Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter Article

Manganese-independent Reverse Transcriptase Activity of Tth DNA Polymerase with Two Amino Acid Substitutions

Author(s): Zhidan Luo, Yong Xue, Xiaoyu Chen, Jian Zhang and Chen Lu*

Volume 30, Issue 3, 2023

Published on: 03 March, 2023

Page: [193 - 200] Pages: 8

DOI: 10.2174/0929866530666230216113348

Price: $65

Abstract

Background: The DNA polymerase of Thermus thermophilus (Tth pol) presents reverse transcriptase activity with Mn2+, and can be used for one-step RT-qPCR. However, Mn2+ would reduce amplification fidelity and cause nonspecific products.

Objective: Eliminating the Mn2+ dependence of the reverse transcriptase activity of Tth pol by point mutations.

Methods: We constructed three variants I640F, I709K, and I640F/I709K, and measured their DNA polymerase and reverse transcriptase activities without Mn2+. Their enzymatic characteristics and PCR inhibitor resistance were also tested. Finally, these variants were applied in one-step RT-qPCR.

Results: All three variants presented reverse transcriptase activity with Mg2+ only and increased DNA polymerase activity. The variants, except I709K, showed no significant difference in thermostability, optimal pH, optimal NaCl concentration, storage stability and PCR inhibitor resistance compared to the wild type. Variant I640F/I709K had good performance in one-step RT-qPCR with Mg2+ only, whereas both variants with single substitution exhibited nonspecific amplification.

Conclusion: We successfully constructed three Tth pol variants possessing Mn2+ independent reverse transcriptase activity. The variant I640F/I709K was suitable for one-step RT-qPCR because of its good performance.

Next »
Graphical Abstract

[1]
Carballeira, N.; Nazabal, M.; Brito, J.; Garcia, O. Purification of a thermostable DNA polymerase from Thermus thermophilus HB8, useful in the polymerase chain reaction. Biotechniques, 1990, 9(3), 276-281.
[PMID: 2223065]
[2]
Myers, T.W.; Gelfand, D.H. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry, 1991, 30(31), 7661-7666.
[http://dx.doi.org/10.1021/bi00245a001] [PMID: 1714296]
[3]
Terpe, K. Overview of thermostable DNA polymerases for classical PCR applications: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2013, 97(24), 10243-10254.
[http://dx.doi.org/10.1007/s00253-013-5290-2] [PMID: 24177730]
[4]
Suslov, O.; Steindler, D.A. PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res., 2005, 33(20), e181.
[http://dx.doi.org/10.1093/nar/gni176] [PMID: 16314311]
[5]
Cusi, M.G.; Valassina, M.; Valensin, P.E. Comparison of M-MLV reverse transcriptase and Tth polymerase activity in RT-PCR of samples with low virus burden. Biotechniques, 1994, 17(6), 1034-1036.
[PMID: 7532975]
[6]
Katcher, H.L.; Schwartz, I. A distinctive property of Tth DNA polymerase: Enzymatic amplification in the presence of phenol. Biotechniques, 1994, 16(1), 84-92.
[PMID: 8136148]
[7]
Al-Soud, A.W.; Rådström, P. Capacity of nine thermostable DNA polymerases To mediate DNA amplification in the presence of PCR-inhibiting samples. Appl. Environ. Microbiol., 1998, 64(10), 3748-3753.
[http://dx.doi.org/10.1128/AEM.64.10.3748-3753.1998] [PMID: 9758794]
[8]
Bélec, L.; Authier, J.; Eliezer-Vanerot, M.C.; Piédouillet, C.; Mohamed, A.S.; Gherardi, R.K. Myoglobin as a polymerase chain reaction (PCR) inhibitor: A limitation for PCR from skeletal muscle tissue avoided by the use of Thermus thermophilus polymerase. Muscle Nerve, 1998, 21(8), 1064-1067.
[http://dx.doi.org/10.1002/(SICI)1097-4598(199808)21:8<1064:AID-MUS11>3.0.CO;2-U] [PMID: 9655125]
[9]
Poddar, S.K.; Sawyer, M.H.; Connor, J.D. Effect of inhibitors in clinical specimens on Taq and Tth DNA polymerase-based PCR amplification of influenza A virus. J. Med. Microbiol., 1998, 47(12), 1131-1135.
[http://dx.doi.org/10.1099/00222615-47-12-1131] [PMID: 9856650]
[10]
Al-Soud, W.A.; Rådström, P. Purification and characterization of PCR-inhibitory components in blood cells. J. Clin. Microbiol., 2001, 39(2), 485-493.
[http://dx.doi.org/10.1128/JCM.39.2.485-493.2001] [PMID: 11158094]
[11]
Cai, D.; Behrmann, O.; Hufert, F.; Dame, G.; Urban, G. Direct DNA and RNA detection from large volumes of whole human blood. Sci. Rep., 2018, 8(1), 3410.
[http://dx.doi.org/10.1038/s41598-018-21224-0] [PMID: 29467420]
[12]
Cai, D.; Behrmann, O.; Hufert, F.; Dame, G.; Urban, G. Capacity of rTth polymerase to detect RNA in the presence of various inhibitors. PLoS One, 2018, 13(1), e0190041.
[http://dx.doi.org/10.1371/journal.pone.0190041] [PMID: 29293599]
[13]
Pérez-Ruiz, M.; Torres, C.; García-López, P.A.; Ruiz-Extremera, A.; Salmerón, J.; Berzal-Herranz, A. Determination of HCV RNA concentration by direct quantitation of the products from a single RT-PCR. J. Virol. Methods, 1997, 69(1-2), 113-124.
[http://dx.doi.org/10.1016/S0166-0934(97)00155-9] [PMID: 9504757]
[14]
Poddar, S.K.; Sawyer, M.H.; Connor, J.D. Optimized PCR amplification of influenza A virus RNA using Tth DNA polymerase, incorporating uracil N glycosylase (UNG) in a single tube reaction. J. Clin. Lab. Anal., 1997, 11(6), 323-327.
[http://dx.doi.org/10.1002/(SICI)1098-2825(1997)11:6<323:AID-JCLA2>3.0.CO;2-6] [PMID: 9406050]
[15]
Laskus, T.; Radkowski, M.; Wang, L.F.; Vargas, H.; Rakela, J. Detection of hepatitis G virus replication sites by using highly strand-specific Tth-based reverse transcriptase PCR. J. Virol., 1998, 72(4), 3072-3075.
[http://dx.doi.org/10.1128/JVI.72.4.3072-3075.1998] [PMID: 9525631]
[16]
El-Deiry, W.S.; Downey, K.M.; So, A.G. Molecular mechanisms of manganese mutagenesis. Proc. Natl. Acad. Sci., 1984, 81(23), 7378-7382.
[http://dx.doi.org/10.1073/pnas.81.23.7378] [PMID: 6095289]
[17]
Aye, S.L.; Fujiwara, K.; Ueki, A.; Doi, N. Engineering of DNA polymerase I from Thermus thermophilus using compartmentalized self-replication. Biochem. Biophys. Res. Commun., 2018, 499(2), 170-176.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.098] [PMID: 29550479]
[18]
Blatter, N.; Bergen, K.; Nolte, O.; Welte, W.; Diederichs, K.; Mayer, J.; Wieland, M.; Marx, A. Structure and function of an RNA-reading thermostable DNA polymerase. Angew. Chem. Int. Ed., 2013, 52(45), 11935-11939.
[http://dx.doi.org/10.1002/anie.201306655] [PMID: 24106012]
[19]
Wu, E.Y.; Walsh, A.R.; Materne, E.C.; Hiltner, E.P.; Zielinski, B.; Miller, B.R., III; Mawby, L.; Modeste, E.; Parish, C.A.; Barnes, W.M.; Kermekchiev, M.B. A conservative isoleucine to leucine mutation causes major rearrangements and cold sensitivity in KlenTaq1 DNA polymerase. Biochemistry, 2015, 54(3), 881-889.
[http://dx.doi.org/10.1021/bi501198f] [PMID: 25537790]
[20]
Modeste, E.; Mawby, L.; Miller, B., III; Wu, E.; Parish, C.A. A molecular dynamics investigation of the thermostability of cold-sensitive I707L KlenTaq1 DNA polymerase and its wild-type counterpart. J. Chem. Inf. Model., 2019, 59(5), 2423-2431.
[http://dx.doi.org/10.1021/acs.jcim.9b00022] [PMID: 30897332]
[21]
Chen, X.Y.; Zhang, J.; Zhang, X.Y.; Tang, Y.T.; Shao, Y.C.; Luo, Z.D.; Lu, C. A rapid and accurate method for Tth DNA polymerase activity assay. Biotechnol. Bull., 2021, 37(5), 281-286.
[http://dx.doi.org/10.13560/j.cnki.biotech.bull.1985.2020-0953]
[22]
Tang, Y.; Chen, X.; Zhang, J.; Wang, J.; Hu, W.; Liu, S.; Luo, Z.; Xu, H. Generation and characterization of monoclonal antibodies against Tth DNA polymerase and its application to hot-start PCR. Protein Pept. Lett., 2021, 28(10), 1090-1098.
[http://dx.doi.org/10.2174/0929866528666210805122117] [PMID: 34353249]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy