Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Current Trends in the Development of EGFR Inhibitors as Promising Anticancer Agents: Sar and Synthetic Studies from (2010-2020)

Author(s): Sitanshu Mondal, Vishakha S., Kumari Das Kajal, Simranpreet K. Wahan, Balak Das Kurmi and Preeti Patel*

Volume 27, Issue 1, 2023

Published on: 08 March, 2023

Page: [2 - 27] Pages: 26

DOI: 10.2174/1385272827666230220105034

Price: $65

Abstract

The EGFR (Epidermal Growth Factor Receptor) regulates cell proliferation, survival, and differentiation. The EGFR is a cell surface receptor that belongs to the ErbB tyrosine kinase family. One of the most important targets for cancer therapy is EGFR inhibition. Because EGFR over-activation is seen in a wide range of malignancies, targeting EGFR and its downstream signaling cascades is a sensible and beneficial strategy in cancer therapy. This review highlighted the most potent EGFR inhibitors with SAR studies and their synthetic chemical pathways discovered between 2010-2020, employed for treating Liver, Breast, Lung, Pancreatic, and Colorectal cancers. We also include the clinical trials and the registered patents in our review.

Graphical Abstract

[1]
Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(2), S21-S26.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041] [PMID: 15142631]
[2]
Wieduwilt, M.J.; Moasser, M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell. Mol. Life Sci., 2008, 65(10), 1566-1584.
[http://dx.doi.org/10.1007/s00018-008-7440-8] [PMID: 18259690]
[3]
Carpenter, G.; Cohen, S. Epidermal growth factor. Annu. Rev. Biochem., 1979, 48(1), 193-216.
[http://dx.doi.org/10.1146/annurev.bi.48.070179.001205] [PMID: 382984]
[4]
Herbst, R.S.; Langer, C.J. Epidermal growth factor receptors as a target for cancer treatment: The emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin. Oncol., 2002, 29(1)(Suppl. 4), 27-36.
[http://dx.doi.org/10.1053/sonc.2002.31525] [PMID: 11894011]
[5]
Kondapaka, S.B.; Fridman, R.; Reddy, K.B. Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int. J. Cancer, 1997, 70(6), 722-726.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970317)70:6<722::AIDIJC15>3.0.CO;2-B] [PMID: 9096655]
[6]
Ennis, B.W.; Lippman, M.E.; Dickson, R.B. The EGF receptor system as a target for antitumor therapy. Cancer Invest., 1991, 9(5), 553-562.
[http://dx.doi.org/10.3109/07357909109018953] [PMID: 1933488]
[7]
Salomon, D.S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol., 1995, 19(3), 183-232.
[http://dx.doi.org/10.1016/1040-8428(94)00144-I] [PMID: 7612182]
[8]
Sanford, M.; Scott, L.J. Gefitinib. Drugs, 2009, 69(16), 2303-2328.
[http://dx.doi.org/10.2165/10489100-000000000-00000] [PMID: 19852530]
[9]
Dowell, J.; Minna, J.D.; Kirkpatrick, P. Erlotinib hydrochloride. Nat. Rev. Drug Discov., 2005, 4(1), 13-14.
[http://dx.doi.org/10.1038/nrd1612] [PMID: 15690599]
[10]
Voigtlaender, M.; Schneider-Merck, T.; Trepel, M. Lapatinib. Recent Results Cancer Res., 2018, 211, 19-44.
[http://dx.doi.org/10.1007/978-3-319-91442-8_2] [PMID: 30069757]
[11]
Dungo, R.T.; Keating, G.M. Afatinib: first global approval. Drugs, 2013, 73(13), 1503-1515.
[http://dx.doi.org/10.1007/s40265-013-0111-6] [PMID: 23982599]
[12]
Commander, H.; Whiteside, G.; Perry, C. Vandetanib. Drugs, 2011, 71(10), 1355-1365.
[http://dx.doi.org/10.2165/11595310-000000000-00000] [PMID: 21770481]
[13]
Curran, M.P. Crizotinib. Drugs, 2012, 72(1), 99-107.
[http://dx.doi.org/10.2165/11207680-000000000-00000] [PMID: 22191798]
[14]
Deeks, E.D. Neratinib: First global approval. Drugs, 2017, 77(15), 1695-1704.
[http://dx.doi.org/10.1007/s40265-017-0811-4] [PMID: 28884417]
[15]
Shirley, M. Dacomitinib: First global approval. Drugs, 2018, 78(18), 1947-1953.
[http://dx.doi.org/10.1007/s40265-018-1028-x] [PMID: 30506139]
[16]
Greig, S.L. Osimertinib: First global approval. Drugs, 2016, 76(2), 263-273.
[http://dx.doi.org/10.1007/s40265-015-0533-4] [PMID: 26729184]
[17]
Gunturi, A.; McDermott, D.F. Nivolumab for the treatment of cancer. Expert Opin. Investig. Drugs, 2015, 24(2), 253-260.
[http://dx.doi.org/10.1517/13543784.2015.991819] [PMID: 25494679]
[18]
Keam, S.J. Trastuzumab deruxtecan: First approval. Drugs, 2020, 80(5), 501-508.
[http://dx.doi.org/10.1007/s40265-020-01281-4] [PMID: 32144719]
[19]
Blick, S.K.A.; Scott, L.J. Cetuximab. Drugs, 2007, 67(17), 2585-2607.
[http://dx.doi.org/10.2165/00003495-200767170-00008] [PMID: 18034592]
[20]
Keating, G.M. Panitumumab. Drugs, 2010, 70(8), 1059-1078.
[http://dx.doi.org/10.2165/11205090-000000000-00000] [PMID: 20481659]
[21]
Keating, G.M. Pertuzumab. Drugs, 2012, 72(3), 353-360.
[http://dx.doi.org/10.2165/11209000-000000000-00000] [PMID: 22316351]
[22]
La Monica, S.; Madeddu, D.; Tiseo, M.; Vivo, V.; Galetti, M.; Cretella, D.; Bonelli, M.; Fumarola, C.; Cavazzoni, A.; Falco, A.; Gervasi, A.; Lagrasta, C.A.; Naldi, N.; Barocelli, E.; Ardizzoni, A.; Quaini, F.; Petronini, P.G.; Alfieri, R. Combination of gefitinib and pemetrexed prevents the acquisition of TKI resistance in NSCLC cell lines carrying EGFR- activating mutation. J. Thorac. Oncol., 2016, 11(7), 1051-1063.
[http://dx.doi.org/10.1016/j.jtho.2016.03.006] [PMID: 27006151]
[23]
Garcia-Campelo, R.; Arrieta, O.; Massuti, B.; Rodriguez-Abreu, D.; Granados, A.L.O.; Majem, M.; Vicente, D.; Lianes, P.; Bosch-Barrera, J.; Insa, A.; Dómine, M.; Re-guart, N.; Guirado, M.; Sala, M.Á.; Vázquez-Estevez, S.; Caro, R.B.; Drozdowskyj, A.; Verdú, A.; Karachaliou, N.; Molina-Vila, M.A.; Rosell, R. Combination of gefitinib and olaparib versus gefitinib alone in EGFR mutant non-small-cell lung cancer (NSCLC): A multicenter, randomized phase II study (GOAL). Lung Cancer, 2020, 150, 62-69.
[http://dx.doi.org/10.1016/j.lungcan.2020.09.018] [PMID: 33070053]
[24]
Park, J.S.; Hong, M.H.; Chun, Y.J.; Kim, H.R.; Cho, B.C. A phase Ib study of the combination of afatinib and ruxolitinib in EGFR mutant NSCLC with progression on EGFR-TKIs. Lung Cancer, 2019, 134, 46-51.
[http://dx.doi.org/10.1016/j.lungcan.2019.05.030] [PMID: 31319994]
[25]
Heymach, J.V.; Lockwood, S.J.; Herbst, R.S.; Johnson, B.E.; Ryan, A.J. EGFR biomarkers predict benefit from vandetanib in combination with docetaxel in a randomized phase III study of second-line treatment of patients with advanced non-small cell lung cancer. Ann. Oncol., 2014, 25(10), 1941-1948.
[http://dx.doi.org/10.1093/annonc/mdu269] [PMID: 25057173]
[26]
Kayatani, H.; Ohashi, K.; Ninomiya, K.; Makimoto, G.; Nishii, K.; Higo, H.; Watanabe, H.; Kano, H.; Kato, Y.; Ninomiya, T.; Kubo, T.; Rai, K.; Ichihara, E.; Hotta, K.; Tabata, M.; Maeda, Y.; Kiura, K. Beneficial effect of erlotinib and trastuzumab emtansine combination in lung tumors harboring EGFR mutations. Biochem. Biophys. Res. Commun., 2020, 532(3), 341-346.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.055] [PMID: 32888648]
[27]
Gomes, J.; Cruz, M. Combination of afatinib with cetuximab in patients with EGFR-mutant non-small-cell lung cancer resistant to EGFR inhibitors. OncoTargets Ther., 2015, 8, 1137-1142.
[http://dx.doi.org/10.2147/OTT.S75388] [PMID: 26056478]
[28]
Middleton, G.; Yang, Y.; Campbell, C.D.; André, T.; Atreya, C.E.; Schellens, J.H.M.; Yoshino, T.; Bendell, J.C.; Hollebecque, A.; McRee, A.J.; Siena, S.; Gordon, M.S.; Tabernero, J.; Yaeger, R.; O’Dwyer, P.J.; De Vos, F.; Van Cutsem, E.; Millholland, J.M.; Brase, J.C.; Rangwala, F.; Gasal, E.; Corcoran, R.B. BRAF-Mutant transcriptional subtypes predict outcome of combined BRAF, MEK, and EGFR blockade with dabrafenib, trametinib, and panitumumab in patients with colorectal cancer. Clin. Cancer Res., 2020, 26(11), 2466-2476.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3579] [PMID: 32047001]
[29]
Dreux, A.C.; Lamb, D.J.; Modjtahedi, H.; Ferns, G.A.A. The epidermal growth factor receptors and their family of ligands: Their putative role in atherogenesis. Atherosclerosis, 2006, 186(1), 38-53.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.06.038] [PMID: 16076471]
[30]
Hurwitz, D.R.; Emanuel, S.L.; Nathan, M.H.; Sarver, N.; Ullrich, A.; Felder, S.; Lax, I.; Schlessinger, J. EGF induces increased ligand binding affinity and dimerization of soluble epidermal growth factor (EGF) receptor extracellular domain. J. Biol. Chem., 1991, 266(32), 22035-22043.
[http://dx.doi.org/10.1016/S0021-9258(18)54741-4] [PMID: 1657987]
[31]
Prywes, R.; Livneh, E.; Ullrich, A.; Schlessinger, J. Mutations in the cytoplasmic domain of EGF receptor affect EGF binding and receptor internalization. EMBO J., 1986, 5(9), 2179-2190.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04482.x] [PMID: 3490969]
[32]
Jorissen, R.; Walker, F.; Pouliot, N.; Garrett, T.P.; Ward, C.W.; Burgess, A.W. Epidermal growth factor receptor: Mechanisms of activation and signalling. Exp. Cell Res., 2003, 284(1), 31-53.
[http://dx.doi.org/10.1016/S0014-4827(02)00098-8] [PMID: 12648464]
[33]
Schlessinger, J.; Ullrich, A. Growth factor signaling by receptor tyrosine kinases. Neuron, 1992, 9(3), 383-391.
[http://dx.doi.org/10.1016/0896-6273(92)90177-F] [PMID: 1326293]
[34]
Lemmon, M.A.; Bu, Z.; Ladbury, J.E.; Zhou, M.; Pinchasi, D.; Lax, I.; Engelman, D.M.; Schlessinger, J. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J., 1997, 16(2), 281-294.
[http://dx.doi.org/10.1093/emboj/16.2.281] [PMID: 9029149]
[35]
Sherrill, J.M.; Kyte, J. Activation of epidermal growth factor receptor by epidermal growth factor. Biochemistry, 1996, 35(18), 5705-5718.
[http://dx.doi.org/10.1021/bi9602268] [PMID: 8639530]
[36]
Ge, G.; Wu, J.; Wang, Y.; Lin, Q. Activation mechanism of solubilized epidermal growth factor receptor tyrosine kinase. Biochem. Biophys. Res. Commun., 2002, 290(3), 914-920.
[http://dx.doi.org/10.1006/bbrc.2001.6285] [PMID: 11798160]
[37]
Tanner, K.G.; Kyte, J. Dimerization of the extracellular domain of the receptor for epidermal growth factor containing the membrane-spanning segment in response to treatment with epidermal growth factor. J. Biol. Chem., 1999, 274(50), 35985-35990.
[http://dx.doi.org/10.1074/jbc.274.50.35985] [PMID: 10585488]
[38]
Batzer, A.G.; Rotin, D.; Ureña, J.M.; Skolnik, E.Y.; Schlessinger, J. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol. Cell. Biol., 1994, 14(8), 5192-5201.
[PMID: 7518560]
[39]
Lowenstein, E.J.; Daly, R.J.; Batzer, A.G.; Li, W.; Margolis, B.; Lammers, R.; Ullrich, A.; Skolnik, E.Y.; Bar-Sagi, D.; Schlessinger, J. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell, 1992, 70(3), 431-442.
[http://dx.doi.org/10.1016/0092-8674(92)90167-B] [PMID: 1322798]
[40]
Liebmann, C. Regulation of MAP kinase activity by peptide receptor signalling pathway: Paradigms of multiplicity. Cell. Signal., 2001, 13(11), 777-785.
[http://dx.doi.org/10.1016/S0898-6568(01)00192-9] [PMID: 11583913]
[41]
Hallberg, B.; Rayter, S.I.; Downward, J. Interaction of Ras and Raf in intact mammalian cells upon extracellular stimulation. J. Biol. Chem., 1994, 269(6), 3913-3916.
[http://dx.doi.org/10.1016/S0021-9258(17)41718-2] [PMID: 8307946]
[42]
Gaestel, M. MAPKAP kinases — MKs — two’s company, three’s a crowd. Nat. Rev. Mol. Cell Biol., 2006, 7(2), 120-130.
[http://dx.doi.org/10.1038/nrm1834] [PMID: 16421520]
[43]
Hill, C.S.; Treisman, R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell, 1995, 80(2), 199-211.
[http://dx.doi.org/10.1016/0092-8674(95)90403-4] [PMID: 7834740]
[44]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[45]
Mattoon, D.R.; Lamothe, B.; Lax, I.; Schlessinger, J. The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol., 2004, 2(1), 24.
[http://dx.doi.org/10.1186/1741-7007-2-24] [PMID: 15550174]
[46]
Haura, E.B.; Turkson, J.; Jove, R. Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat. Clin. Pract. Oncol., 2005, 2(6), 315-324.
[http://dx.doi.org/10.1038/ncponc0195] [PMID: 16264989]
[47]
Bromberg, J. Stat proteins and oncogenesis. J. Clin. Invest., 2002, 109(9), 1139-1142.
[http://dx.doi.org/10.1172/JCI0215617] [PMID: 11994401]
[48]
McClellan, M.; Kievit, P.; Auersperg, N.; Rodland, K. Regulation of proliferation and apoptosis by epidermal growth factor and protein kinase C in human ovarian surface epithelial cells. Exp. Cell Res., 1999, 246(2), 471-479.
[http://dx.doi.org/10.1006/excr.1998.4328] [PMID: 9925763]
[49]
Schönwasser, D.C.; Marais, R.M.; Marshall, C.J.; Parker, P.J. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol. Cell. Biol., 1998, 18(2), 790-798.
[http://dx.doi.org/10.1128/MCB.18.2.790] [PMID: 9447975]
[50]
Summy, J.M.; Gallick, G.E. Treatment for advanced tumors: SRC reclaims center stage. Clin. Cancer Res., 2006, 12(5), 1398-1401.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2692] [PMID: 16533761]
[51]
Yeatman, T.J. A renaissance for SRC. Nat. Rev. Cancer, 2004, 4(6), 470-480.
[http://dx.doi.org/10.1038/nrc1366] [PMID: 15170449]
[52]
Leu, T.H.; Maa, M.C. Functional implication of the interaction between EGF receptor and C-SRC. Front. Biosci., 2003, 8(6), 980.
[http://dx.doi.org/10.2741/980] [PMID: 12456372]
[53]
Scaltriti, M.; Baselga, J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin. Cancer Res., 2006, 12(18), 5268-5272.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1554] [PMID: 17000658]
[54]
Zhang, H.; Deng, T.; Liu, R.; Bai, M.; Zhou, L.; Wang, X.; Li, S.; Wang, X.; Yang, H.; Li, J.; Ning, T.; Huang, D.; Li, H.; Zhang, L.; Ying, G.; Ba, Y. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat. Commun., 2017, 8(1), 15016.
[http://dx.doi.org/10.1038/ncomms15016] [PMID: 28393839]
[55]
El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7), 2557-2576.
[http://dx.doi.org/10.1053/j.gastro.2007.04.061] [PMID: 17570226]
[56]
Zandi, R.; Larsen, A.B.; Andersen, P.; Stockhausen, M.T.; Poulsen, H.S. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell. Signal., 2007, 19(10), 2013-2023.
[http://dx.doi.org/10.1016/j.cellsig.2007.06.023] [PMID: 17681753]
[57]
Berasain, C.; Ujue Latasa, M.; Urtasun, R.; Goñi, S.; Elizalde, M.; Garcia-Irigoyen, O.; Azcona, M.; Prieto, J.; Ávila, M.A. Epidermal growth factor receptor (EGFR) cross-talks in liver cancer. Cancers, 2011, 3(2), 2444-2461.
[http://dx.doi.org/10.3390/cancers3022444] [PMID: 24212818]
[58]
Daveau, M.; Scotte, M.; François, A.; Coulouarn, C.; Ros, G.; Tallet, Y.; Hiron, M.; Hellot, M.F.; Salier, J.P. Hepatocyte growth factor, transforming growth factor α, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Mol. Carcinog., 2003, 36(3), 130-141.
[http://dx.doi.org/10.1002/mc.10103] [PMID: 12619035]
[59]
Madtes, D.K.; Busby, H.K.; Strandjord, T.P.; Clark, J.G. Expression of transforming growth factor-alpha and epidermal growth factor receptor is increased following bleomycin-induced lung injury in rats. Am. J. Respir. Cell Mol. Biol., 1994, 11(5), 540-551.
[http://dx.doi.org/10.1165/ajrcmb.11.5.7524566] [PMID: 7524566]
[60]
Sayed, A.R.; Gomha, S.M.; Abdelrazek, F.M.; Farghaly, M.S.; Hassan, S.A.; Metz, P. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem., 2019, 13(1), 116.
[http://dx.doi.org/10.1186/s13065-019-0632-5] [PMID: 31572983]
[61]
Alam, M.M.; Hassan, A.H.E.; Kwon, Y.H.; Lee, H.J.; Kim, N.Y.; Min, K.H.; Lee, S.Y.; Kim, D.H.; Lee, Y.S. Design, synthesis and evaluation of alkylphosphocholine-gefitinib conjugates as multitarget anticancer agents. Arch. Pharm. Res., 2018, 41(1), 35-45.
[http://dx.doi.org/10.1007/s12272-017-0977-z] [PMID: 29094267]
[62]
Ghoneim, A.A.; El-Farargy, A.F.; Bakr, R.B. Design, Synthesis, Molecular Docking of Novel Substituted Pyrimidinone Derivatives as Anticancer Agents. Polycycl. Aromat. Compd., 2020, 42(5), 2538-2554.
[63]
Aouad, M.R.; Al-Mohammadi, H.M.; Al-blewi, F.F.; Ihmaid, S.; Elbadawy, H.M.; Althagfan, S.S.; Rezki, N. Introducing of acyclonucleoside analogues tethered 1,2,4-triazole as anticancer agents with dual epidermal growth factor receptor kinase and microtubule inhibitors. Bioorg. Chem., 2020, 94, 103446.
[http://dx.doi.org/10.1016/j.bioorg.2019.103446] [PMID: 31791685]
[64]
Tantawy, E.S.; Amer, A.M.; Mohamed, E.K.; Abd Alla, M.M.; Nafie, M.S. Synthesis, characterization of some pyrazine derivatives as anti-cancer agents: in vitro and in silico approaches. J. Mol. Struct., 2020, 1210, 128013.
[http://dx.doi.org/10.1016/j.molstruc.2020.128013]
[65]
Zhang, H.J.; Qian, Y.; Zhu, D.D.; Yang, X.G.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of chalcone thiosemicarbazide derivatives as novel anticancer agents. Eur. J. Med. Chem., 2011, 46(9), 4702-4708.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.016] [PMID: 21816517]
[66]
Zheng, Y.G.; Su, J.; Gao, C.Y.; Jiang, P.; An, L.; Xue, Y.S.; Gao, J.; Liu, Y. Design, synthesis, and biological evaluation of novel 4-anilinoquinazoline derivatives bearing amino acid moiety as potential EGFR kinase inhibitors. Eur. J. Med. Chem., 2017, 130, 393-405.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.061] [PMID: 28279846]
[67]
Chang, J.; Ren, H.; Zhao, M.; Chong, Y.; Zhao, W.; He, Y.; Zhao, Y.; Zhang, H.; Qi, C. Development of a series of novel 4-anlinoquinazoline derivatives possessing quinazoline skeleton: Design, synthesis, EGFR kinase inhibitory efficacy, and evaluation of anticancer activities in vitro. Eur. J. Med. Chem., 2017, 138, 669-688.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.005] [PMID: 28711702]
[68]
Chen, L.; Zhang, Y.; Liu, J.; Wang, W.; Li, X.; Zhao, L.; Wang, W.; Li, B. Novel 4-arylaminoquinazoline derivatives with (E)-propen-1-yl moiety as potent EGFR inhib-itors with enhanced antiproliferative activities against tumor cells. Eur. J. Med. Chem., 2017, 138, 689-697.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.023] [PMID: 28711703]
[69]
Li, S.N.; Xu, Y.Y.; Gao, J.Y.; Yin, H.; Zhang, S.L.; Li, H.Q. Combination of 4-anilinoquinazoline and rhodanine as novel epidermal growth factor receptor tyrosine kinase inhibitors. Bioorg. Med. Chem., 2015, 23(13), 3221-3227.
[http://dx.doi.org/10.1016/j.bmc.2015.04.065] [PMID: 26003342]
[70]
Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat., 2012, 136(2), 331-345.
[http://dx.doi.org/10.1007/s10549-012-2289-9] [PMID: 23073759]
[71]
Rakha, E.A.; El-Sayed, M.E.; Green, A.R.; Lee, A.H.S.; Robertson, J.F.; Ellis, I.O. Prognostic markers in triple-negative breast cancer. Cancer, 2007, 109(1), 25-32.
[http://dx.doi.org/10.1002/cncr.22381] [PMID: 17146782]
[72]
Burness, M.L.; Grushko, T.A.; Olopade, O.I. Epidermal growth factor receptor in triple-negative and basal-like breast cancer: promising clinical target or only a marker? Cancer J., 2010, 16(1), 23-32.
[http://dx.doi.org/10.1097/PPO.0b013e3181d24fc1] [PMID: 20164687]
[73]
Schulze, W.X.; Deng, L.; Mann, M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol., 2005, 1(1), 2005-2008.
[http://dx.doi.org/10.1038/msb4100012]
[74]
Downward, J.; Yarden, Y.; Mayes, E.; Scrace, G.; Totty, N.; Stockwell, P.; Ullrich, A.; Schlessinger, J.; Waterfield, M.D. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature, 1984, 307(5951), 521-527.
[http://dx.doi.org/10.1038/307521a0] [PMID: 6320011]
[75]
Maennling, A.E.; Tur, M.K.; Niebert, M.; Klockenbring, T.; Zeppernick, F.; Gattenlöhner, S.; Meinhold-Heerlein, I.; Hussain, A.F. Molecular targeting therapy against EGFR family in breast cancer: Progress and future potentials. Cancers, 2019, 11(12), 1826.
[http://dx.doi.org/10.3390/cancers11121826] [PMID: 31756933]
[76]
Allam, H.A.; Aly, E.E.; Farouk, A.K.B.A.W.; El Kerdawy, A.M.; Rashwan, E.; Abbass, S.E.S. Design and Synthesis of some new 2,4,6-trisubstituted quinazoline EGFR inhibitors as targeted anticancer agents. Bioorg. Chem., 2020, 98, 103726.
[http://dx.doi.org/10.1016/j.bioorg.2020.103726] [PMID: 32171987]
[77]
Abdelsalam, E.A.; Zaghary, W.A.; Amin, K.M.; Abou Taleb, N.A.; Mekawey, A.A.I.; Eldehna, W.M.; Abdel-Aziz, H.A.; Hammad, S.F. Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorg. Chem., 2019, 89, 102985.
[http://dx.doi.org/10.1016/j.bioorg.2019.102985] [PMID: 31121559]
[78]
Abou-Zied, H.A.; Youssif, B.G.M.; Mohamed, M.F.A.; Hayallah, A.M.; Abdel-Aziz, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem., 2019, 89, 102997.
[http://dx.doi.org/10.1016/j.bioorg.2019.102997] [PMID: 31136902]
[79]
Labib, M.B.; Philoppes, J.N.; Lamie, P.F.; Ahmed, E.R. Azole-hydrazone derivatives: Design, synthesis, in vitro biological evaluation, dual EGFR/HER2 inhibitory activity, cell cycle analysis and molecular docking study as anticancer agents. Bioorg. Chem., 2018, 76, 67-80.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.016] [PMID: 29153588]
[80]
Qin, H.L.; Leng, J.; Zhang, C.P.; Jantan, I.; Amjad, M.W.; Sher, M.; Naeem-ul-Hassan, M.; Hussain, M.A.; Bukhari, S.N.A. Synthesis of α,β-unsaturated carbonyl-based compounds, oxime and oxime ether analogs as potential anticancer agents for overcoming cancer multidrug resistance by modulation of efflux pumps in tumor cells. J. Med. Chem., 2016, 59(7), 3549-3561.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00276] [PMID: 27010345]
[81]
Lv, P.C.; Li, H.Q.; Sun, J.; Zhou, Y.; Zhu, H.L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2010, 18(13), 4606-4614.
[http://dx.doi.org/10.1016/j.bmc.2010.05.034] [PMID: 20627597]
[82]
Lv, P.C.; Li, D.D.; Li, Q.S.; Lu, X.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(18), 5374-5377.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.010] [PMID: 21802290]
[83]
Elmetwally, S.A.; Saied, K.F.; Eissa, I.H.; Elkaeed, E.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem., 2019, 88, 102944.
[http://dx.doi.org/10.1016/j.bioorg.2019.102944] [PMID: 31051400]
[84]
Zhang, W.M.; Xing, M.; Zhao, T.T.; Ren, Y.J.; Yang, X.H.; Yang, Y.S.; Lv, P.C.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of cinnamic acid derivatives with pyrazole moieties as novel anticancer agents. RSC Advances, 2014, 4(70), 37197-37207.
[http://dx.doi.org/10.1039/C4RA05257A]
[85]
Abou-Seri, S.M. Synthesis and biological evaluation of novel 2,4′-bis substituted diphenylamines as anticancer agents and potential epidermal growth factor receptor tyrosine kinase inhibitors. Eur. J. Med. Chem., 2010, 45(9), 4113-4121.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.072] [PMID: 20580136]
[86]
Zayed, M.; Ahmed, S.; Ihmaid, S.; Ahmed, H.; Rateb, H.; Ibrahim, S. Design, synthesis, cytotoxic evaluation and molecular docking of new fluoroquinazolinones as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Int. J. Mol. Sci., 2018, 19(6), 1731.
[http://dx.doi.org/10.3390/ijms19061731] [PMID: 29891789]
[87]
Sadek, M.M.; Serrya, R.A.; Kafafy, A.H.N.; Ahmed, M.; Wang, F.; Abouzid, K.A.M. Discovery of new HER2/EGFR dual kinase inhibitors based on the anilinoquinazoline scaffold as potential anti-cancer agents. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 215-222.
[http://dx.doi.org/10.3109/14756366.2013.765417] [PMID: 23402383]
[88]
Bagul, C.; Rao, G.K.; Makani, V.K.K.; Tamboli, J.R.; Pal-Bhadra, M.; Kamal, A. Synthesis and biological evaluation of chalcone-linked pyrazolo[1,5-a]pyrimidines as potential anticancer agents. MedChemComm, 2017, 8(9), 1810-1816.
[http://dx.doi.org/10.1039/C7MD00193B] [PMID: 30108891]
[89]
Kamangar, F.; Dores, G.M.; Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol., 2006, 24(14), 2137-2150.
[http://dx.doi.org/10.1200/JCO.2005.05.2308] [PMID: 16682732]
[90]
Brabender, J.; Danenberg, K.D.; Metzger, R.; Schneider, P.M.; Park, J.; Salonga, D.; Hölscher, A.H.; Danenberg, P.V. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin. Cancer Res., 2001, 7(7), 1850-1855.
[PMID: 11448895]
[91]
Ou, S.H.I. Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): A better mousetrap? A review of the clinical evidence. Crit. Rev. Oncol. Hematol., 2012, 83(3), 407-421.
[http://dx.doi.org/10.1016/j.critrevonc.2011.11.010] [PMID: 22257651]
[92]
Makawana, J.A.; Sun, J.; Zhu, H.L. Schiff’s base derivatives bearing nitroimidazole moiety: New class of antibacterial, anticancer agents and potential EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(23), 6264-6268.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.086] [PMID: 24144854]
[93]
Nasser, A.A.; Eissa, I.H.; Oun, M.R.; El-Zahabi, M.A.; Taghour, M.S.; Belal, A.; Saleh, A.M.; Mehany, A.B.M.; Luesch, H.; Mostafa, A.E.; Afifi, W.M.; Rocca, J.R.; Mahdy, H.A. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFR WT and EGFR T790M. Org. Biomol. Chem., 2020, 18(38), 7608-7634.
[http://dx.doi.org/10.1039/D0OB01557A] [PMID: 32959865]
[94]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole–quinoline–pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[95]
Makawana, J.A.; Sangani, C.B.; Lin, L.; Zhu, H.L. Schiff’s base derivatives bearing nitroimidazole and quinoline nuclei: New class of anticancer agents and potential EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(7), 1734-1736.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.041] [PMID: 24630412]
[96]
Le, Y.; Gan, Y.; Fu, Y.; Liu, J.; Li, W.; Zou, X.; Zhou, Z.; Wang, Z.; Ouyang, G.; Yan, L. Design, synthesis and in vitro biological evaluation of quinazolinone derivatives as EGFR inhibitors for antitumor treatment. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 555-564.
[http://dx.doi.org/10.1080/14756366.2020.1715389] [PMID: 31967481]
[97]
Alsaid, M.S.; Al-Mishari, A.A.; Soliman, A.M.; Ragab, F.A.; Ghorab, M.M. Discovery of Benzo[g]quinazolin benzenesulfonamide derivatives as dual EGFR/HER2 inhibitors. Eur. J. Med. Chem., 2017, 141, 84-91.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.061] [PMID: 29028534]
[98]
El-Sherief, H.A.M.; Youssif, B.G.M.; Abbas Bukhari, S.N.; Abdelazeem, A.H.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Synthesis, anticancer activity and molecular model-ing studies of 1,2,4-triazole derivatives as EGFR inhibitors. Eur. J. Med. Chem., 2018, 156, 774-789.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.024] [PMID: 30055463]
[99]
Zhang, Y.; Tortorella, M.D.; Liao, J.; Qin, X.; Chen, T.; Luo, J.; Guan, J.; Talley, J.J.; Tu, Z. Synthesis and evaluation of novel erlotinib–NSAID conjugates as more comprehensive anticancer agents. ACS Med. Chem. Lett., 2015, 6(10), 1086-1090.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00286] [PMID: 26487917]
[100]
Qin, H.L.; Leng, J.; Youssif, B.G.M.; Amjad, M.W.; Raja, M.A.G.; Hussain, M.A.; Hussain, Z.; Kazmi, S.N.; Bukhari, S.N.A. Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents. Chem. Biol. Drug Des., 2017, 90(3), 443-449.
[http://dx.doi.org/10.1111/cbdd.12964] [PMID: 28186369]
[101]
Garofalo, A.; Goossens, L.; Lemoine, A.; Ravez, S.; Six, P.; Howsam, M.; Farce, A.; Depreux, P. [4-(6,7-Disubstituted quinazolin-4-ylamino)phenyl] carbamic acid esters: a novel series of dual EGFR/VEGFR-2 tyrosine kinase inhibitors. MedChemComm, 2011, 2(1), 65-72.
[http://dx.doi.org/10.1039/C0MD00183J]
[102]
Abdelbaset, M.S.; Abdel-Aziz, M.; Ramadan, M.; Abdelrahman, M.H.; Abbas Bukhari, S.N.; Ali, T.F.S.; Abuo-Rahma, G.E.D.A. Discovery of novel thienoquinoline-2-carboxamide chalcone derivatives as antiproliferative EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem., 2019, 27(6), 1076-1086.
[http://dx.doi.org/10.1016/j.bmc.2019.02.012] [PMID: 30744932]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy