Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

P-EKKE Alleviates Myocardial Infarction (MI) in MI Rats by Inhibiting Hedgehog Signaling Pathway-mediated Inflammation and Inhibiting α-actin Mediated Myocardial Fibrosis

Author(s): Guixian Song, Zhongbao Ruan, Ruzhu Wang, Yin Ren, Li Zhu, Yahui Shen* and Bin Wang*

Volume 21, Issue 7, 2024

Published on: 27 March, 2023

Page: [1164 - 1171] Pages: 8

DOI: 10.2174/1570180820666230217094512

Price: $65

Abstract

Background: Myocardial infarction (MI) is an ischemic heart disorder that causes apoptosis or necrosis of myocardial cells.

Objective: The study aimed to evaluate the effect of P-EKKE on myocardial infarction and explore the associated mechanisms in MI rats.

Methods: The MI in rats was established by ligating the left coronary artery of rats; the rats were divided into the MI group (without treatment) and the P-EKKE group (treated with P-EKKE). Normal rats were assigned to the NC group (without treatment) and the sham group (under LAD without ligation). Cardiac function was evaluated using echocardiography. The MI area was measured with TTC staining. Histological analysis was performed to evaluate inflammation (HE staining) and myocardial fibrosis (Masson and immunofluorescence staining). RT-PCR and Western blotting were used to determine Gli-1/SHH expression in myocardial tissues.

Results: P-EKKE clearly improved the cardiac function of MI rats. The area of myocardial infarction in MI rats undergoing P-EKKE treatment (P-EKKE group) was found to be predominantly decreased compared to MI rats without treatment (p < 0.05). P-EKKE treatment clearly inhibited apoptosis and increased H3S10ph expression in the area of myocardial infarction of MI rats compared to MI rats without treatment (p < 0.05). P-EKKE treatment significantly alleviated inflammation and decreased myocardial fibrosis in the area of myocardial infarction in MI rats compared to MI rats without treatment (p < 0.05). P-EKKE significantly increased the expression of Gil-1 and SHH in myocardial infarction of MI rats compared to MI rats without treatment (p < 0.05).

Conclusion: P-EKKE inhibited myocardial infarction and played an anti-inflammatory and myocardial protective role in MI rats. P-EKKE inhibited myocardial inflammation by activating the hedgehog signaling pathway and inhibited myocardial fibrosis by decreasing α-actin expression.

Graphical Abstract

[1]
Nabavizadeh, R.; Noorali, A.A.; Makhani, S.S.; Hong, G.; Holzman, S.; Patil, D.H.; Kim, F.Y.; Tso, P.L.; Turgeon, N.A.; Ogan, K.; Master, V.A. Transplant radical nephrectomy and transplant radical nephroureterectomy for renal cancer: postoperative and survival outcomes. Ann. Transplant., 2020, 25(1)e925865
[http://dx.doi.org/10.12659/AOT.925865] [PMID: 33093437]
[2]
Orrem, H.L.; Nilsson, P.H.; Pischke, S.E.; Grindheim, G.; Garred, P.; Seljeflot, I.; Husebye, T.; Aukrust, P.; Yndestad, A.; Andersen, G.Ø.; Barratt-Due, A.; Mollnes, T.E. Acute heart failure following myocardial infarction: complement activation correlates with the severity of heart failure in patients developing cardiogenic shock. ESC Heart Fail., 2018, 5(3), 292-301.
[http://dx.doi.org/10.1002/ehf2.12266] [PMID: 29424484]
[3]
Uygur, A.; Lee, R.T. Mechanisms of cardiac regeneration. Dev. Cell, 2016, 36(4), 362-374.
[http://dx.doi.org/10.1016/j.devcel.2016.01.018] [PMID: 26906733]
[4]
Mullan, C.W.; Sen, S.; Ahmad, T. Left ventricular assist devices versus heart transplantation for end stage heart failure is a misleading equivalency. JACC Heart Fail., 2021, 9(4), 290-292.
[http://dx.doi.org/10.1016/j.jchf.2021.02.004] [PMID: 33795115]
[5]
Hashimoto, H.; Olson, E.N.; Bassel-Duby, R. Therapeutic approaches for cardiac regeneration and repair. Nat. Rev. Cardiol., 2018, 15(10), 585-600.
[http://dx.doi.org/10.1038/s41569-018-0036-6] [PMID: 29872165]
[6]
Isomi, M.; Sadahiro, T.; Ieda, M. Progress and challenge of cardiac regeneration to treat heart failure. J. Cardiol., 2019, 73(2), 97-101.
[http://dx.doi.org/10.1016/j.jjcc.2018.10.002] [PMID: 30420106]
[7]
Nakagawa, Y.; Nishikimi, T.; Kuwahara, K. Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides, 2019, 111(1), 18-25.
[http://dx.doi.org/10.1016/j.peptides.2018.05.012] [PMID: 29859763]
[8]
Han, Y.; Zhu, L.; Song, G.X. Latest research progress in cardiac regeneration therapy. Pract J Cardiac Cerebr Pneum Vasc Dis., 2020, 28(3), 109-113.
[9]
Reza, N.; Musunuru, K.; Owens, A.T. From Hypertrophy to Heart Failure: What is new in genetic cardiomyopathies. Curr. Heart Fail. Rep., 2019, 16(5), 157-167.
[http://dx.doi.org/10.1007/s11897-019-00435-0] [PMID: 31243690]
[10]
Branton, A.; Jana, S. Improved metabolic cardiac biomarkers activity using rat cardiomyocytes cells line (H9c2) against biofield energy treated test sample. J. Cardiol., 2019, 3(1)000137
[11]
Wu, Z.; Yu, L.; Li, X.; Li, X. Protective mechanism of trimetazidine in myocardial cells in myocardial infarction rats through ERK signaling pathway. BioMed Res. Int., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/9924549] [PMID: 34651051]
[12]
Ke, S.R.; Liu, C.W.; Wu, Y.W.; Lai, K.R.; Wu, C.Y.; Lin, J.W.; Chan, C.L.; Pan, R.H. Systemic lupus erythematosus is associated with poor outcome after acute myocardial infarction. Nutr. Metab. Cardiovasc. Dis., 2019, 29(12), 1400-1407.
[http://dx.doi.org/10.1016/j.numecd.2019.08.006] [PMID: 31648884]
[13]
Hadas, Y.; Vincek, A.S.; Youssef, E.; Żak, M.M.; Chepurko, E.; Sultana, N.; Sharkar, M.T.K.; Guo, N.; Komargodski, R.; Kurian, A.A.; Kaur, K.; Magadum, A.; Fargnoli, A.; Katz, M.G.; Hossain, N.; Kenigsberg, E.; Dubois, N.C.; Schadt, E.; Hajjar, R.; Eliyahu, E.; Zangi, L. Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction. Circulation, 2020, 141(11), 916-930.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.041882] [PMID: 31992066]
[14]
Christia, P.; Frangogiannis, N.G. Targeting inflammatory pathways in myocardial infarction. Eur. J. Clin. Invest., 2013, 43(9), 986-995.
[http://dx.doi.org/10.1111/eci.12118] [PMID: 23772948]
[15]
Lai, X.X.; Zhang, N.; Chen, L.Y.; Luo, Y.Y.; Shou, B.Y.; Xie, X.X.; Liu, R.H. Latifolin protects against myocardial infarction by alleviating myocardial inflammatory via the HIF-1α/NF-κB/IL-6 pathway. Pharm. Biol., 2020, 58(1), 1165-1175.
[http://dx.doi.org/10.1080/13880209.2020.1840597] [PMID: 33222562]
[16]
Park, S.J.; Kim, R.Y.; Park, B.W.; Lee, S.; Choi, S.W.; Park, J.H.; Choi, J.J.; Kim, S.W.; Jang, J.; Cho, D.W.; Chung, H.M.; Moon, S.H.; Ban, K.; Park, H.J. Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction. Nat. Commun., 2019, 10(1), 3123.
[http://dx.doi.org/10.1038/s41467-019-11091-2] [PMID: 31311935]
[17]
Yang, J.; Huang, X.; Hu, F.; Fu, X.; Jiang, Z.; Chen, K. LncRNA ANRIL knockdown relieves myocardial cell apoptosis in acute myocardial infarction by regulating IL-33/ST2. Cell Cycle, 2019, 18(23), 3393-3403.
[http://dx.doi.org/10.1080/15384101.2019.1678965] [PMID: 31674275]
[18]
Nie, M.; Wang, Y.; Yu, Z.; Li, X.; Deng, Y.; Wang, Y.; Yang, D.; Li, Q.; Zeng, X.; Ju, J.; Liu, M.; Zhao, Q. AURKB promotes gastric cancer progression via activation of CCND1 expression. Aging (Albany NY), 2020, 12(2), 1304-1321.
[http://dx.doi.org/10.18632/aging.102684] [PMID: 31982864]
[19]
Zhong, Q.; Shi, G.; Zhang, Q.; Zhang, Y.; Levy, D.; Zhong, S. Role of phosphorylated histone H3 serine 10 in DEN-induced deregulation of Pol III genes and cell proliferation and transformation. Carcinogenesis, 2013, 34(11), 2460-2469.
[http://dx.doi.org/10.1093/carcin/bgt219] [PMID: 23774401]
[20]
Davis, J.; Molkentin, J.D. Myofibroblasts: Trust your heart and let fate decide. J. Mol. Cell. Cardiol., 2014, 70, 9-18.
[http://dx.doi.org/10.1016/j.yjmcc.2013.10.019] [PMID: 24189039]
[21]
Zhang, S.; Li, Y.; Huang, X.; Liu, K.; Wang, Q.D.; Chen, A.F.; Sun, K.; Lui, K.O.; Zhou, B. Seamless genetic recording of transiently activated mesenchymal gene expression in endothelial cells during cardiac fibrosis. Circulation, 2021, 144(25), 2004-2020.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.055417] [PMID: 34797683]
[22]
Briscoe, J.; Thérond, P.P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol., 2013, 14(7), 416-429.
[http://dx.doi.org/10.1038/nrm3598] [PMID: 23719536]
[23]
Ke, B.; Wang, X.N.; Liu, N.; Li, B.; Wang, X.J.; Zhang, R.P.; Liang, H. Sonic Hedgehog/Gli1 signaling pathway regulates cell migration and invasion via induction of epithelial-to-mesenchymal transition in gastric cancer. J. Cancer, 2020, 11(13), 3932-3943.
[http://dx.doi.org/10.7150/jca.42900] [PMID: 32328197]
[24]
Ingham, P.W.; McMahon, A.P. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev., 2001, 15(23), 3059-3087.
[http://dx.doi.org/10.1101/gad.938601] [PMID: 11731473]
[25]
Merchant, J.L.; Ding, L. Hedgehog signaling links chronic inflammation to gastric cancer precursor lesions. Cell. Mol. Gastroenterol. Hepatol., 2017, 3(2), 201-210.
[http://dx.doi.org/10.1016/j.jcmgh.2017.01.004] [PMID: 28275687]
[26]
Carbe, C.J.; Cheng, L.; Addya, S.; Gold, J.I.; Gao, E.; Koch, W.J.; Riobo, N.A. G i proteins mediate activation of the canonical hedgehog pathway in the myocardium. Am. J. Physiol. Heart Circ. Physiol., 2014, 307(1), H66-H72.
[http://dx.doi.org/10.1152/ajpheart.00166.2014] [PMID: 24816261]
[27]
Li, C.; Sheng, M.; Lin, Y.; Xu, D.; Tian, Y.; Zhan, Y.; Jiang, L.; Coito, A.J.; Busuttil, R.W.; Farmer, D.G.; Kupiec-Weglinski, J.W.; Ke, B. Functional crosstalk between myeloid Foxo1–β-catenin axis and Hedgehog/Gli1 signaling in oxidative stress response. Cell Death Differ., 2021, 28(5), 1705-1719.
[http://dx.doi.org/10.1038/s41418-020-00695-7] [PMID: 33288903]

© 2024 Bentham Science Publishers | Privacy Policy