shell nanoparticles for water purification technology. Biocatal Agric Biotechnol 2018; 14: 189-97.
[http://dx.doi.org/10.1016/j.bcab.2018.03.002]
[5]
Simonovic SP, Fahmy H. A new modeling approach for water resources policy analysis. Water Resour Res 1999; 35(1): 295-304.
[http://dx.doi.org/10.1029/1998WR900023]
[6]
Montgomery MA, Elimelech M. Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 2007; 41(1): 17-24.
[http://dx.doi.org/10.1021/es072435t] [PMID: 17265923]
[7]
Zimmerman JB, Mihelcic JR, Smith AJ. Global stressors on water quality and quantity 2008.
[http://dx.doi.org/10.1021/es0871457]
[8]
Gautam PK, Singh A, Misra K, Sahoo AK, Samanta SK. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. J Environ Manage 2019; 231: 734-48.
[http://dx.doi.org/10.1016/j.jenvman.2018.10.104] [PMID: 30408767]
[9]
Bora T, Dutta J. Applications of nanotechnology in wastewater treatment--a review. J Nanosci Nanotechnol 2014; 14(1): 613-26.
[http://dx.doi.org/10.1166/jnn.2014.8898] [PMID: 24730286]
[10]
Harrison PTC. Fluoride in water: A UK perspective. J Fluor Chem 2005; 126(11-12): 1448-56.
[http://dx.doi.org/10.1016/j.jfluchem.2005.09.009]
[11]
Liu A, Ming J, Ankumah RO. Nitrate contamination in private wells in rural Alabama, United States. Sci Total Environ 2005; 346(1-3): 112-20.
[http://dx.doi.org/10.1016/j.scitotenv.2004.11.019] [PMID: 15993687]
[12]
Hojjat Ansari M, Basiri Parsa J, Merati Z. Removal of fluoride from water by nanocomposites of POPOA/Fe3O4, POPOA/TiO2, PO-POT/Fe3O4 and POPOT/TiO2: Modelling and optimization via RSM. Chem Eng Res Des 2017; 126: 1-18.
[http://dx.doi.org/10.1016/j.cherd.2017.08.008]
[13]
Fan Y, Fu D, Zhou S, et al. Facile synthesis of goethite anchored regenerated graphene oxide nanocomposite and its application in the removal of fluoride from drinking water. Desalination Water Treat 2016; 57(58): 28393-404.
[http://dx.doi.org/10.1080/19443994.2016.1179222]
[14]
Chen Y, Zhang Q, Chen L, Bai H, Li L. Basic aluminum sulfate@graphene hydrogel composites: preparation and application for removal of fluoride. J Mater Chem A Mater Energy Sustain 2013; 1(42): 13101-10.
[http://dx.doi.org/10.1039/c3ta13285d]
[15]
Chen P, Wang T, Xiao Y, et al. Efficient fluoride removal from aqueous solution by synthetic Fe Mg La tri-metal nanocomposite and the analysis of its adsorption mechanism. J Alloys Compd 2018; 738: 118-29.
[http://dx.doi.org/10.1016/j.jallcom.2017.12.142]
[16]
Singh SK, Lawrance S, Bajpai J, Bajpai AK. Batch studies of alginate nanoparticles for efficient removal of fluoride ions from drinking water. Int J Eng Res Technol (Ahmedabad) 2013; 2: 1-11.
[17]
Ranganathan AG, Chandrasekaran S. Stable and microcrystalline Ce-Fe Bi-metal oxide nano particles: Synthesis, characterization and fluoride adsorption performance in drinking water. Indian J Chem Technol 2019; 26(2): 122-30.
[18]
Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A. Role of nanomaterials in water treatment applications: A review. Chem Eng J 2016; 306: 1116-37.
[http://dx.doi.org/10.1016/j.cej.2016.08.053]
[19]
Kumar R, Chawla J. Carbon-based materials for de-fluoridation of water: current status and challenges.In:Carbon-based material for environmental protection and remediation. IntechOpen 2020.
[20]
Suhag Roopal. “Overview of ground water in India.” PRS On Standing Committee On Water Resources, Legislative Research (February),12p (2016):
[21]
Samal AK, Mishra PK, Biswas A. Assessment of origin and distribution of fluoride contamination in groundwater using an isotopic sig-nature from a part of the Indo-Gangetic Plain (IGP), India. HydroResearch 2020; 3: 75-84.
[http://dx.doi.org/10.1016/j.hydres.2020.05.001]
[22]
Adimalla N, Vasa SK, Li P. Evaluation of groundwater quality, peddavagu in central telangana (PCT), South India: An insight of control-ling factors of fluoride enrichment. Model Earth Syst Environ 2018; 4(2): 841-52.
[http://dx.doi.org/10.1007/s40808-018-0443-z]
[23]
Ayoob S, Gupta AK. Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 2006; 36(6): 433-87.
[http://dx.doi.org/10.1080/10643380600678112]
[24]
Adimalla N, Li P, Qian H. Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: a special emphasis on human health risk assessment (HHRA). Hum Ecol Risk Assess 2018.
[http://dx.doi.org/10.1080/10807039.2018.1460579]
[25]
Narsimha A, Sudarshan V. Assessment of fluoride contamination in groundwater from Basara, Adilabad district, Telangana state, India. Appl Water Sci 2017; 7(6): 2717-25.
[http://dx.doi.org/10.1007/s13201-016-0489-x]
[26]
Adimalla N, Venkatayogi S. Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India. Environ Earth Sci 2017; 76(1): 45.
[http://dx.doi.org/10.1007/s12665-016-6362-2]
[27]
Adimalla N, Li P, Venkatayogi S. Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environ Process 2018; 5(2): 363-83.
[http://dx.doi.org/10.1007/s40710-018-0297-4]
[28]
Subba Rao N, Vidyasagar G, Surya Rao P, Bhanumurthy P. Assessment of hydrogeochemical processes in a coastal region: Application of multivariate statistical model. J Geol Soc India 2014; 84(4): 494-500.
[http://dx.doi.org/10.1007/s12594-014-0155-6]
[29]
Adimalla N, Venkatayogi S, Das SVG. Assessment of fluoride contamination and distribution: a case study from a rural part of Andhra Pradesh, India. Appl Water Sci 2019; 9(4): 94.
[http://dx.doi.org/10.1007/s13201-019-0968-y]
[30]
Yadav KK, Kumar S, Pham QB, et al. Fluoride contamination, health problems and remediation methods in Asian groundwater: A com-prehensive review. Ecotoxicol Environ Saf 2019; 182: 109362.
[http://dx.doi.org/10.1016/j.ecoenv.2019.06.045] [PMID: 31254856]
[31]
Ali S, Fakhri Y, Golbini M, et al. Concentration of fluoride in groundwater of India: A systematic review, meta-analysis and risk as-sessment. Groundw Sustain Dev 2019; 9: 100224.
[http://dx.doi.org/10.1016/j.gsd.2019.100224]
[32]
Revelo-Mejía IA, Hardisson A, Rubio C, Gutiérrez ÁJ, Paz S. Dental fluorosis: the risk of misdiagnosis—a Review. Biol Trace Elem Res 2021; 199(5): 1762-70.
[http://dx.doi.org/10.1007/s12011-020-02296-4] [PMID: 32705431]
[33]
Mallishery Shivani, Kashmira Sawant, and Mokshi Jain. "Fluoride toxicity: A review on dental fluorosis and its prevalence in India." Journal of Dental and Medical Sciences 19, no. 1 (2020): 48- 53.
[34]
Srivastava S, Flora SJS. Fluoride in drinking water and skeletal fluorosis: a review of the global impact. Curr Environ Health Rep 2020; 7(2): 140-6.
[http://dx.doi.org/10.1007/s40572-020-00270-9] [PMID: 32207100]
[35]
Dhillon A, Prasad S, Kumar D. Recent advances and spectroscopic perspectives in fluoride removal. Appl Spectrosc Rev 2017; 52(3): 175-230.
[http://dx.doi.org/10.1080/05704928.2016.1213737]
[36]
Meenakshi, Maheshwari RC. Fluoride in drinking water and its removal. J Hazard Mater 2006; 137(1): 456-63.
[http://dx.doi.org/10.1016/j.jhazmat.2006.02.024] [PMID: 16600479]
[37]
Waghmare SS, Arfin T. Fluoride removal from water by various techniques. Int J Innov Sci Eng Technol 2015; 2(3): 560-71.
[38]
Premathilaka RW, Liyanagedera ND. Fluoride in drinking water and nanotechnological approaches for eliminating excess fluoride. J Nanotechnol 2019; 2019: 1-15.
[http://dx.doi.org/10.1155/2019/2192383]
[39]
Anadão P. Nanocomposite filtration membranes for drinking water purification Water purification. Academic Press 2017; pp. 517-49.
[http://dx.doi.org/10.1016/B978-0-12-804300-4.00015-0]
[40]
Kumari P, Alam M, Siddiqi WA. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustain Mater Technol 2019; 22: e00128.
[http://dx.doi.org/10.1016/j.susmat.2019.e00128]
[41]
Gusain R, Kumar N, Ray SS. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 2020; 405: 213111.
[http://dx.doi.org/10.1016/j.ccr.2019.213111]
[42]
Liu M, Zang Z, Zhang S, Ouyang G, Han R. Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated mag-netic chitosan graphene oxide. Int J Biol Macromol 2021; 182: 1759-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.116] [PMID: 34048839]
[43]
Rafique A, Awan MA, Wasti A, Qazi IA, Arshad M. Removal of fluoride from drinking water using modified immobilized activated alumina. J Chem 2013; 2013: 1-7.
[http://dx.doi.org/10.1155/2013/386476]
[44]
Sivasankar V, Ramachandramoorthy T, Darchen A. Manganese dioxide improves the efficiency of earthenware in fluoride removal from drinking water. Desalination 2011; 272(1-3): 179-86.
[http://dx.doi.org/10.1016/j.desal.2011.01.021]
[45]
García-Sánchez JJ, Solache-Ríos M, Martínez-Miranda V, Solís Morelos C. Removal of fluoride ions from drinking water and fluoride solutions by aluminum modified iron oxides in a column system. J Colloid Interface Sci 2013; 407: 410-5.
[http://dx.doi.org/10.1016/j.jcis.2013.06.031] [PMID: 23859818]
[46]
Mohapatra M, Hariprasad D, Mohapatra L, Anand S, Mishra BK. Mg-doped nano ferrihydrite—A new adsorbent for fluoride removal from aqueous solutions. Appl Surf Sci 2012; 258(10): 4228-36.
[http://dx.doi.org/10.1016/j.apsusc.2011.12.047]
[47]
Reyes Bahena JL, Robledo Cabrera A, López Valdivieso A, Herrera Urbina R. Fluoride adsorption onto α-Al2O3 and its effect on the zeta potential at the alumina–aqueous electrolyte interface. Sep Sci Technol 2002; 37(8): 1973-87.
[http://dx.doi.org/10.1081/SS-120003055]
[48]
Maliyekkal SM, Sharma AK, Philip L. Manganese-oxide-coated alumina: A promising sorbent for defluoridation of water. Water Res 2006; 40(19): 3497-506.
[http://dx.doi.org/10.1016/j.watres.2006.08.007] [PMID: 17011020]
[49]
Chai L, Wang Y, Zhao N, Yang W, You X. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res 2013; 47(12): 4040-9.
[http://dx.doi.org/10.1016/j.watres.2013.02.057] [PMID: 23602616]
[50]
Viswanathan N, Meenakshi S. Enriched fluoride sorption using alumina/chitosan composite. J Hazard Mater 2010; 178(1-3): 226-32.
[http://dx.doi.org/10.1016/j.jhazmat.2010.01.067] [PMID: 20144851]
[51]
Naghizadeh A, Gholami K. Bentonite and montmorillonite nanoparticles effectiveness in removal of fluoride from water solutions. J Water Health 2017; 15(4): 555-65.
[http://dx.doi.org/10.2166/wh.2017.052] [PMID: 28771153]
[52]
Kong L, Tian Y, Pang Z, et al. Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites. Chem Eng J 2019; 371: 893-902.
[http://dx.doi.org/10.1016/j.cej.2019.04.116]
[53]
Liu L, Cui Z, Ma Q, Cui W, Zhang X. One-step synthesis of magnetic iron–aluminum oxide/graphene oxide nanoparticles as a selective adsorbent for fluoride removal from aqueous solution. RSC Advances 2016; 6(13): 10783-91.
[http://dx.doi.org/10.1039/C5RA23676B]
[54]
Wu X, Zhang Y, Dou X, Yang M. Fluoride removal performance of a novel Fe–Al–Ce trimetal oxide adsorbent. Chemosphere 2007; 69(11): 1758-64.
[http://dx.doi.org/10.1016/j.chemosphere.2007.05.075] [PMID: 17624402]
[55]
Ruan Z, Tian Y, Ruan J, et al. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solu-tion. Appl Surf Sci 2017; 412: 578-90.
[http://dx.doi.org/10.1016/j.apsusc.2017.03.215]
[56]
Xu C, Li J, He F, et al. Al 2 O 3 –Fe 3 O 4 –expanded graphite nano-sandwich structure for fluoride removal from aqueous solution. RSC Advances 2016; 6(99): 97376-84.
[http://dx.doi.org/10.1039/C6RA19390K]
[57]
Zhang Y, Wu B, Xu H, et al. Nanomaterials-enabled water and wastewater treatment. NanoImpact 2016; 3-4: 22-39.
[http://dx.doi.org/10.1016/j.impact.2016.09.004]
[58]
Wang X, Lu J, Xing B. Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environ Sci Technol 2008; 42(9): 3207-12.
[http://dx.doi.org/10.1021/es702971g] [PMID: 18522095]
[59]
Stafiej A, Pyrzynska K. Solid phase extraction of metal ions using carbon nanotubes. Microchem J 2008; 89(1): 29-33.
[http://dx.doi.org/10.1016/j.microc.2007.11.001]
[60]
Baruah A, Chaudhary V, Malik R, Tomer VK. Nanotechnology based solutions for wastewater treatmentNanotechnology in Water and wastewater treatment. Elsevier 2019; pp. 337-68.
[http://dx.doi.org/10.1016/B978-0-12-813902-8.00017-4]
[61]
Ansari M, Kazemipour M, Dehghani M, Kazemipour M. The defluoridation of drinking water using multi-walled carbon nanotubes. J Fluor Chem 2011; 132(8): 516-20.
[http://dx.doi.org/10.1016/j.jfluchem.2011.05.008]
[62]
Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A. Carbon nanotubes, science and technology part (I) structure, synthesis and char-acterisation. Arab J Chem 2012; 5(1): 1-23.
[http://dx.doi.org/10.1016/j.arabjc.2010.08.022]
[63]
Yin Z, Cui C, Chen H, Duoni YuX, Qian W. The application of carbon nanotube/graphene‐based nanomaterials in wastewater treat-ment. Small 2020; 16(15): 1902301.
[http://dx.doi.org/10.1002/smll.201902301] [PMID: 31788946]
[64]
Baby R, Saifullah B, Hussein MZ. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remedi-ation. Nanoscale Res Lett 2019; 14(1): 341.
[http://dx.doi.org/10.1186/s11671-019-3167-8] [PMID: 31712991]
[65]
Hashemi B, Rezania S. Carbon-based sorbents and their nanocomposites for the enrichment of heavy metal ions: a review. Mikrochim Acta 2019; 186(8): 578.
[http://dx.doi.org/10.1007/s00604-019-3668-2] [PMID: 31350596]
[66]
Dehghani MH, Haghighat GA, Yetilmezsoy K, et al. Adsorptive removal of fluoride from aqueous solution using single- and multi-walled carbon nanotubes. J Mol Liq 2016; 216: 401-10.
[http://dx.doi.org/10.1016/j.molliq.2016.01.057]
[67]
Affonso LN, Marques JL Jr, Lima VVC, et al. Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. J Hazard Mater 2020; 388: 122042.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122042] [PMID: 31954304]
[68]
Araga R, Kali S, Sharma CS. Coconut‐shell‐derived carbon/carbon nanotube composite for fluoride adsorption from aqueous solution. Clean 2019; 47(5): 1800286.
[http://dx.doi.org/10.1002/clen.201800286]
[69]
Faghihian H, Atarodi H, Kooravand M. Synthesis, treatment, and application of a novel carbon nanostructure for removal of fluoride from aqueous solution. Desalination Water Treat 2015; 54(9): 2432-40.
[http://dx.doi.org/10.1080/19443994.2014.899519]
[70]
Balarak D, Mahdavi Y, Bazrafshan E, Mahvi AH, Esfandyari Y. Adsorption of fluoride from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetic, and thermodynamic parameters. Fluoride 2016; 49(1): 71.
[71]
Ramamurthy SS, Chen Y, Kalyan MK, Rao GN, Chelli J, Mitra S. Carbon nanotube-zirconium dioxide hybrid for defluoridation of water. J Nanosci Nanotechnol 2011; 11(4): 3552-9.
[http://dx.doi.org/10.1166/jnn.2011.3806] [PMID: 21776736]
[72]
Haghighat GA, Dehghani MH, Nasseri S, Mahvi AH, Rastkari N. Comparison of carbon nonotubes and activated alumina efficiencies in fluoride removal from drinking water. Indian J Sci Technol 2012; 5(3): 1-4.
[http://dx.doi.org/10.17485/ijst/2012/v5i3.35]
[73]
Roy S, Das P. Assessment on the defluoridation using novel activated carbon synthesized from tea waste: batch, statistical optimization and mathematical modeling. Journal of Industrial Pollution Control 2016; 32(2)
[74]
Tefera N, Mulualem Y, Fito J. Adsorption of fluoride from aqueous solution and groundwater onto activated carbon of avocado seeds. Water Conservation Science and Engineering 2020; 5(3-4): 187-97.
[http://dx.doi.org/10.1007/s41101-020-00093-7]
[75]
Kumar GK, Kamath MS, Mallapur PS. Defluoridation of water by using low cost activated carbon prepared from lemon peels. J Basic Appl Eng Res 2016; 3: 658-60.
[76]
Sharma A, Purohit H, Hussain MS, Suthar AK, Sharma S. Defluoridation of ground water using activated carbon of Ber (In- dian Jujube) leaves. International Journal of Engineering and Ap- plied. Sciences 2017; 4(5): 257469.
[77]
Daifullah A, Yakout S, Elreefy S. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J Hazard Mater 2007; 147(1-2): 633-43.
[http://dx.doi.org/10.1016/j.jhazmat.2007.01.062] [PMID: 17314006]
[78]
Dehghani MH, Farhang M, Alimohammadi M, Afsharnia M, Mckay G. Adsorptive removal of fluoride from water by activated carbon derived from CaCl2 -modified Crocus sativus leaves: Equilibrium adsorption isotherms, optimization, and influence of anions. Chem Eng Commun 2018; 205(7): 955-65.
[http://dx.doi.org/10.1080/00986445.2018.1423969]
[79]
Getachew T, Hussen A, Rao VM. Defluoridation of water by activated carbon prepared from banana (Musa paradisiaca) peel and coffee (Coffea arabica) husk. Int J Environ Sci Technol 2015; 12(6): 1857-66.
[http://dx.doi.org/10.1007/s13762-014-0545-8]
[80]
Halder G, Sinha K, Dhawane S. Defluoridation of wastewater using powdered activated carbon developed from Eichhornia crassipes stem: optimization by response surface methodology. Desalination Water Treat 2015; 56(4): 953-66.
[http://dx.doi.org/10.1080/19443994.2014.942375]
[81]
He L, Wang G, Zhang X, Zhang Y, Chen Y. Lanthanum-doped activated carbon derived from municipal sludge for enhanced defluorida-tion: characteristics and mechanism. Water Sci Technol 2020; 82(8): 1643-52.
[http://dx.doi.org/10.2166/wst.2020.435] [PMID: 33107858]
[82]
Kim M, Choong CE, Hyun S, Park CM, Lee G. Mechanism of simultaneous removal of aluminum and fluoride from aqueous solution by La/Mg/Si-activated carbon. Chemosphere 2020; 253: 126580.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126580] [PMID: 32464758]
[83]
Ma Y, Wang SG, Fan M, Gong WX, Gao BY. Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides. J Hazard Mater 2009; 168(2-3): 1140-6.
[http://dx.doi.org/10.1016/j.jhazmat.2009.02.145] [PMID: 19345485]
[84]
Palodkar AV, Anupam K, Banerjee S, Halder G. Insight into preparation of activated carbon towards defluoridation of waste water: Op-timization, kinetics, equilibrium, and cost estimation. Environ Prog Sustain Energy 2017; 36(6): 1597-611.
[http://dx.doi.org/10.1002/ep.12613]
[85]
Pang T, Aye Chan TS, Jande YAC, Shen J. Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method. Chemosphere 2020; 255: 126950.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126950] [PMID: 32380266]
[86]
Rashid US, Bezbaruah AN. Citric acid modified granular activated carbon for enhanced defluoridation. Chemosphere 2020; 252: 126639.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126639] [PMID: 32443281]
[87]
Said M, Machunda RL. Defluoridation of water supplies using coconut shells activated carbon: batch studies. Int J Sci Res 2014; 3(7): 2327-31.
[88]
Sathish RS, Sairam S, Raja VG, Rao GN, Janardhana C. Defluoridation of water using zirconium impregnated coconut fiber carbon. Sep Sci Technol 2008; 43(14): 3676-94.
[http://dx.doi.org/10.1080/01496390802222541]
[89]
Suneetha M, Sundar BS, Ravindhranath K. Defluoridation of waters using low-cost HNO<SUB align=“right”>3 activated carbon derived from stems of Senna Occidentalis plant. Int J Environ Technol Manag 2015; 18(5/6): 420-47.
[http://dx.doi.org/10.1504/IJETM.2015.073079]
[90]
Talat M, Mohan S, Dixit V, Singh DK, Hasan SH, Srivastava ON. Effective removal of fluoride from water by coconut husk activated carbon in fixed bed column: Experimental and breakthrough curves analysis. Groundw Sustain Dev 2018; 7: 48-55.
[http://dx.doi.org/10.1016/j.gsd.2018.03.001]
[91]
Brunson LR, Sabatini DA. Methods for optimizing activated materials for removing fluoride from drinking water sources. J Environ Eng 2016; 142(2): 04015078.
[http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0001044]
[92]
Mullick A, Neogi S. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption. Ultrason Sonochem 2018; 45: 65-77.
[http://dx.doi.org/10.1016/j.ultsonch.2018.03.002] [PMID: 29705326]
[93]
Sathish RS, Raju NSR, Raju GS, Nageswara Rao G, Kumar KA, Janardhana C. Equilibrium and kinetic studies for fluoride adsorption from water on zirconium impregnated coconut shell carbon. Sep Sci Technol 2007; 42(4): 769-88.
[http://dx.doi.org/10.1080/01496390601070067]
[94]
Yadav AK, Abbassi R, Gupta A, Dadashzadeh M. Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecol Eng 2013; 52: 211-8.
[http://dx.doi.org/10.1016/j.ecoleng.2012.12.069]
[95]
Silveira C, Shimabuku QL, Fernandes Silva M, Bergamasco R. Iron-oxide nanoparticles by the green synthesis method using Moringa oleifera leaf extract for fluoride removal. Environ Technol 2018; 39(22): 2926-36.
[http://dx.doi.org/10.1080/09593330.2017.1369582] [PMID: 28823221]
[96]
Siddique A, Nayak AK, Singh J. Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: An eco-friendly approach for the treatment of groundwater and bio-waste collectively. Groundw Sustain Dev 2020; 10: 100339.
[http://dx.doi.org/10.1016/j.gsd.2020.100339]
[97]
Mullick A, Neogi S. Ultrasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water. Ultrason Sonochem 2019; 50: 126-37.
[http://dx.doi.org/10.1016/j.ultsonch.2018.09.010] [PMID: 30245202]
[98]
Mahvi AH, Mostafapour FK, Balarak D. Adsorption of fluoride from aqueous solution by eucalyptus bark activated carbon: Thermody-namic analysis. Fluoride 2019; 52(4): 562-8.
[99]
Chen CL, Park SW, Su JF, et al. The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary am-monium salts (Quats). Sci Total Environ 2019; 693: 133605.
[http://dx.doi.org/10.1016/j.scitotenv.2019.133605] [PMID: 31634998]
[100]
Mariappan R, Vairamuthu R, Ganapathy A. Use of chemically activated cotton nut shell carbon for the removal of fluoride contaminated drinking water: Kinetics evaluation. Chin J Chem Eng 2015; 23(4): 710-21.
[http://dx.doi.org/10.1016/j.cjche.2014.05.019]
[101]
Mei L, Qiao H, Ke F, et al. One-step synthesis of zirconium dioxide-biochar derived from Camellia oleifera seed shell with enhanced removal capacity for fluoride from water. Appl Surf Sci 2020; 509: 144685.
[http://dx.doi.org/10.1016/j.apsusc.2019.144685]
[102]
Saini A, Maheshwari PH, Tripathy SS, Waseem S, Dhakate SR. Processing of rice straw to derive carbon with efficient de-fluoridation properties for drinking water treatment. J Water Process Eng 2020; 34: 101136.
[http://dx.doi.org/10.1016/j.jwpe.2020.101136]
[103]
Takmil F, Esmaeili H, Mousavi SM, Hashemi SA. Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Adv Powder Technol 2020; 31(8): 3236-45.
[http://dx.doi.org/10.1016/j.apt.2020.06.015]
[104]
Li YH, Wang S, Zhang X, et al. Adsorption of fluoride from water by aligned carbon nanotubes. Mater Res Bull 2003; 38(3): 469-76.
[http://dx.doi.org/10.1016/S0025-5408(02)01063-2]
[105]
Tang Q, Duan T, Li P, Zhang P, Wu D. Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube. Front Chem 2018; 6: 104.
[http://dx.doi.org/10.3389/fchem.2018.00104] [PMID: 29696138]
[106]
Yang Y, Du X, Abudula A, et al. Highly efficient defluoridation using a porous MWCNT@NiMn-LDH composites based on ion transport of EDL coupled with ligand exchange mechanism. Separ Purif Tech 2019; 223: 154-61.
[http://dx.doi.org/10.1016/j.seppur.2019.04.052]
[107]
Li YH, Wang S, Cao A, et al. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem Phys Lett 2001; 350(5-6): 412-6.
[http://dx.doi.org/10.1016/S0009-2614(01)01351-3]
[108]
Leyva Ramos R, Ovalle-Turrubiartes J, Sanchez-Castillo MA. Adsorption of fluoride from aqueous solution on aluminum-impregnated carbon. Carbon 1999; 37(4): 609-17.
[http://dx.doi.org/10.1016/S0008-6223(98)00231-0]
[109]
Veeraputhiran V, Alagumuthu G. Sorption equilibrium of fluoride onto Phyllanthus emblica activated carbon. Int J Res Chem Environ 2011; 1: 42-7.
[110]
Choong CE, Kim M, Yoon S, Lee G, Park CM. Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water. J Taiwan Inst Chem Eng 2018; 93: 306-14.
[http://dx.doi.org/10.1016/j.jtice.2018.07.035]
[111]
Singh K, Lataye DH, Wasewar KL. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study. J Fluor Chem 2017; 194: 23-32.
[http://dx.doi.org/10.1016/j.jfluchem.2016.12.009]
[112]
Kumar D, Tomar V, Mishra AK. Removal of fluoride from potable water using smart nanomaterial as adsorbent. Hoboken, NJ: John Wiley & Sons 2014; pp. 285-308.
[http://dx.doi.org/10.1002/9781118939314.ch11]
[113]
Tlili I, Alkanhal TA. Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin 2019; 9(3): 232-48.
[http://dx.doi.org/10.2166/wrd.2019.057]
[114]
Adak MK, Sen A, Mukherjee A, Sen S, Dhak D. Removal of fluoride from drinking water using highly efficient nanoadsorbent, Al(III)-Fe(III)-La(III) trimetallic oxide prepared by chemical route. J Alloys Compd 2017; 719: 460-9.
[http://dx.doi.org/10.1016/j.jallcom.2017.05.149]
[115]
Pekakis PA, Xekoukoulotakis NP, Mantzavinos D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res 2006; 40(6): 1276-86.
[http://dx.doi.org/10.1016/j.watres.2006.01.019] [PMID: 16510167]
[116]
Saha P, Chowdhury S, Gupta S, Kumar I. Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem Eng J 2010; 165(3): 874-82.
[http://dx.doi.org/10.1016/j.cej.2010.10.048]
[117]
Husain M, Husain Q. Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review. Crit Rev Environ Sci Technol 2007; 38(1): 1-42.
[http://dx.doi.org/10.1080/10643380701501213]
[118]
Michael I, Rizzo L, McArdell CS, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res 2013; 47(3): 957-95.
[http://dx.doi.org/10.1016/j.watres.2012.11.027] [PMID: 23266388]
[119]
Chowdhury S, Balasubramanian R. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 2014; 204: 35-56.
[http://dx.doi.org/10.1016/j.cis.2013.12.005] [PMID: 24412086]
[120]
Sweetman MJ, May S, Mebberson N, et al. Activated carbon,carbon nanotubes and graphene: materials and composites for advanced water purification. C 2017; 3(2): 18.
[http://dx.doi.org/10.3390/c3020018]
[121]
Velma V, Vutukuru SS, Tchounwou PB. Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev Environ Health 2009; 24(2): 129-45.
[http://dx.doi.org/10.1515/REVEH.2009.24.2.129] [PMID: 19658319]
[122]
Oliveira H. Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2012; 2012: 1-8.
[http://dx.doi.org/10.1155/2012/375843]
[123]
Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol 2015; 8(2): 55-64.
[http://dx.doi.org/10.1515/intox-2015-0009] [PMID: 27486361]
[124]
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 2014; 7(2): 60-72.
[http://dx.doi.org/10.2478/intox-2014-0009] [PMID: 26109881]
[125]
Mazumder DG. Health effects chronic arsenic toxicityHandbook of arsenic toxicology. Academic Press 2015; pp. 137-77.
[http://dx.doi.org/10.1016/B978-0-12-418688-0.00006-X]
[126]
Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/460508] [PMID: 22235210]
[127]
Rafati Rahimzadeh M, Rafati Rahimzadeh M, Kazemi S, Moghadamnia AA. Cadmium toxicity and treatment: An update. Caspian J Intern Med 2017; 8(3): 135-45.
[http://dx.doi.org/10.22088%2Fcjim.8.3.135] [PMID: 28932363]
[128]
Fosmire GJ. Zinc toxicity. Am J Clin Nutr 1990; 51(2): 225-7.
[http://dx.doi.org/10.1093/ajcn/51.2.225] [PMID: 2407097]
[129]
Wallig MA, Keenan KP. Nutritional toxicologic pathology Haschek and Rousseaux’s Handbook of Toxicologic Pathology. Academic Press 2013; pp. 1077-121.
[http://dx.doi.org/10.1016/B978-0-12-415759-0.00036-4]
[130]
Taylor AA, Tsuji JS, Garry MR, et al. Critical review of exposure and effects: Implications for setting regulatory health criteria for in-gested copper. Environ Manage 2020; 65(1): 131-59.
[http://dx.doi.org/10.1007/s00267-019-01234-y] [PMID: 31832729]
[131]
Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human health and environmental toxicology. Int J Environ Res Public Health 2020; 17(3): 679.
[http://dx.doi.org/10.3390/ijerph17030679] [PMID: 31973020]
[132]
Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 2016; 4: 148.
[http://dx.doi.org/10.3389/fpubh.2016.00148] [PMID: 27486573]
[133]
Kodavanti PRS, Loganathan BG. Organohalogen pollutants and human health 2017.
[http://dx.doi.org/10.1016/B978-0-12-803678-5.00318-0]
[134]
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation poten-tial of living organisms. Biotechnology Research and Innovation 2019; 3(2): 275-90.
[http://dx.doi.org/10.1016/j.biori.2019.09.001]
[135]
Lu C, Chiu H. Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 2006; 61(4): 1138-45.
[http://dx.doi.org/10.1016/j.ces.2005.08.007]
[136]
Gupta VK, Agarwal S, Saleh TA. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 2011; 45(6): 2207-12.
[http://dx.doi.org/10.1016/j.watres.2011.01.012] [PMID: 21303713]
[137]
Li YH, Wang S, Wei J, et al. Lead adsorption on carbon nanotubes. Chem Phys Lett 2002; 357(3-4): 263-6.
[http://dx.doi.org/10.1016/S0009-2614(02)00502-X]
[138]
Lu C, Liu C. Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 2006; 81(12): 1932-40.
[http://dx.doi.org/10.1002/jctb.1626]
[139]
Li YH, Ding J, Luan Z, et al. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nano-tubes. Carbon 2003; 41(14): 2787-92.
[http://dx.doi.org/10.1016/S0008-6223(03)00392-0]
[140]
Anitha K, Namsani S, Singh JK. Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynam-ics study. J Phys Chem A 2015; 119(30): 8349-58.
[http://dx.doi.org/10.1021/acs.jpca.5b03352] [PMID: 26158866]
[141]
Lu C, Chung YL, Chang KF. Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 2005; 39(6): 1183-9.
[http://dx.doi.org/10.1016/j.watres.2004.12.033] [PMID: 15766973]
[142]
Wu CH. Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. J Hazard Mater 2007; 144(1-2): 93-100.
[http://dx.doi.org/10.1016/j.jhazmat.2006.09.083] [PMID: 17081687]
[143]
Chatterjee S, Lee MW, Woo SH. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 2010; 101(6): 1800-6.
[http://dx.doi.org/10.1016/j.biortech.2009.10.051] [PMID: 19962883]
[144]
Bazrafshan E, Mostafapour FK, Hosseini AR, Raksh Khorshid A, Mahvi AH. Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J Chem 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/938374]
[145]
Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 2006; 40(6): 1855-61.
[http://dx.doi.org/10.1021/es052208w] [PMID: 16570608]
[146]
Wang S, Ng CW, Wang W, Li Q, Li L. A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems. J Chem Eng Data 2012; 57(5): 1563-9.
[http://dx.doi.org/10.1021/je3001552]
[147]
Liao Q, Sun J, Gao L. The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids Surf A Physicochem Eng Asp 2008; 312(2-3): 160-5.
[http://dx.doi.org/10.1016/j.colsurfa.2007.06.045]
[148]
Hyung H, Kim JH. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol 2008; 42(12): 4416-21.
[http://dx.doi.org/10.1021/es702916h] [PMID: 18605564]
[149]
Joseph L, Flora JRV, Park YG, Badawy M, Saleh H, Yoon Y. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Separ Purif Tech 2012; 95: 64-72.
[http://dx.doi.org/10.1016/j.seppur.2012.04.033]
[150]
Ma J, Yu F, Zhou L, et al. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces 2012; 4(11): 5749-60.
[http://dx.doi.org/10.1021/am301053m] [PMID: 23062571]
[151]
Moradi O. Adsorption behavior of basic red 46 by single-walled carbon nanotubes surfaces. Fuller Nanotub Carbon Nanostruct 2013; 21(4): 286-301.
[http://dx.doi.org/10.1080/1536383X.2011.572317]
[152]
Zhang L, Song X, Liu X, Yang L, Pan F, Lv J. Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem Eng J 2011; 178: 26-33.
[http://dx.doi.org/10.1016/j.cej.2011.09.127]
[153]
Zhang L, Xu T, Liu X, Zhang Y, Jin H. Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions. J Hazard Mater 2011; 197: 389-96.
[http://dx.doi.org/10.1016/j.jhazmat.2011.09.100] [PMID: 22018864]
[154]
Mehrizad A, Aghaie M, Gharbani P, Dastmalchi S, Monajjemi M, Zare K. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes. Iranian J Environ Health Sci Engin 2012; 9(1): 1-6.
[http://dx.doi.org/10.1186/1735-2746-9-5]
[155]
Lou JC, Jung MJ, Yang HW, Han JY, Huang WH. Removal of dissolved organic matter (DOM) from raw water by single-walled carbon nanotubes (SWCNTs). J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2011; 46(12): 1357-65.
[http://dx.doi.org/10.1080/10934529.2011.606688] [PMID: 21942388]
[156]
Yu F, Wu Y, Li X, Ma J. Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. J Agric Food Chem 2012; 60(50): 12245-53.
[http://dx.doi.org/10.1021/jf304104z] [PMID: 23185965]
[157]
Zhu HY, Jiang R, Xiao L, Zeng GM. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour Technol 2010; 101(14): 5063-9.
[http://dx.doi.org/10.1016/j.biortech.2010.01.107] [PMID: 20219366]
[158]
Álvarez-Torrellas S, Rodríguez A, Ovejero G, García J. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem Eng J 2016; 283: 936-47.
[http://dx.doi.org/10.1016/j.cej.2015.08.023]
[159]
Ma J, Zhuang Y, Yu F. Facile method for the synthesis of a magnetic CNTs–C@Fe–chitosan composite and its application in tetracycline removal from aqueous solutions. Phys Chem Chem Phys 2015; 17(24): 15936-44.
[http://dx.doi.org/10.1039/C5CP02542G] [PMID: 26023730]
[160]
Ncibi MC, Sillanpää M. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J Hazard Mater 2015; 298: 102-10.
[http://dx.doi.org/10.1016/j.jhazmat.2015.05.025] [PMID: 26024613]
[161]
Wang F, Sun W, Pan W, Xu N. Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites. Chem Eng J 2015; 274: 17-29.
[http://dx.doi.org/10.1016/j.cej.2015.03.113]
[162]
Yang Q, Chen G, Zhang J, Li H. Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry. RSC Advances 2015; 5(32): 25541-9.
[http://dx.doi.org/10.1039/C4RA15056B]
[163]
Yang W, Lu Y, Zheng F, Xue X, Li N, Liu D. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nano-tube. Chem Eng J 2012; 179: 112-8.
[http://dx.doi.org/10.1016/j.cej.2011.10.068]
[164]
Hsieh SH, Horng JJ. Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles. J Univ Sci Technol Beijing 2007; 14(1): 77-84.
[http://dx.doi.org/10.1016/S1005-8850(07)60016-4]
[165]
Karnib M, Kabbani A, Holail H, Olama Z. Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia 2014; 50: 113-20.
[http://dx.doi.org/10.1016/j.egypro.2014.06.014]
[166]
Luo X, Lei X, Cai N, Xie X, Xue Y, Yu F. Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustain Chem& Eng 2016; 4(7): 3960-9.
[http://dx.doi.org/10.1021/acssuschemeng.6b00790]
[167]
Rahmani-Sani A, Singh P, Raizada P, et al. Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions. Bioresour Technol 2020; 297: 122452.
[http://dx.doi.org/10.1016/j.biortech.2019.122452] [PMID: 31787507]
[168]
Nejadshafiee V, Islami MR. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bioadsorbent. Mater Sci Eng C 2019; 101: 42-52.
[http://dx.doi.org/10.1016/j.msec.2019.03.081] [PMID: 31029336]
[169]
Yegane Badi M, Azari A, Pasalari H, Esrafili A, Farzadkia M. Modification of activated carbon with magnetic Fe 3 O 4 nanoparticle com-posite for removal of ceftriaxone from aquatic solutions. J Mol Liq 2018; 261: 146-54.
[http://dx.doi.org/10.1016/j.molliq.2018.04.019]
[170]
Fu R, Liu Y, Lou Z, Wang Z, Baig SA, Xu X. Adsorptive removal of Pb(II) by magnetic activated carbon incorporated with amino groups from aqueous solutions. J Taiwan Inst Chem Eng 2016; 62: 247-58.
[http://dx.doi.org/10.1016/j.jtice.2016.02.012]
[171]
Kharrazi SM, Mirghaffari N, Dastgerdi MM, Soleimani M. A novel postmodification of powdered activated carbon prepared from ligno-cellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption. Powder Technol 2020; 366: 358-68.
[http://dx.doi.org/10.1016/j.powtec.2020.01.065]
[172]
Sharma M, Joshi M, Nigam S, et al. ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamina-tion of hexavalent chromium from aqueous solution. Chem Eng J 2019; 358: 540-51.
[http://dx.doi.org/10.1016/j.cej.2018.10.031]
[173]
Sharma G, Naushad M. Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: Isotherm and kinetic modelling. J Mol Liq 2020; 310: 113025.
[http://dx.doi.org/10.1016/j.molliq.2020.113025]
[174]
Li H, Zheng F, Wang J, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption per-formance. Chem Eng J 2020; 390: 124513.
[http://dx.doi.org/10.1016/j.cej.2020.124513]
[175]
Osman AI, Blewitt J, Abu-Dahrieh JK, et al. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ Sci Pollut Res Int 2019; 26(36): 37228-41.
[http://dx.doi.org/10.1007/s11356-019-06594-w] [PMID: 31745803]
[176]
Zhu S, Yang N, Zhang D. Poly(N,N-dimethylaminoethyl methacrylate) modification of activated carbon for copper ions removal. Mater Chem Phys 2009; 113(2-3): 784-9.
[http://dx.doi.org/10.1016/j.matchemphys.2008.08.025]
[177]
Moussa SI, Ali MMS, Sheha RR. The performance of activated carbon/NiFe2O4 magnetic composite to retain heavy metal ions from aqueous solution. Chin J Chem Eng 2021; 29: 135-45.
[http://dx.doi.org/10.1016/j.cjche.2020.07.036]
[178]
Oladipo AA, Gazi M. Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of cop-per(II) ions and direct red 80 dye: A multi-component adsorption system. J Taiwan Inst Chem Eng 2015; 47: 125-36.
[http://dx.doi.org/10.1016/j.jtice.2014.09.027]
[179]
Park HG, Kim TW, Chae MY, Yoo IK. Activated carboncontaining alginate adsorbent for the simultaneous removal of heavy metals and toxic organics. Process Biochem 2007; 42(10): 1371-7.
[http://dx.doi.org/10.1016/j.procbio.2007.06.016]
[180]
Nejadshafiee V, Islami MR. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy met-als from industrial waste of copper mine. Environ Sci Pollut Res Int 2020; 27(2): 1625-39.
[http://dx.doi.org/10.1007/s11356-019-06732-4] [PMID: 31755054]
[181]
Azari A, Kakavandi B, Kalantary RR, et al. Rapid and efficient magnetically removal of heavy metals by magnetite-activated carbon composite: a statistical design approach. J Porous Mater 2015; 22(4): 1083-96.
[http://dx.doi.org/10.1007/s10934-015-9983-z]
[182]
Amuda OS, Giwa AA, Bello IA. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem Eng J 2007; 36(2): 174-81.
[http://dx.doi.org/10.1016/j.bej.2007.02.013]
[183]
Tounsadi H, Khalidi A, Abdennouri M, Barka N. Activated carbon from Diplotaxis Harra biomass: Optimization of preparation condi-tions and heavy metal removal. J Taiwan Inst Chem Eng 2016; 59: 348-58.
[http://dx.doi.org/10.1016/j.jtice.2015.08.014]
[184]
Baccar R, Bouzid J, Feki M, Montiel A. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorp-tion of heavy metal ions. J Hazard Mater 2009; 162(2-3): 1522-9.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.041] [PMID: 18653277]
[185]
Wang K, Zhao J, Li H, Zhang X, Shi H. Removal of cadmium (II) from aqueous solution by granular activated carbon supported magnesium hydroxide. J Taiwan Inst Chem Eng 2016; 61: 287-91.
[http://dx.doi.org/10.1016/j.jtice.2016.01.006]
[186]
Le VT, Tran TKN, Tran DL, et al. One-pot synthesis of a novel magnetic activated carbon/clay composite for removal of heavy metals from aqueous solution. J Dispers Sci Technol 2019; 40(12): 1761-76.
[http://dx.doi.org/10.1080/01932691.2018.1541414]
[187]
Sato S, Yoshihara K, Moriyama K, Machida M, Tatsumoto H. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution. Appl Surf Sci 2007; 253(20): 8554-9.
[http://dx.doi.org/10.1016/j.apsusc.2007.04.025]
[188]
Guo J, Song Y, Ji X, et al. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials 2019; 12(2): 241.
[http://dx.doi.org/10.3390/ma12020241] [PMID: 30642039]
[189]
Yanagisawa H, Matsumoto Y, Machida M. Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution. Appl Surf Sci 2010; 256(6): 1619-23.
[http://dx.doi.org/10.1016/j.apsusc.2009.10.010]
[190]
Zhang Z, Wang T, Zhang H, Liu Y, Xing B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci Total Environ 2021; 757: 143910.
[http://dx.doi.org/10.1016/j.scitotenv.2020.143910] [PMID: 33310569]
[191]
Nogueira HP, Toma SH, Silveira AT, Carvalho AAC, Fioroto AM, Araki K. Efficient Cr(VI) removal from wastewater by activated carbon superparamagnetic composites. Microchem J 2019; 149: 104025.
[http://dx.doi.org/10.1016/j.microc.2019.104025]
[192]
Zhang QL, Lin YC, Chen X, Gao NY. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. J Hazard Mater 2007; 148(3): 671-8.
[http://dx.doi.org/10.1016/j.jhazmat.2007.03.026] [PMID: 17434260]
[193]
Sreejalekshmi KG, Krishnan KA, Anirudhan TS. Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies. J Hazard Mater 2009; 161(2-3): 1506-13.
[http://dx.doi.org/10.1016/j.jhazmat.2008.05.002] [PMID: 18550276]
[194]
Shahrashoub M, Bakhtiari S. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater 2021; 311: 110692.
[http://dx.doi.org/10.1016/j.micromeso.2020.110692]
[195]
Habuda-Stanić M, Ravančić M, Flanagan A. A review on adsorption of fluoride from aqueous solution. Materials 2014; 7(9): 6317-66.
[http://dx.doi.org/10.3390/ma7096317] [PMID: 28788194]
[196]
Alijani H, Shariatinia Z. Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal. Chem Eng Res Des 2018; 129: 132-49.
[http://dx.doi.org/10.1016/j.cherd.2017.11.014]
[197]
Dehghani MH, Taher MM, Bajpai AK, et al. Removal of noxious Cr (VI) ions using singlewalled carbon nanotubes and multi-walled carbon nanotubes. Chem Eng J 2015; 279: 344-52.
[http://dx.doi.org/10.1016/j.cej.2015.04.151]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy