Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Retrospective Review of Chromane Analogues as Anti-protozoal Leads: A Decade's Worth of Evolution

Author(s): Snehal Rajkumar Jadhav, Banoth Karan Kumar, Renuka Parshuram Joshi, Chougule Kishor Suryakant, Ala Chandu, Mohammed Muzaffar-Ur-Rehman, Yogesh Mahadu Khetmalis, Adinarayana Nandikolla, Sankaranarayan Murugesan* and Kondapalli Venkata Gowri Chandra Sekhar*

Volume 23, Issue 9, 2023

Published on: 15 March, 2023

Page: [713 - 735] Pages: 23

DOI: 10.2174/1568026623666230214093147

Price: $65

Abstract

Tropical, vector-borne, and neglected diseases with a limited number of medication therapies include Leishmaniasis, Malaria, Chagas and Human African Trypanosomiasis (HAT). Chromones are a large class of heterocyclic compounds with significant applications. This heterocycle has long aroused the interest of scientists and the general public from biosynthetic and synthetic points of view owing to its interesting pharmacological activities. Chromones and their hybrids and isomeric forms proved to be an exciting scaffold to investigate these diseases. The in vitro activities of Chromone, Chromane, and a panel of other related benzopyran class compounds against Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense, Trypanosoma cruzi, and numerous Leishmanial and Malarial species were investigated in our previous studies. The current article briefly describes the neglected diseases and the current treatment. This review aims to attempt to find better alternatives by scrutinizing natural and synthetic derivatives for which chromones and their analogues were discovered to be a new and highly effective scaffold for the treatment of neglected diseases, including compounds with dual activity or activity against multiple parasites. Additionally, the efficacy of other new scaffolds was also thoroughly examined. This article also discusses prospects for identifying more unique targets for the disease, focusing on flavonoids as drug molecules that are less cytotoxic and high antiprotozoal potential. It also emphasizes the changes that can be made while searching for potential therapies-comparing existing treatments against protozoal diseases and the advantages of the newer chromone analogues over them. Finally, the structure- activity relationship at each atom of the chromone has also been highlighted.

Graphical Abstract

[1]
Berman, J. Recent developments in Leishmaniasis: Epidemiology, diagnosis, and treatment. Curr. Infect. Dis. Rep., 2005, 7(1), 33-38.
[http://dx.doi.org/10.1007/s11908-005-0021-1] [PMID: 15610669]
[2]
Ferreira, L.L.G.; de Moraes, J.; Andricopulo, A.D. Approaches to advance drug discovery for neglected tropical diseases. Drug Discov. Today, 2022, 27(8), 2278-2287.
[http://dx.doi.org/10.1016/j.drudis.2022.04.004] [PMID: 35398562]
[3]
Gradoni, L. A brief introduction to leishmaniasis epidemiology. In: The Leishmaniases: Old Neglected Tropical Diseases; Gradoni, L.; Bruschi, F., Eds.; , 2018; pp. 1-13.
[http://dx.doi.org/10.1007/978-3-319-72386-0_1]
[4]
Santos, D.O.; Coutinho, C.E.R.; Madeira, M.F.; Bottino, C.G.; Vieira, R.T.; Nascimento, S.B.; Bernardino, A.; Bourguignon, S.C.; Corte-Real, S.; Pinho, R.T.; Rodrigues, C.R.; Castro, H.C. Leishmaniasis treatment-A challenge that remains: A review. Parasitol. Res., 2008, 103(1), 1-10.
[http://dx.doi.org/10.1007/s00436-008-0943-2] [PMID: 18389282]
[5]
Sasidharan, S.; Saudagar, P. Leishmaniasis: Where are we and where are we heading? Parasitol. Res., 2021, 120(5), 1541-1554.
[http://dx.doi.org/10.1007/s00436-021-07139-2] [PMID: 33825036]
[6]
Okwor, I.; Uzonna, J. Social and economic burden of human leishmaniasis. Am. J. Trop. Med. Hyg., 2016, 94(3), 489-493.
[http://dx.doi.org/10.4269/ajtmh.15-0408] [PMID: 26787156]
[7]
Desjeux, P. The increase in risk factors for leishmaniasis worldwide. Trans. R. Soc. Trop. Med. Hyg., 2001, 95(3), 239-243.
[http://dx.doi.org/10.1016/S0035-9203(01)90223-8] [PMID: 11490989]
[8]
Elmahallawy, E.K.; Sampedro Martínez, A.; Rodriguez-Granger, J.; Hoyos-Mallecot, Y.; Agil, A.; Navarro, M.J.M.; Gutierrez, F.J. Diagnosis of leishmaniasis. J. Infect. Dev. Ctries., 2014, 8(8), 961-972.
[http://dx.doi.org/10.3855/jidc.4310] [PMID: 25116660]
[9]
Zulfiqar, B.; Shelper, T.B.; Avery, V.M. Leishmaniasis drug discovery: Recent progress and challenges in assay development. Drug Discov. Today, 2017, 22(10), 1516-1531.
[http://dx.doi.org/10.1016/j.drudis.2017.06.004] [PMID: 28647378]
[10]
Sundar, S.; Singh, A. Recent developments and future prospects in the treatment of visceral leishmaniasis. Ther. Adv. Infect. Dis., 2016, 3(3-4), 98-109.
[http://dx.doi.org/10.1177/2049936116646063] [PMID: 27536354]
[11]
van Griensven, J.; Diro, E. Visceral Leishmaniasis. Infect. Dis. Clin. North Am., 2012, 26(2), 309-322.
[http://dx.doi.org/10.1016/j.idc.2012.03.005] [PMID: 22632641]
[12]
Ganguly, S.; Das, N.K.; Barbhuiya, J.N.; Chatterjee, M. Post-kalaazar dermal leishmaniasis - an overview. Int. J. Dermatol., 2010, 49(8), 921-931.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04558.x] [PMID: 21128917]
[13]
Zijlstra, E.E. The immunology of post-kala-azar dermal leishmaniasis (PKDL). Parasit. Vectors, 2016, 9(1), 464.
[http://dx.doi.org/10.1186/s13071-016-1721-0] [PMID: 27553063]
[14]
Abadías-Granado, I.; Diago, A.; Cerro, P.A.; Palma-Ruiz, A.M.; Gilaberte, Y. Cutaneous and mucocutaneous leishmaniasis. Dermatol Ther, 2021, 112, 61-618.
[http://dx.doi.org/10.1111/j.1529-8019.2009.01272.x] [PMID: 19889134]
[15]
Goto, H.; Lauletta, L.J.A. Cutaneous and mucocutaneous leishmaniasis. Infect. Dis. Clin. North Am., 2012, 26(2), 293-307.
[http://dx.doi.org/10.1016/j.idc.2012.03.001] [PMID: 22632640]
[16]
Oryan, A.; Akbari, M. Worldwide risk factors in leishmaniasis. Asian Pac. J. Trop. Med., 2016, 9, 925-932.
[http://dx.doi.org/10.1016/j.apjtm.2016.06.021] [PMID: 27794384]
[17]
Reguera, R.M.; Morán, M.; Pérez-Pertejo, Y.; García-Estrada, C.; Balaña-Fouce, R. Current status on prevention and treatment of canine leishmaniasis. Vet. Parasitol., 2016, 227, 98-114.
[http://dx.doi.org/10.1016/j.vetpar.2016.07.011] [PMID: 27523945]
[18]
Sunyoto, T.; Potet, J.; Boelaert, M. Why miltefosine-a life-saving drug for leishmaniasis-is unavailable to people who need it the most. BMJ Glob. Health, 2018, 3(3), e000709.
[http://dx.doi.org/10.1136/bmjgh-2018-000709] [PMID: 29736277]
[19]
Soto, J.; Soto, P. Miltefosine: Oral treatment of leishmaniasis. Expert Rev. Anti Infect. Ther., 2006, 4(2), 177-185.
[http://dx.doi.org/10.1586/14787210.4.2.177] [PMID: 16597200]
[20]
Sundar, S.; Chakravarty, J. Leishmaniasis: An update of current pharmacotherapy. Expert Opin. Pharmacother., 2013, 14(1), 53-63.
[http://dx.doi.org/10.1517/14656566.2013.755515] [PMID: 23256501]
[21]
Singh, N.; Kumar, M.; Singh, R.K. Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pac. J. Trop. Med., 2012, 5(6), 485-497.
[http://dx.doi.org/10.1016/S1995-7645(12)60084-4] [PMID: 22575984]
[22]
Ouellette, M.; Drummelsmith, J.; Papadopoulou, B. Leishmaniasis: Drugs in the clinic, resistance and new developments. Drug Resist. Updat., 2004, 7(4-5), 257-266.
[http://dx.doi.org/10.1016/j.drup.2004.07.002] [PMID: 15533763]
[23]
Singh, S.; Sivakumar, R. Challenges and new discoveries in the treatment of leishmaniasis. J. Infect. Chemother., 2004, 10(6), 307-315.
[http://dx.doi.org/10.1007/s10156-004-0348-9] [PMID: 15614453]
[24]
Roatt, B.M.; de Oliveira Cardoso, J.M.; De Brito, R.C.F.; Coura-Vital, W.; de Oliveira, A.S.R.D.; Reis, A.B. Recent advances and new strategies on leishmaniasis treatment. Appl. Microbiol. Biotechnol., 2020, 104(21), 8965-8977.
[http://dx.doi.org/10.1007/s00253-020-10856-w] [PMID: 32875362]
[25]
Bern, C.; Adler-Moore, J.; Berenguer, J.; Boelaert, M.; Boer, M.; Davidson, R.N.; Figueras, C.; Gradoni, L.; Kafetzis, D.A.; Ritmeijer, K.; Rosenthal, E.; Royce, C.; Russo, R.; Sundar, S.; Alvar, J. Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin. Infect. Dis., 2006, 43(7), 917-924.
[http://dx.doi.org/10.1086/507530] [PMID: 16941377]
[26]
den Boer, M.; Argaw, D.; Jannin, J.; Alvar, J. Leishmaniasis impact and treatment access. Clin. Microbiol. Infect., 2011, 17(10), 1471-1477.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03635.x] [PMID: 21933305]
[27]
Sundar, S.; Chakravarty, J. Paromomycin in the treatment of leishmaniasis. Expert Opin. Investig. Drugs, 2008, 17(5), 787-794.
[http://dx.doi.org/10.1517/13543784.17.5.787] [PMID: 18447603]
[28]
McGwire, B.S.; Satoskar, A.R. Leishmaniasis: Clinical syndromes and treatment. QJM, 2014, 107(1), 7-14.
[http://dx.doi.org/10.1093/qjmed/hct116] [PMID: 23744570]
[29]
Tuteja, R. Malaria − an overview. FEBS J., 2007, 274(18), 4670-4679.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05997.x] [PMID: 17824953]
[30]
Cowman, A.F.; Healer, J.; Marapana, D.; Marsh, K. Malaria: Biology and disease. Cell, 2016, 167(3), 610-624.
[http://dx.doi.org/10.1016/j.cell.2016.07.055] [PMID: 27768886]
[31]
Basu, S.; Sahi, P.K. Malaria: An update. Indian J. Pediatr., 2017, 84(7), 521-528.
[http://dx.doi.org/10.1007/s12098-017-2332-2] [PMID: 28357581]
[32]
Gilles, H.M.; Lawson, J.B.; Sibelas, M.; Voller, A.; Allan, N. Malaria, anaemia and pregnancy. Ann. Trop. Med. Parasitol., 1969, 63(2), 245-263.
[http://dx.doi.org/10.1080/00034983.1969.11686625] [PMID: 4190223]
[33]
Sachs, J.; Malaney, P. The economic and social burden of malaria. Nature, 2002, 415(6872), 680-685.
[http://dx.doi.org/10.1038/415680a] [PMID: 11832956]
[34]
Gallup, J.L.; Sachs, J.D. the economic burden of malaria working papers. Working Papers, 2000, 52, 1-22.
[35]
Paaijmans, K.P.; Read, A.F.; Thomas, M.B. Understanding the link between malaria risk and climate. Proc. Natl. Acad. Sci., 2009, 106(33), 13844-13849.
[http://dx.doi.org/10.1073/pnas.0903423106] [PMID: 19666598]
[36]
Trampuz, A.; Jereb, M.; Muzlovic, I.; Prabhu, R.M. Clinical review: Severe malaria. Crit. Care, 2003, 7(4), 315-323.
[http://dx.doi.org/10.1186/cc2183] [PMID: 12930555]
[37]
Matteelli, A.; Castelli, F.; Caligaris, S. Life cycle of malaria parasites. In: Handbook of Malaria Infection in the Tropics. Associazione Italiana ‘Amici di R Follereau’ Organizzazione per la Cooperazione Sanitaria Internazionale; Carosi, G.; Castelli, F., Eds.; Bologna, 1997; pp. 17-23.
[38]
Newton, P.; White, N. Malaria: New developments in treatment and prevention. Annu. Rev. Med., 1999, 50, 179-192.
[http://dx.doi.org/10.1146/annurev.med.50.1.179] [PMID: 10073271]
[39]
Wingfield, A. Treatment of malaria in England. BMJ, 1943, 1(4293), 476-477.
[http://dx.doi.org/10.1136/bmj.1.4293.476] [PMID: 20784787]
[40]
Schlitzer, M. Antimalarial drugs - what is in use and what is in the pipeline. Arch. Pharm., 2008, 341(3), 149-163.
[http://dx.doi.org/10.1002/ardp.200700184] [PMID: 18297679]
[41]
Hall, A.P. The treatment of malaria. BMJ, 1976, 1(6005), 323-328.
[http://dx.doi.org/10.1136/bmj.1.6005.323] [PMID: 764937]
[42]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J., 2011, 10(1), 144.
[http://dx.doi.org/10.1186/1475-2875-10-144] [PMID: 21609473]
[43]
Croft, A.M.; Cook, G.C.; Beer, M.D.; Whitehouse, D.P. Safety evaluation of the drugs available to prevent malaria. Expert Opin. Drug Saf., 2002, 1(1), 19-27.
[http://dx.doi.org/10.1517/14740338.1.1.19] [PMID: 12904156]
[44]
Saifi, A. Antimalarial drugs: Mode of action and status of resistance. Afr. J. Pharm. Pharmacol., 2013, 7(5), 148-156.
[http://dx.doi.org/10.5897/AJPPX12.015]
[45]
White, N.J. Cardiotoxicity of antimalarial drugs. Lancet Infect. Dis., 2007, 7(8), 549-558.
[http://dx.doi.org/10.1016/S1473-3099(07)70187-1] [PMID: 17646028]
[46]
Wernsdorfer, W.H. Coartemether (artemether and lumefantrine): An oral antimalarial drug. Expert Rev. Anti Infect. Ther., 2004, 2(2), 181-196.
[http://dx.doi.org/10.1586/14787210.2.2.181] [PMID: 15482185]
[47]
Olliaro, P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol. Ther., 2001, 89(2), 207-219.
[http://dx.doi.org/10.1016/S0163-7258(00)00115-7] [PMID: 11316521]
[48]
Patel, S.N.; Kain, K.C. Atovaquone/proguanil for the prophylaxis and treatment of malaria. Expert Rev. Anti Infect. Ther., 2005, 3(6), 849-861.
[http://dx.doi.org/10.1586/14787210.3.6.849] [PMID: 16307498]
[49]
Coura, J.R.; Viñas, P.A. Chagas disease: A new worldwide challenge. Nature, 2010, 465(S7301), S6-S7.
[http://dx.doi.org/10.1038/nature09221] [PMID: 20571554]
[50]
Echeverria, L.E.; Morillo, C.A. American Trypanosomiasis (Chagas Disease). Infect. Dis. Clin. North Am., 2019, 33(1), 119-134.
[http://dx.doi.org/10.1016/j.idc.2018.10.015] [PMID: 30712757]
[51]
Bern, C.; Kjos, S.; Yabsley, M.J.; Montgomery, S.P. Trypanosoma cruzi and Chagas’ Disease in the United States. Clin. Microbiol. Rev., 2011, 24(4), 655-681.
[http://dx.doi.org/10.1128/CMR.00005-11] [PMID: 21976603]
[52]
Pérez-Molina, J.A.; Perez, A.M.; Norman, F.F.; Monge-Maillo, B.; López-Vélez, R. Old and new challenges in Chagas disease. Lancet Infect. Dis., 2015, 15(11), 1347-1356.
[http://dx.doi.org/10.1016/S1473-3099(15)00243-1] [PMID: 26231478]
[53]
Teixeira, A.R.L.; Nitz, N.; Guimaro, M.C.; Gomes, C.; Santos-Buch, C.A. Chagas disease. Postgrad. Med. J., 2006, 82(974), 788-798.
[http://dx.doi.org/10.1136/pgmj.2006.047357] [PMID: 17148699]
[54]
Hannaert, V.; Bringaud, F.; Opperdoes, F.R.; Michels, P.A.M. (2003b). Evolution of energy metabolism and its compartmentation in Kinetoplastida. Biol. Dis., 2(1), 11. b
[http://dx.doi.org/10.1186/1475-9292-2-11]
[55]
Tyler, K.M.; Engman, D.M. The life cycle of Trypanosoma cruzi revisited. Int. J. Parasitol., 2001, 31(5-6), 472-481.
[http://dx.doi.org/10.1016/S0020-7519(01)00153-9] [PMID: 11334932]
[56]
Cardoso, C.S.; Ribeiro, A.L.P.; Oliveira, C.D.L.; Oliveira, L.C.; Ferreira, A.M.; Bierrenbach, A.L.; Silva, J.L.P.; Colosimo, E.A.; Ferreira, J.E.; Lee, T.H.; Busch, M.P.; Reingold, A.L.; Sabino, E.C. Beneficial effects of benznidazole in Chagas disease: NIH SaMi-Trop cohort study. PLoS Negl. Trop. Dis., 2018, 12(11), e0006814.
[http://dx.doi.org/10.1371/journal.pntd.0006814] [PMID: 30383777]
[57]
Pérez-Molina, J.A.; Pérez-Ayala, A.; Moreno, S.; Fernández-González, M.C.; Zamora, J.; López-Velez, R. Use of benznidazole to treat chronic Chagas’ disease: A systematic review with a meta-analysis. J. Antimicrob. Chemother., 2009, 64(6), 1139-1147.
[http://dx.doi.org/10.1093/jac/dkp357] [PMID: 19819909]
[58]
Müller Kratz, J.; Garcia Bournissen, F.; Forsyth, C.J.; Sosa-Estani, S. Clinical and pharmacological profile of benznidazole for treatment of Chagas disease. Expert Rev. Clin. Pharmacol., 2018, 11(10), 943-957.
[http://dx.doi.org/10.1080/17512433.2018.1509704] [PMID: 30111183]
[59]
Lascano, F.; Altcheh, J.; Lascano, F.; Altcheh, J. An evaluation of nifurtimox for Chagas disease in children. Expert Opin. Orphan Drugs, 2021, 9(5), 139-149.
[http://dx.doi.org/10.1080/21678707.2021.1933431]
[60]
Bermudez, J.; Davies, C.; Simonazzi, A.; Pablo Real, J.; Palma, S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop., 2016, 156, 1-16.
[http://dx.doi.org/10.1016/j.actatropica.2015.12.017] [PMID: 26747009]
[61]
Kennedy, P.G.E. Update on human African trypanosomiasis (sleeping sickness). J. Neurol., 2019, 266(9), 2334-2337.
[http://dx.doi.org/10.1007/s00415-019-09425-7] [PMID: 31209574]
[62]
Brun, R.; Blum, J. Human African trypanosomiasis. Infect. Dis. Clin. North Am., 2012, 26(2), 261-273.
[http://dx.doi.org/10.1016/j.idc.2012.03.003] [PMID: 22632638]
[63]
Webster, G.F.; Poyner, T.; Cunliffe, B. Acne vulgaris * Commentary: A UK primary care perspective on treating acne. BMJ, 2002, 325(7362), 475-479.
[http://dx.doi.org/10.1136/bmj.325.7362.475] [PMID: 12202330]
[64]
Kennedy, P.G.E. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol., 2012, 4422, 1-9.
[PMID: 23260189]
[65]
Omowumi, T, K.; Charity, K, L.; Abolanle, AA, K. Trypanosomiasis: Recent advances in strategies for control. Glob. J. Infect. Dis. Clin. Res., 2020, 6(1), 037-041.
[http://dx.doi.org/10.17352/2455-5363.000033]
[66]
Barrett, M.P. Potential new drugs for human African trypanosomiasis: Some progress at last. Curr. Opin. Infect. Dis., 2010, 23(6), 603-608.
[http://dx.doi.org/10.1097/QCO.0b013e32833f9fd0] [PMID: 20844428]
[67]
Nok, A.J. Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis. Parasitol. Res., 2003, 90(1), 71-79.
[http://dx.doi.org/10.1007/s00436-002-0799-9] [PMID: 12743807]
[68]
Burri, C.; Brun, R. Eflornithine for the treatment of human African trypanosomiasis. Parasitol. Res., 2003, 90(S1), S49-S52.
[http://dx.doi.org/10.1007/s00436-002-0766-5] [PMID: 12811548]
[69]
Denise, H.; Barrett, M.P. Uptake and mode of action of drugs used against sleeping sickness. Biochem. Pharmacol., 2001, 61(1), 1-5.
[http://dx.doi.org/10.1016/S0006-2952(00)00477-9] [PMID: 11137702]
[70]
Wéry, M. Drug used in the treatment of sleeping sickness (human African trypanosomiasis: HAT). Int. J. Antimicrob. Agents, 1994, 4(3), 227-238.
[http://dx.doi.org/10.1016/0924-8579(94)90012-4] [PMID: 18611614]
[71]
Barrett, S.V.; Barrett, M.P. Anti-sleeping sickness drugs and cancer chemotherapy. Parasitol. Today, 2000, 16(1), 7-9.
[http://dx.doi.org/10.1016/S0169-4758(99)01560-4] [PMID: 10637579]
[72]
Barrett, M.P.; Boykin, D.W.; Brun, R.; Tidwell, R.R. Human African trypanosomiasis: Pharmacological re-engagement with a neglected disease. Br. J. Pharmacol., 2007, 152(8), 1155-1171.
[http://dx.doi.org/10.1038/sj.bjp.0707354] [PMID: 17618313]
[73]
Steverding, D. The development of drugs for treatment of sleeping sickness: a historical review. Parasit. Vectors, 2010, 3(1), 15.
[http://dx.doi.org/10.1186/1756-3305-3-15] [PMID: 20219092]
[74]
Silva, C.F.M.; Pinto, D.C.G.A.; Fernandes, P.A.; Silva, A.M.S. Evolution of chromone-like compounds as potential antileishmanial agents, through the 21st century. Expert Opin. Drug Discov., 2020, 15(12), 1425-1439.
[http://dx.doi.org/10.1080/17460441.2020.1801630] [PMID: 32783762]
[75]
Wong, I.L.K.; Chan, K.F.; Chan, T.H.; Chow, L.M.C. Flavonoid dimers as novel, potent antileishmanial agents. J. Med. Chem., 2012, 55(20), 8891-8902.
[http://dx.doi.org/10.1021/jm301172v] [PMID: 22989363]
[76]
Prati, F.; Goldman-Pinkovich, A.; Lizzi, F.; Belluti, F.; Koren, R.; Zilberstein, D.; Bolognesi, M.L. Quinone-amino acid conjugates targeting Leishmania amino acid transporters. PLoS One, 2014, 9(9), e107994.
[http://dx.doi.org/10.1371/journal.pone.0107994] [PMID: 25254495]
[77]
Mallick, S.; Dutta, A.; Ghosh, J.; Maiti, S.; Mandal, A.K.; Banerjee, R.; Bandyopadhyay, C.; Pal, C. Protective therapy with novel chromone derivative against Leishmania donovani infection induces Th1 response in vivo. Chemotherapy, 2011, 57(5), 388-393.
[http://dx.doi.org/10.1159/000330856] [PMID: 22024637]
[78]
Coa, J.C.; García, E.; Carda, M.; Agut, R.; Vélez, I.D.; Muñoz, J.A.; Yepes, L.M.; Robledo, S.M.; Cardona, W.I. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med. Chem. Res., 2017, 26(7), 1405-1414.
[http://dx.doi.org/10.1007/s00044-017-1846-5]
[79]
Uivarosi, V.; Munteanu, A.C. Nițulescu, G.M. An overview of synthetic and semisynthetic flavonoid derivatives and analogues: Perspectives in drug discovery. Studies Nat. Prod. Chem., 2019, 60, 29-84.
[http://dx.doi.org/10.1016/B978-0-444-64181-6.00002-4]
[80]
Zhang, Y.; Chen, H. Genistein, an epigenome modifier during cancer prevention. Epigenetics, 2011, 6(7), 888-891.
[http://dx.doi.org/10.4161/epi.6.7.16315] [PMID: 21610327]
[81]
Yu, Z.; Li, W.; Liu, F. Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells. Cancer Lett., 2004, 215(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2004.06.010] [PMID: 15488634]
[82]
Nageen, B.; Sarfraz, I.; Rasul, A.; Hussain, G.; Rukhsar, F.; Irshad, S.; Riaz, A.; Selamoglu, Z.; Ali, M. Eupatilin: A natural pharmacologically active flavone compound with its wide range applications. J. Asian Nat. Prod. Res., 2020, 22(1), 1-16.
[http://dx.doi.org/10.1080/10286020.2018.1492565] [PMID: 29973097]
[83]
Naz, S.; Imran, M.; Rauf, A.; Orhan, I.E.; Shariati, M.A. Iahtisham-Ul-Haq; IqraYasmin; Shahbaz, M.; Qaisrani, T.B.; Shah, Z.A.; Plygun, S.; Heydari, M. Chrysin: Pharmacological and therapeutic properties. Life Sci., 2019, 235, 116797.
[http://dx.doi.org/10.1016/j.lfs.2019.116797] [PMID: 31472146]
[84]
Chen, K.T.J.; Militao, G.G.C.; Anantha, M.; Witzigmann, D.; Leung, A.W.Y.; Bally, M.B. Development and characterization of a novel flavopiridol formulation for treatment of acute myeloid leukemia. J. Control. Release, 2021, 333, 246-257.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.042] [PMID: 33798663]
[85]
Cheng, N.; Yi, W.B.; Wang, Q-Q.; Peng, S-M.; Zou, X-Q. Synthesis and α-glucosidase inhibitory activity of chrysin, diosmetin, apigenin, and luteolin derivatives. Chin. Chem. Lett., 2014, 25(7), 1094-1098.
[http://dx.doi.org/10.1016/j.cclet.2014.05.021]
[86]
D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[87]
Guo, A.J.Y.; Xie, H.Q.; Choi, R.C.Y.; Zheng, K.Y.Z.; Bi, C.W.C.; Xu, S.L.; Dong, T.T.X.; Tsim, K.W.K. Galangin, a flavonol derived from Rhizoma Alpiniae officinarum, inhibits acetylcholinesterase activity in vitro. Chem. Biol. Interact., 2010, 187(1-3), 246-248.
[http://dx.doi.org/10.1016/j.cbi.2010.05.002] [PMID: 20452337]
[88]
Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Palaniswami, R.; Nishigaki, Y.; Nishigaki, I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem., 2014, 86, 103-112.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.011] [PMID: 25147152]
[89]
Ong, K.C.; Khoo, H.E. Biological effects of myricetin. Gen. Pharmacol., 1997, 29(2), 121-126.
[http://dx.doi.org/10.1016/S0306-3623(96)00421-1] [PMID: 9251891]
[90]
Mehta, P.; Pawar, A.; Mahadik, K.; Bothiraja, C. Emerging novel drug delivery strategies for bioactive flavonol fisetin in biomedicine. Biomed. Pharmacother., 2018, 106, 1282-1291.
[http://dx.doi.org/10.1016/j.biopha.2018.07.079] [PMID: 30119198]
[91]
Thomson, N.C. Nedocromil sodium: An overview. Respir. Med., 1989, 83(4), 269-276.
[http://dx.doi.org/10.1016/S0954-6111(89)80195-7] [PMID: 2558400]
[92]
Prabakaran, K.; Ilayaraja, S.; Manivannan, R. Evaluation of wound healing activity of baicalein-7-o- β-dglucuronide isolated from Leucas aspera. J. Appl. Pharm. Sci., 2013, 3, 46-51.
[http://dx.doi.org/10.7324/JAPS.2013.31208]
[93]
Xie, S.; Li, S.; Tian, J.; Li, F. Iguratimod as a new drug for rheumatoid arthritis: Current landscape. Front. Pharmacol., 2020, 11, 73.
[http://dx.doi.org/10.3389/fphar.2020.00073]
[94]
Robertson, D.G.; Epstein, S.W.; Warrell, D.A. Trial of disodium cromoglycate in bronchial asthma. BMJ, 1969, 1(5643), 552-554.
[http://dx.doi.org/10.1136/bmj.1.5643.552] [PMID: 4885026]
[95]
Giannini, I.; Amato, A.; Basso, L.; Tricomi, N.; Marranci, M.; Pecorella, G.; Tafuri, S.; Pennisi, D.; Altomare, D.F. Flavonoids mixture (diosmin, troxerutin, hesperidin) in the treatment of acute hemorrhoidal disease: a prospective, randomized, triple-blind, controlled trial. Tech. Coloproctol., 2015, 19(6), 339-345.
[http://dx.doi.org/10.1007/s10151-015-1302-9] [PMID: 25893991]
[96]
Abdel-Fattah, A.; Aboul-Enein, N.; Wassel, G.; El-Menshawi, B. Preliminary report on the therapeutic effect of khellin in psoriasis. Dermatology, 1983, 167(2), 109-110.
[http://dx.doi.org/10.1159/000249760] [PMID: 6628802]
[97]
Zhang, Z.B.; Yang, Q.T. The testosterone mimetic properties of icariin. Asian J. Androl., 2006, 8(5), 601-605.
[http://dx.doi.org/10.1111/j.1745-7262.2006.00197.x] [PMID: 16751992]
[98]
Arcaniolo, D.; Conquy, S.; Tarcan, T. Flavoxate: Present and future. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(5), 719-731.
[PMID: 25807422]
[99]
Otero, E.; Vergara, S.; Robledo, S.; Cardona, W.; Carda, M.; Vélez, I.; Rojas, C.; Otálvaro, F. Synthesis, leishmanicidal and cytotoxic activity of triclosan-chalcone, triclosan-chromone and triclosan-coumarin hybrids. Molecules, 2014, 19(9), 13251-13266.
[http://dx.doi.org/10.3390/molecules190913251] [PMID: 25170948]
[100]
de Figueiredo, P.E.; Merli, R.J.; Espuri, P.F.; Nunes, J.B.; Colombo, F.A.; Sierra, E.J.T.; de Paulo, D.C.; dos Santos, M.H.; Carvalho, D.T.; Marques, M.J. Investigation of 8-methoxy-3-(4-nitrobenzoyl)-6-propyl-2H-chromen-2-one as a promising coumarin compound for the development of a new and orally effective antileishmanial agent. Mol. Biol. Rep., 2020, 47(11), 8465-8474.
[http://dx.doi.org/10.1007/s11033-020-05887-5] [PMID: 33021720]
[101]
Rosa, I.A.; de Almeida, L.; Alves, K.F.; Marques, M.J.; Fregnan, A.M.; Silva, C.A.; Giacoppo, J.O.S.; Ramalho, T.C.; Carvalho, D.T.; dos Santos, M.H. Synthesis and in vitro evaluation of leishmanicidal activity of 7-hydroxy-4-phenylcoumarin derivatives. Med. Chem. Res., 2017, 26(1), 131-139.
[http://dx.doi.org/10.1007/s00044-016-1729-1]
[102]
Sangshetti, J.N.; Kalam Khan, F.A.; Kulkarni, A.A.; Patil, R.H.; Pachpinde, A.M.; Lohar, K.S.; Shinde, D.B. Antileishmanial activity of novel indolyl-coumarin hybrids: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorg. Med. Chem. Lett., 2016, 26(3), 829-835.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.085] [PMID: 26778149]
[103]
Vargas, E.; Echeverri, F.; Vélez, I.; Robledo, S.; Quiñones, W. Synthesis and evaluation of thiochroman-4-one derivatives as potential leishmanicidal agents. Molecules, 2017, 22(12), 2041.
[http://dx.doi.org/10.3390/molecules22122041] [PMID: 29186046]
[104]
Vargas, E.; Echeverri, F.; Upegui, Y.; Robledo, S.; Quiñones, W. Hydrazone derivatives enhance antileishmanial activity of thiochroman-4-ones. Molecules, 2017, 23(1), 70.
[http://dx.doi.org/10.3390/molecules23010070] [PMID: 29286346]
[105]
Monzote, L.; Stamberg, W.; Patel, A.; Rosenau, T.; Maes, L.; Cos, P.; Gille, L. Synthetic chromanol derivatives and their interaction with complex III in mitochondria from bovine, yeast, and Leishmania. Chem. Res. Toxicol., 2011, 24(10), 1678-1685.
[http://dx.doi.org/10.1021/tx200233c] [PMID: 21809846]
[106]
Mogana, R.; Adhikari, A.; Debnath, S.; Hazra, S.; Hazra, B.; Teng-Jin, K.; Wiart, C. The antiacetylcholinesterase and antileishmanial activities of Canarium patentinervium Miq. BioMed Res. Int., 2014, 2014, 903529.
[http://dx.doi.org/10.1155/2014/903529] [PMID: 24949478]
[107]
Ortiz, C.; Echeverri, F.; Robledo, S.; Lanari, D.; Curini, M.; Quiñones, W.; Vargas, E. Synthesis and evaluation of antileishmanial and cytotoxic activity of benzothiopyrane derivatives. Molecules, 2020, 25(4), 800.
[http://dx.doi.org/10.3390/molecules25040800] [PMID: 32059518]
[108]
Lerdsirisuk, P.; Maicheen, C.; Ungwitayatorn, J. Antimalarial activity of HIV-1 protease inhibitor in chromone series. Bioorg. Chem., 2014, 57, 142-147.
[http://dx.doi.org/10.1016/j.bioorg.2014.10.006] [PMID: 25462990]
[109]
Maicheen, C.; Ungwitayatorn, J. Antimalarial and β-hematin formation inhibitory activities of chromone derivatives. Sci. Asia, 2019, 45(3), 221-228.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2019.45.221]
[110]
Maicheen, C.; Ungwitayatorn, J. Molecular docking study of chromone derivatives as dual inhibitor against plasmepsin Ii and Falcipain-2. Chiang Mai J. Sci., 2020, 47, 98-113.
[111]
Iyamu, I.D.; Zhao, Y.; Parvatkar, P.T.; Roberts, B.F.; Casandra, D.R.; Wojtas, L.; Kyle, D.E.; Chakrabarti, D.; Manetsch, R. Structure-activity and structure-property relationship studies of spirocyclic chromanes with antimalarial activity. Bioorg. Med. Chem., 2022, 57, 116629.
[http://dx.doi.org/10.1016/j.bmc.2022.116629] [PMID: 35091169]
[112]
Isaka, M.; Palasarn, S.; Choowong, W.; Kawashima, K.; Mori, S.; Mongkolsamrit, S.; Thanakitpipattana, D. Benzophenone and chromone derivatives and their dimers from the scale-insect pathogenic fungus Orbiocrella petchii BCC 51377. Tetrahedron, 2019, 75(45), 130646.
[http://dx.doi.org/10.1016/j.tet.2019.130646]
[113]
Upegui, Y.; Robledo, S.M.; Gil Romero, J.F.; Quiñones, W.; Archbold, R.; Torres, F.; Escobar, G.; Nariño, B.; Echeverri, F. In vivo antimalarial activity of α-mangostin and the new xanthone ᵹ-mangostin. Phytother. Res., 2015, 29(8), 1195-1201.
[http://dx.doi.org/10.1002/ptr.5362] [PMID: 25943035]
[114]
Souza, A.J. Gomes de, A.L.; Ademar, S.L.P.; Maria, F.M.S.; Guy, T.J. in vitro evaluation of synthetic flavones against Trypanosoma cruzi. Rev. Virtual Quim., 2021, 13(1), 146-155.
[http://dx.doi.org/10.21577/1984-6835.20200136]
[115]
Maciel Diogo, G.; Andrade, J.S.; Sales, P.A., Junior; Maria Fonseca Murta, S.; Dos Santos, V.M.R.; Taylor, J.G. Trypanocidal activity of flavanone derivatives. Molecules, 2020, 25(2), 397.
[http://dx.doi.org/10.3390/molecules25020397] [PMID: 31963596]
[116]
Guíñez, R.F.; Matos, M.J.; Vazquez-Rodriguez, S.; Santana, L.; Uriarte, E.; Olea-Azar, C.; Maya, J.D. Synthesis and evaluation of antioxidant and trypanocidal properties of a selected series of coumarin derivatives. Future Med. Chem., 2013, 5(16), 1911-1922.
[http://dx.doi.org/10.4155/fmc.13.147] [PMID: 24175743]
[117]
González, L.A.; Robledo, S.; Upegui, Y.; Escobar, G.; Quiñones, W. Synthesis and evaluation of trypanocidal activity of chromane-type compounds and acetophenones. Molecules, 2021, 26(23), 7067.
[http://dx.doi.org/10.3390/molecules26237067] [PMID: 34885649]
[118]
Allen, T.G.; Isaiah, D.I.; Ramaite, S.S.; Mnyakeni, M. Synthesis and biological evaluation of chromone-3-carboxamides. ARKIVOC, 2020, 5, 148-160.
[http://dx.doi.org/10.24820/ark.5550190.p011.356]
[119]
Borsari, C.; Luciani, R.; Pozzi, C.; Poehner, I.; Henrich, S.; Trande, M.; Cordeiro-da-Silva, A.; Santarem, N.; Baptista, C.; Tait, A.; Di Pisa, F.; Dello Iacono, L.; Landi, G.; Gul, S.; Wolf, M.; Kuzikov, M.; Ellinger, B.; Reinshagen, J.; Witt, G.; Gribbon, P.; Kohler, M.; Keminer, O.; Behrens, B.; Costantino, L.; Tejera Nevado, P.; Bifeld, E.; Eick, J.; Clos, J.; Torrado, J.; Jiménez-Antón, M.D.; Corral, M.J.; Alunda, J.M.; Pellati, F.; Wade, R.C.; Ferrari, S.; Mangani, S.; Costi, M.P. Profiling of flavonol derivatives for the development of antitrypanosomatidic drugs. J. Med. Chem., 2016, 59(16), 7598-7616.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00698] [PMID: 27411733]
[120]
Harel, D.; Khalid, S.A.; Kaiser, M.; Brun, R.; Wünsch, B.; Schmidt, T.J. Encecalol angelate, an unstable chromene from Ageratum conyzoides L.: Total synthesis and investigation of its antiprotozoal activity. J. Ethnopharmacol., 2011, 137(1), 620-625.
[http://dx.doi.org/10.1016/j.jep.2011.06.015] [PMID: 21708240]
[121]
Dodson, H.C.; Lyda, T.A.; Chambers, J.W.; Morris, M.T.; Christensen, K.A.; Morris, J.C. Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1. Exp. Parasitol., 2011, 127(2), 423-428.
[http://dx.doi.org/10.1016/j.exppara.2010.10.011] [PMID: 20971104]
[122]
Nwodo, N.; Okoye, F.; Lai, D.; Debbab, A.; Kaiser, M.; Brun, R.; Proksch, P. Evaluation of the in vitro trypanocidal activity of methylated flavonoid constituents of Vitex simplicifolia leaves. BMC Complement. Altern. Med., 2015, 15(1), 82.
[http://dx.doi.org/10.1186/s12906-015-0562-2] [PMID: 25886869]
[123]
Di Pisa, F.; Landi, G.; Dello, I.L.; Pozzi, C.; Borsari, C.; Ferrari, S.; Santucci, M.; Santarem, N.; Cordeiro-da-Silva, A.; Moraes, C.; Alcantara, L.; Fontana, V.; Freitas-Junior, L.; Gul, S.; Kuzikov, M.; Behrens, B.; Pöhner, I.; Wade, R.; Costi, M.; Mangani, S. Chroman-4-one derivatives targeting pteridine reductase 1 and showing anti-parasitic activity. Molecules, 2017, 22(3), 426.
[http://dx.doi.org/10.3390/molecules22030426] [PMID: 28282886]
[124]
Hata, Y.; Raith, M.; Ebrahimi, S.; Zimmermann, S.; Mokoka, T.; Naidoo, D.; Fouche, G.; Maharaj, V.; Kaiser, M.; Brun, R.; Hamburger, M. Antiprotozoal isoflavan quinones from Abrus precatorius ssp. africanus. Planta Med., 2013, 79(6), 492-498.
[http://dx.doi.org/10.1055/s-0032-1328298] [PMID: 23512498]
[125]
Glaser, J.; Holzgrabe, U. Focus on PAINS: False friends in the quest for selective anti-protozoal lead structures from Nature? MedChemComm, 2016, 7(2), 214-223.
[http://dx.doi.org/10.1039/C5MD00481K]
[126]
Tasdemir, D.; Kaiser, M.; Brun, R.; Yardley, V.; Schmidt, T.J.; Tosun, F.; Rüedi, P. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: In vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob. Agents Chemother., 2006, 50(4), 1352-1364.
[http://dx.doi.org/10.1128/AAC.50.4.1352-1364.2006] [PMID: 16569852]
[127]
Salem, M.M.; Capers, J.; Rito, S.; Werbovetz, K.A. Antiparasitic activity of C-geranyl flavonoids from Mimulus bigelovii. Phytother. Res., 2011, 25(8), 1246-1249.
[http://dx.doi.org/10.1002/ptr.3404] [PMID: 21796699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy