Graphical Abstract
[1]
Samimi, H.A.; Vaezzadeh, H. Eutectic mixture choline chloride–chloroacetic acid: A new and efficient catalyst for synthesis of 3, 4-dihydropyrimidin-2-ones. Chem. Methodol, 2018, 2(3), 260-269.
[2]
Maleki, B.; Tayebee, R.; Khoshsima, A.; Ahmadpoor, F. Facile protocol for the synthesis of 2-amino-4H-chromene derivatives using choline chloride/urea. Org. Prep. Proced. Int., 2021, 53(1), 34-41.
[http://dx.doi.org/10.1080/00304948.2020.1833623]
[http://dx.doi.org/10.1080/00304948.2020.1833623]
[3]
Atharifar, H.; Keivanloo, A.; Maleki, B. Greener synthesis of 3, 4-disubstituted isoxazole-5 (4H)-ones in a deep eutectic solvent. Org. Prep. Proced. Int., 2020, 52(6), 517-523.
[http://dx.doi.org/10.1080/00304948.2020.1799672]
[http://dx.doi.org/10.1080/00304948.2020.1799672]
[4]
Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta, 2013, 766, 61-68.
[http://dx.doi.org/10.1016/j.aca.2012.12.019] [PMID: 23427801]
[http://dx.doi.org/10.1016/j.aca.2012.12.019] [PMID: 23427801]
[5]
Di Carmine, G.; Abbott, A.P.; D’Agostino, C. Deep eutectic solvents: Alternative reaction media for organic oxidation reactions. React. Chem. Eng., 2021, 6(4), 582-598.
[http://dx.doi.org/10.1039/D0RE00458H]
[http://dx.doi.org/10.1039/D0RE00458H]
[6]
Ibrahim, R.K.; Hayyan, M.; AlSaadi, M.A.; Ibrahim, S.; Hayyan, A.; Hashim, M.A. Physical properties of ethylene glycol-based deep eutectic solvents. J. Mol. Liq., 2019, 276, 794-800.
[http://dx.doi.org/10.1016/j.molliq.2018.12.032]
[http://dx.doi.org/10.1016/j.molliq.2018.12.032]
[7]
Nunes, R.J.; Saramago, B.; Marrucho, I.M. Surface tension of dl-menthol: Octanoic acid eutectic mixtures. J. Chem. Eng. Data, 2019, 64(11), 4915-4923.
[http://dx.doi.org/10.1021/acs.jced.9b00424]
[http://dx.doi.org/10.1021/acs.jced.9b00424]
[8]
Qin, H.; Hu, X.; Wang, J.; Cheng, H.; Chen, L.; Qi, Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy Environ., 2020, 5(1), 8-21.
[http://dx.doi.org/10.1016/j.gee.2019.03.002]
[http://dx.doi.org/10.1016/j.gee.2019.03.002]
[9]
Qin, H.; Song, Z.; Zeng, Q.; Cheng, H.; Chen, L.; Qi, Z. Bifunctional imidazole-PTSA deep eutectic solvent for synthesizing long-chain ester IBIBE in reactive extraction. AIChE J., 2019, 65(2), 675-683.
[10]
Zamani, P.; Ozdemir, J.; Ha, Y.; Benamara, M.; Kuchuk, A.V.; Wang, T.; Chen, J.; Khosropour, A.R.; Beyzavi, M.H. Magnetic nanoparticle anchored deep eutectic solvents as a catalyst for the etherification and amination of naphthols. Adv. Synth. Catal., 2018, 360(22), 4372-4380.
[http://dx.doi.org/10.1002/adsc.201800743]
[http://dx.doi.org/10.1002/adsc.201800743]
[11]
Yang, J.; De Oliveira Vigier, K.; Gu, Y.; Jérôme, F. Catalytic dehydration of carbohydrates suspended in organic solvents promoted by AlCl3/SiO2 coated with choline chloride. ChemSusChem, 2015, 8(2), 269-274.
[http://dx.doi.org/10.1002/cssc.201402761] [PMID: 25404114]
[http://dx.doi.org/10.1002/cssc.201402761] [PMID: 25404114]
[12]
Azizi, N.; Edrisi, M. Deep eutectic solvent immobilized on SBA-15 as a novel separable catalyst for one-pot three-component Mannich reaction. Microporous Mesoporous Mater., 2017, 240, 130-136.
[http://dx.doi.org/10.1016/j.micromeso.2016.11.009]
[http://dx.doi.org/10.1016/j.micromeso.2016.11.009]
[13]
Li, Q.; Ma, C.; Di, J.; Ni, J.; He, Y.C. Catalytic valorization of biomass for furfuryl alcohol by novel deep eutectic solvent-silica chemocatalyst and newly constructed reductase biocatalyst. Bioresour. Technol., 2022, 347, 126376.
[http://dx.doi.org/10.1016/j.biortech.2021.126376] [PMID: 34801722]
[http://dx.doi.org/10.1016/j.biortech.2021.126376] [PMID: 34801722]
[14]
Bakhtiarian, M.; Khodaei, M.M. Synthesis of 2,3-dihydro-4(1 H) quinazolinones using a magnetic pectin-supported deep eutectic solvent. Colloids Surf. A Physicochem. Eng. Asp., 2022, 641, 128569.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128569]
[http://dx.doi.org/10.1016/j.colsurfa.2022.128569]
[15]
Radfar, I.; Abbasi, S.; Miraki, M.K.; Yazdani, E.; Karimi, M.; Heydari, A. Glycerol-K2CO3 deep eutectic solvent as environmentally friendly media with basic and dehumidifier synergistic effect for running of Willgerodt-Kindler reaction. ChemistrySelect, 2018, 3(11), 3265-3267.
[http://dx.doi.org/10.1002/slct.201702906]
[http://dx.doi.org/10.1002/slct.201702906]
[16]
Prameela, S.; Nawaz Khan, F.R. Ir(I)-catalyzed synthesis of (E)-4-benzylidenylacridines and (E)-2-styrylquinoline-3-carboxamide through sequential Suzuki–Miyaura coupling, dehydrogenative Friedländer reaction, and sp3-C-H activation. Eur. J. Org. Chem., 2020, 2020(33), 5394-5410.
[http://dx.doi.org/10.1002/ejoc.202000834]
[http://dx.doi.org/10.1002/ejoc.202000834]
[17]
Chen, J.; Ali, M.C.; Liu, R.; Munyemana, J.C.; Li, Z.; Zhai, H.; Qiu, H. Basic deep eutectic solvents as reactant, template and solvents for ultra-fast preparation of transition metal oxide nanomaterials. Chin. Chem. Lett., 2020, 31(6), 1584-1587.
[http://dx.doi.org/10.1016/j.cclet.2019.09.055]
[http://dx.doi.org/10.1016/j.cclet.2019.09.055]
[18]
Tiecco, M.; Alonso, D.A.; Ñíguez, D.R.; Ciancaleoni, G.; Guillena, G.; Ramón, D.J.; Bonillo, A.A.; Germani, R. Assessment of the organocatalytic activity of chiral l-Proline-based Deep Eutectic Solvents based on their structural features. J. Mol. Liq., 2020, 313, 113573.
[http://dx.doi.org/10.1016/j.molliq.2020.113573]
[http://dx.doi.org/10.1016/j.molliq.2020.113573]
[19]
Massolo, E.; Palmieri, S.; Benaglia, M.; Capriati, V.; Perna, F.M. Stereoselective organocatalysed reactions in deep eutectic solvents: highly tunable and biorenewable reaction media for sustainable organic synthesis. Green Chem., 2016, 18(3), 792-797.
[http://dx.doi.org/10.1039/C5GC01855B]
[http://dx.doi.org/10.1039/C5GC01855B]
[20]
Alonso, D.A.; Burlingham, S.J.; Chinchilla, R.; Guillena, G.; Ramón, D.J.; Tiecco, M. Asymmetric organocatalysis in deep eutectic solvents. Eur. J. Org. Chem., 2021, 2021(29), 4065-4071.
[http://dx.doi.org/10.1002/ejoc.202100385]
[http://dx.doi.org/10.1002/ejoc.202100385]