Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Signaling Pathways in Drosophila gonadal Stem Cells

Author(s): Maede Eslahi, Negin Nematbakhsh, Narges Dastmalchi, Shahram Teimourian and Reza Safaralizadeh*

Volume 19, Issue 2, 2024

Published on: 01 March, 2023

Page: [154 - 165] Pages: 12

DOI: 10.2174/1574888X18666230213144531

Price: $65

Abstract

The stem cells' ability to divide asymmetrically to produce differentiating and self-renewing daughter cells is crucial to maintain tissue homeostasis and development. Stem cell maintenance and differentiation rely on their regulatory microenvironment termed ‘niches’. The mechanisms of the signal transduction pathways initiated from the niche, regulation of stem cell maintenance and differentiation were quite challenging to study. The knowledge gained from the study of Drosophila melanogaster testis and ovary helped develop our understanding of stem cell/niche interactions and signal pathways related to the regulatory mechanisms in maintaining homeostasis of adult tissue. In this review, we discuss the role of signaling pathways in Drosophila gonadal stem cell regeneration, competition, differentiation, dedifferentiation, proliferation, and fate determination. Furthermore, we present the current knowledge on how these signaling pathways are implicated in cancer, and how they contribute as potential candidates for effective cancer treatment.

Graphical Abstract

[1]
Wu AM, Till JE, Siminovitch L, McCulloch EA. A cytological study of the capacity for differentiation of normal hemopoietic colony-forming cells. J Cell Physiol 1967; 69(2): 177-84.
[http://dx.doi.org/10.1002/jcp.1040690208] [PMID: 6033948]
[2]
Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132(4): 598-611.
[http://dx.doi.org/10.1016/j.cell.2008.01.038] [PMID: 18295578]
[3]
Feng L, Shi Z, Chen X. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis. PLoS Genet 2017; 13(2): e1006571.
[http://dx.doi.org/10.1371/journal.pgen.1006571] [PMID: 28196077]
[4]
de Cuevas M, Matunis EL. The stem cell niche: lessons from the Drosophila testis. Development 2011; 138(14): 2861-9.
[http://dx.doi.org/10.1242/dev.056242] [PMID: 21693509]
[5]
Matunis EL, Stine RR, de Cuevas M. Recent advances in Drosophila male germline stem cell biology. Spermatogenesis 2012; 2(3): 137-44.
[http://dx.doi.org/10.4161/spmg.21763] [PMID: 23087833]
[6]
Dansereau DA, Lasko P. The development of germline stem cells in Drosophila. Methods Mol Biol 2008; 450: 3-26.
[http://dx.doi.org/10.1007/978-1-60327-214-8_1]
[7]
Fuller MT, Spradling AC. Male and female Drosophila germline stem cells: two versions of immortality. Science 2007; 316(5823): 402-4.
[http://dx.doi.org/10.1126/science.1140861] [PMID: 17446390]
[8]
Gönczy P, DiNardo S. The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development 1996; 122(8): 2437-47.
[http://dx.doi.org/10.1242/dev.122.8.2437] [PMID: 8756289]
[9]
Zoller R, Schulz C. The Drosophila cyst stem cell lineage. Spermatogenesis 2012; 2(3): 145-57.
[http://dx.doi.org/10.4161/spmg.21380] [PMID: 23087834]
[10]
Singh SR, Zheng Z, Wang H, Oh SW, Chen X, Hou SX. Competitiveness for the niche and mutual dependence of the germline and somatic stem cells in the Drosophila testis are regulated by the JAK/STAT signaling. J Cell Physiol 2010; 223(2): 500-10.
[PMID: 20143337]
[11]
Yamashita YM, Jones DL, Fuller MT. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 2003; 301(5639): 1547-50.
[http://dx.doi.org/10.1126/science.1087795] [PMID: 12970569]
[12]
La Marca JE, Somers WG. The Drosophila gonads: models for stem cell proliferation, self-renewal, and differentiation. AIMS Genetics 2014; 1(01): 055-80.
[http://dx.doi.org/10.3934/genet.2014.1.55]
[13]
Tulina N, Matunis E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 2001; 294(5551): 2546-9.
[http://dx.doi.org/10.1126/science.1066700] [PMID: 11752575]
[14]
Kawase E, Wong MD, Ding BC, Xie T. Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development 2004; 131(6): 1365-75.
[15]
Kalderon D. The mechanism of hedgehog signal transduction. Biochem Soc Trans 2005; 33(6): 1509-12.
[http://dx.doi.org/10.1042/BST0331509] [PMID: 16246157]
[16]
Lusk J, Lam V, Tolwinski N. Epidermal growth factor pathway signaling in Drosophila embryogenesis: tools for understanding cancer. Cancers (Basel) 2017; 9(12): 16.
[http://dx.doi.org/10.3390/cancers9020016] [PMID: 28178204]
[17]
Waghmare I, Page-McCaw A. Wnt signaling in stem cell maintenance and differentiation in the Drosophila Germarium. Genes (Basel) 2018; 9(3): 127.
[http://dx.doi.org/10.3390/genes9030127] [PMID: 29495453]
[18]
Greenspan LJ, de Cuevas M, Matunis E. Genetics of gonadal stem cell renewal. Annu Rev Cell Dev Biol 2015; 31(1): 291-315.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013344] [PMID: 26355592]
[19]
Bate M, Arias AM. The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press New York 1993.
[20]
Greenspan LJ, Matunis EL. Retinoblastoma intrinsically regulates niche cell quiescence, identity, and niche number in the adult Drosophila testis. Cell Rep 2018; 24(13): 3466-76.
[http://dx.doi.org/10.1016/j.celrep.2018.08.083]
[21]
Voog J, D’Alterio C, Jones DL. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature 2008; 454(7208): 1132-6.
[http://dx.doi.org/10.1038/nature07173] [PMID: 18641633]
[22]
Zhao T, Xiao Y, Huang B, et al. A dual role of lola in Drosophila ovary development: regulating stem cell niche establishment and repressing apoptosis. Cell Death Dis 2022; 13(9): 756.
[http://dx.doi.org/10.1038/s41419-022-05195-9] [PMID: 36056003]
[23]
Greenspan LJ, de Cuevas M, Le KH, Viveiros JM, Matunis EL. Activation of the EGFR/MAPK pathway drives transdifferentiation of quiescent niche cells to stem cells in the Drosophila testis niche. eLife 2022; 11: e70810.
[http://dx.doi.org/10.7554/eLife.70810] [PMID: 35468055]
[24]
White-Cooper H. Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction 2010; 139(1): 11-21.
[http://dx.doi.org/10.1530/REP-09-0083] [PMID: 19755484]
[25]
Zhang H, Cai Y. Signal transduction pathways regulating Drosophila ovarian germline stem cells. Curr Opin Insect Sci 2020; 37: 1-7.
[http://dx.doi.org/10.1016/j.cois.2019.10.002] [PMID: 31726320]
[26]
Kirilly D, Xie T. The Drosophila ovary: an active stem cell community. Cell Res 2007; 17(1): 15-25.
[http://dx.doi.org/10.1038/sj.cr.7310123] [PMID: 17199109]
[27]
Sahai-Hernandez P, Castanieto A, Nystul TG. Drosophila models of epithelial stem cells and their niches. Wiley Interdiscip Rev Dev Biol 2012; 1(3): 447-57.
[http://dx.doi.org/10.1002/wdev.36] [PMID: 23801493]
[28]
Kirilly D, Wang S, Xie T. Self-maintained escort cells form a germline stem cell differentiation niche. Development 2011; 138(23): 5087-97.
[http://dx.doi.org/10.1242/dev.067850] [PMID: 22031542]
[29]
Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science 2000; 290(5490): 328-30.
[http://dx.doi.org/10.1126/science.290.5490.328] [PMID: 11030649]
[30]
Decotto E, Spradling AC. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 2005; 9(4): 501-10.
[http://dx.doi.org/10.1016/j.devcel.2005.08.012] [PMID: 16198292]
[31]
Song X, Zhu CH, Doan C, Xie T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 2002; 296(5574): 1855-7.
[http://dx.doi.org/10.1126/science.1069871] [PMID: 12052957]
[32]
Margolis J, Spradling A. Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 1995; 121(11): 3797-807.
[http://dx.doi.org/10.1242/dev.121.11.3797] [PMID: 8582289]
[33]
Heldin CH, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390(6659): 465-71.
[http://dx.doi.org/10.1038/37284] [PMID: 9393997]
[34]
Chen D, McKearin D. Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr Biol 2003; 13(20): 1786-91.
[http://dx.doi.org/10.1016/j.cub.2003.09.033] [PMID: 14561403]
[35]
Song X, Wong MD, Kawase E, et al. Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development 2004; 131(6): 1353-64.
[http://dx.doi.org/10.1242/dev.01026]
[36]
Kirilly D, Spana EP, Perrimon N, Padgett RW, Xie T. BMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary. Dev Cell 2005; 9(5): 651-62.
[http://dx.doi.org/10.1016/j.devcel.2005.09.013] [PMID: 16256740]
[37]
Liu M, Lim TM, Cai Y. The Drosophila female germline stem cell lineage acts to spatially restrict DPP function within the niche. Sci Signal 2010; 3(132): ra57.
[http://dx.doi.org/10.1126/scisignal.2000740] [PMID: 20664066]
[38]
Raz AA, Yamashita YM. Stem cell niche signaling goes both ways. Dev Cell 2021; 56(16): 2267-8.
[http://dx.doi.org/10.1016/j.devcel.2021.08.003] [PMID: 34428394]
[39]
Harrison DA, McCoon PE, Binari R, Gilman M, Perrimon N. Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev 1998; 12(20): 3252-63.
[http://dx.doi.org/10.1101/gad.12.20.3252] [PMID: 9784499]
[40]
Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 2001; 294(5551): 2542-5.
[http://dx.doi.org/10.1126/science.1066707] [PMID: 11752574]
[41]
Issigonis M, Tulina N, de Cuevas M, Brawley C, Sandler L, Matunis E. JAK-STAT signal inhibition regulates competition in the Drosophila testis stem cell niche. Science 2009; 326(5949): 153-6.
[http://dx.doi.org/10.1126/science.1176817] [PMID: 19797664]
[42]
Arbouzova NI, Zeidler MP. JAK/STAT signalling in Drosophila: Insights into conserved regulatory and cellular functions. Development 2006; 133(14): 2605-16.
[43]
Herrera SC, Bach EA. JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates. Development 2019; 146(2): dev167643.
[http://dx.doi.org/10.1242/dev.167643] [PMID: 30696713]
[44]
Leatherman JL, DiNardo S. Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 2008; 3(1): 44-54.
[http://dx.doi.org/10.1016/j.stem.2008.05.001] [PMID: 18593558]
[45]
Flaherty MS, Salis P, Evans CJ, et al. chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in Drosophila. Dev Cell 2010; 18(4): 556-68.
[http://dx.doi.org/10.1016/j.devcel.2010.02.006] [PMID: 20412771]
[46]
López-Onieva L, Fernández-Miñán A, González-Reyes A. Jak/Stat signalling in niche support cells regulates dpp transcription to control germline stem cell maintenance in the Drosophila ovary. Development 2008; 135(3): 533-40.
[47]
Michel M, Kupinski AP, Raabe I, Bökel C. Hh signalling is essential for somatic stem cell maintenance in the Drosophila testis niche. Development 2012; 139(15): 2663-9.
[http://dx.doi.org/10.1242/dev.075242] [PMID: 22745310]
[48]
Zhang Z, Pan C, Zhao Y. Hedgehog in the Drosophila testis niche: what does it do there? Protein Cell 2013; 4(9): 650-5.
[http://dx.doi.org/10.1007/s13238-013-3040-y] [PMID: 23807635]
[49]
Tabata T, Kornberg TB. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 1994; 76(1): 89-102.
[http://dx.doi.org/10.1016/0092-8674(94)90175-9] [PMID: 8287482]
[50]
Chen Y, Struhl G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 1996; 87(3): 553-63.
[http://dx.doi.org/10.1016/S0092-8674(00)81374-4] [PMID: 8898207]
[51]
Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper JE. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 1996; 86(2): 221-32.
[http://dx.doi.org/10.1016/S0092-8674(00)80094-X] [PMID: 8706127]
[52]
Domínguez M, Brunner M, Hafen E, Basler K. Sending and receiving the hedgehog signal: control by the Drosophila Gli protein Cubitus interruptus. Science 1996; 272(5268): 1621-5.
[http://dx.doi.org/10.1126/science.272.5268.1621] [PMID: 8658135]
[53]
Amoyel M, Sanny J, Burel M, Bach EA. Hedgehog is required for CySC self-renewal but does not contribute to the GSC niche in the Drosophila testis. Development 2013; 140(1): 56-65.
[http://dx.doi.org/10.1242/dev.086413] [PMID: 23175633]
[54]
Méthot N, Basler K. Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell 1999; 96(6): 819-31.
[http://dx.doi.org/10.1016/S0092-8674(00)80592-9] [PMID: 10102270]
[55]
Li S, Wang M, Chen Y, et al. Role of the hedgehog signaling pathway in regulating the behavior of germline stem cells. Stem Cells Int 2017; 2017: 5714608.
[http://dx.doi.org/10.1155/2017/5714608]
[56]
Forbes AJ, Lin H, Ingham PW, Spradling AC. hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 1996; 122(4): 1125-35.
[http://dx.doi.org/10.1242/dev.122.4.1125] [PMID: 8620839]
[57]
Rojas-Ríos P, Guerrero I, González-Reyes A. Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila. PLoS Biol 2012; 10(4): e1001298.
[http://dx.doi.org/10.1371/journal.pbio.1001298] [PMID: 22509132]
[58]
Lai CM, Lin KY, Kao SH, Chen YN, Huang F, Hsu HJ. Hedgehog signaling establishes precursors for germline stem cell niches by regulating cell adhesion. J Cell Biol 2017; 216(5): 1439-53.
[http://dx.doi.org/10.1083/jcb.201610063] [PMID: 28363970]
[59]
Yatsenko AS, Shcherbata HR. Distant activation of Notch signaling induces stem cell niche assembly. PLoS Genet 2021; 17(3): e1009489.
[http://dx.doi.org/10.1371/journal.pgen.1009489] [PMID: 33780456]
[60]
Glittenberg M, Pitsouli C, Garvey C, Delidakis C, Bray S. Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. EMBO J 2006; 25(20): 4697-706.
[http://dx.doi.org/10.1038/sj.emboj.7601337] [PMID: 17006545]
[61]
Kitadate Y, Shigenobu S, Arita K, Kobayashi S. Boss/Sev signaling from germline to soma restricts germline-stem-cell-niche formation in the anterior region of Drosophila male gonads. Dev Cell 2007; 13(1): 151-9.
[http://dx.doi.org/10.1016/j.devcel.2007.05.001] [PMID: 17609117]
[62]
Le Bras S, Van Doren M. Development of the male germline stem cell niche in Drosophila. Dev Biol 2006; 294(1): 92-103.
[http://dx.doi.org/10.1016/j.ydbio.2006.02.030] [PMID: 16566915]
[63]
Brower DL, Smith RJ, Wilcox M. Differentiation within the gonads of Drosophila revealed by immunofluorescence. J Embryol Exp Morphol 1981; 63: 233-42.
[http://dx.doi.org/10.1242/dev.63.1.233]
[64]
Song X, Call GB, Kirilly D, Xie T. Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development 2007; 134(6): 1071-80.
[65]
Zheng Q, Chen X, Qiao C, et al. Somatic CG6015 mediates cyst stem cell maintenance and germline stem cell differentiation via EGFR signaling in Drosophila testes. Cell Death Discov 2021; 7(1): 68.
[http://dx.doi.org/10.1038/s41420-021-00452-w] [PMID: 33824283]
[66]
Sahadevan M, Kumar PG. Notch signaling in spermatogenesis and male, (in), fertility Molecular Signaling in Spermatogenesis and Male Infertility. CRC Press 2019; pp. 117-32.
[http://dx.doi.org/10.1201/9780429244216-12]
[67]
Schulz C, Wood CG, Jones DL, Tazuke SI, Fuller MT. Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development 2002; 129(19): 4523-34.
[68]
Rutledge BJ, Zhang K, Bier E, Jan YN, Perrimon N. The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev 1992; 6(8): 1503-17.
[http://dx.doi.org/10.1101/gad.6.8.1503] [PMID: 1644292]
[69]
Shilo BZ. The regulation and functions of MAPK pathways in Drosophila. Methods 2014; 68(1): 151-9.
[http://dx.doi.org/10.1016/j.ymeth.2014.01.020] [PMID: 24530508]
[70]
Marais R, Light Y, Paterson HF, Marshall CJ. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 1995; 14(13): 3136-45.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07316.x] [PMID: 7542586]
[71]
Oellers N, Hafen E. Biochemical characterization of rolledSem, an activated form of Drosophila mitogen-activated protein kinase. J Biol Chem 1996; 271(40): 24939-44.
[http://dx.doi.org/10.1074/jbc.271.40.24939] [PMID: 8798773]
[72]
Gupta S, Varshney B, Chatterjee S, Ray K. Somatic ERK activation during transit amplification is essential for maintaining the synchrony of germline divisions in Drosophila testis. Open Biol 2018; 8(7): 180033.
[http://dx.doi.org/10.1098/rsob.180033] [PMID: 30045884]
[73]
Matsuoka S, Hiromi Y, Asaoka M. Egfr signaling controls the size of the stem cell precursor pool in the Drosophila ovary. Mech Dev 2013; 130(4-5): 241-53.
[http://dx.doi.org/10.1016/j.mod.2013.01.002] [PMID: 23376160]
[74]
Castanieto A, Johnston MJ, Nystul TG. EGFR signaling promotes self-renewal through the establishment of cell polarity in Drosophila follicle stem cells. eLife 2014; 3: e04437.
[http://dx.doi.org/10.7554/eLife.04437] [PMID: 25437306]
[75]
Gilboa L, Lehmann R. Soma–germline interactions coordinate homeostasis and growth in the Drosophila gonad. Nature 2006; 443(7107): 97-100.
[http://dx.doi.org/10.1038/nature05068] [PMID: 16936717]
[76]
Wang M, Luan X, Yan Y, Zheng Q, Chen W, Fang J. Wnt6 regulates the homeostasis of the stem cell niche via Rac1-and Cdc42-mediated noncanonical Wnt signalling pathways in Drosophila testis. Exp Cell Res 2021; 402(1): 112511.
[http://dx.doi.org/10.1016/j.yexcr.2021.112511] [PMID: 33582096]
[77]
Tomlinson A, Strapps WR, Heemskerk J. Linking Frizzled and Wnt signaling in Drosophila development. Development 1997; 124(22): 4515-21.
[http://dx.doi.org/10.1242/dev.124.22.4515] [PMID: 9409669]
[78]
Bejsovec A. Wingless/Wnt signaling in Drosophila: The pattern and the pathway. Mol Reprod Dev 2013; 80(11): 882-94.
[http://dx.doi.org/10.1002/mrd.22228] [PMID: 24038436]
[79]
Wang S, Gao Y, Song X, et al. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche. eLife 2015; 4: e08174.
[http://dx.doi.org/10.7554/eLife.08174] [PMID: 26452202]
[80]
Song X, Xie T. Wingless signaling regulates the maintenance of ovarian somatic stem cells in Drosophila. Development 2003; 130(14): 3259-68.
[81]
Luo L, Wang H, Fan C, Liu S, Cai Y. Wnt ligands regulate Tkv expression to constrain Dpp activity in the Drosophila ovarian stem cell niche. J Cell Biol 2015; 209(4): 595-608.
[http://dx.doi.org/10.1083/jcb.201409142] [PMID: 26008746]
[82]
Reilein A, Melamed D, Park KS, et al. Alternative direct stem cell derivatives defined by stem cell location and graded Wnt signalling. Nat Cell Biol 2017; 19(5): 433-44.
[http://dx.doi.org/10.1038/ncb3505] [PMID: 28414313]
[83]
Tu R, Duan B, Song X, Xie T. Dlp-mediated Hh and Wnt signaling interdependence is critical in the niche for germline stem cell progeny differentiation. Sci Adv 2020; 6(20): eaaz0480.
[http://dx.doi.org/10.1126/sciadv.aaz0480] [PMID: 32426496]
[84]
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5(1): 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[85]
Arnold CR, Mangesius J, Skvortsova II, Ganswindt U. The role of cancer stem cells in radiation resistance. Front Oncol 2020; 10: 164.
[http://dx.doi.org/10.3389/fonc.2020.00164] [PMID: 32154167]
[86]
Phi LTH, Sari IN, Yang YG, et al. Cancer Stem Cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018; 28; 2018: 5416923.
[87]
Safa AR. Resistance to cell death and its modulation in cancer stem cells. CRO 2016; 21(3-4): 203-19.
[http://dx.doi.org/10.1615/CritRevOncog.2016016976]
[88]
Mu J, Hui T, Shao B, et al. Dickkopf-related protein 2 induces G0/G1 arrest and apoptosis through suppressing Wnt/β-catenin signaling and is frequently methylated in breast cancer. Oncotarget 2017; 8(24): 39443-59.
[http://dx.doi.org/10.18632/oncotarget.17055] [PMID: 28467796]
[89]
Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell 2013; 155(4): 750-64.
[http://dx.doi.org/10.1016/j.cell.2013.10.029] [PMID: 24209616]
[90]
Liang J, Cao R, Wang X, et al. Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res 2017; 27(3): 329-51.
[http://dx.doi.org/10.1038/cr.2016.159] [PMID: 28035139]
[91]
Zhang K, Guo Y, Wang X, et al. WNT/β-catenin directs self-renewal symmetric cell division of hTERThigh prostate cancer stem cells. Cancer Res 2017; 77(9): 2534-47.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1887] [PMID: 28209613]
[92]
Ji C, Yang L, Yi W, et al. Capillary morphogenesis gene 2 maintains gastric cancer stem-like cell phenotype by activating a Wnt/β-catenin pathway. Oncogene 2018; 37(29): 3953-66.
[http://dx.doi.org/10.1038/s41388-018-0226-z] [PMID: 29662192]
[93]
Schwitalla S, Fingerle AA, Cammareri P, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152(1-2): 25-38.
[http://dx.doi.org/10.1016/j.cell.2012.12.012] [PMID: 23273993]
[94]
Wu F, Stutzman A, Mo Y-Y. Notch signaling and its role in breast cancer. Front Biosci 2007; 12(8-12): 4370-83.
[http://dx.doi.org/10.2741/2394] [PMID: 17485381]
[95]
Zhou W, Fu X, Zhang L, et al. The AKT1/NF-kappaB/Notch1/PTEN axis has an important role in chemoresistance of gastric cancer cells. Cell Death Dis 2013; 4(10): e847.
[96]
Zhang Y, Li B, Ji ZZ, Zheng PS. Notch1 regulates the growth of human colon cancers. Cancer 2010; 116(22): 5207-18.
[http://dx.doi.org/10.1002/cncr.25449] [PMID: 20665495]
[97]
Konishi J, Yi F, Chen X, Vo H, Carbone DP, Dang TP. Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene 2010; 29(4): 589-96.
[http://dx.doi.org/10.1038/onc.2009.366] [PMID: 19881544]
[98]
Lefort K, Mandinova A, Ostano P, et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKα kinases. Genes Dev 2007; 21(5): 562-77.
[http://dx.doi.org/10.1101/gad.1484707] [PMID: 17344417]
[99]
Gupta A, Wang Y, Browne C, et al. Neuroendocrine differentiation in the 12T-10 transgenic prostate mouse model mimics endocrine differentiation of pancreatic beta cells. Prostate 2008; 68(1): 50-60.
[http://dx.doi.org/10.1002/pros.20650] [PMID: 18004726]
[100]
Viatour P, Ehmer U, Saddic LA, et al. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J Exp Med 2011; 208(10): 1963-76.
[http://dx.doi.org/10.1084/jem.20110198] [PMID: 21875955]
[101]
Harrison H, Farnie G, Howell SJ, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 2010; 70(2): 709-18.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1681] [PMID: 20068161]
[102]
Gao AH, Hu YR, Zhu WP. IFN-γ inhibits ovarian cancer progression via SOCS1/JAK/STAT signaling pathway. Clin Transl Oncol 2022; 24(1): 57-65.
[http://dx.doi.org/10.1007/s12094-021-02668-9] [PMID: 34275119]
[103]
Berry DC, Levi L, Noy N. Holo-retinol-binding protein and its receptor STRA6 drive oncogenic transformation. Cancer Res 2014; 74(21): 6341-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1052] [PMID: 25237067]
[104]
Yang L, Dong Y, Li Y, et al. IL‐10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF‐κB/Notch1 pathway in non‐small cell lung cancer. Int J Cancer 2019; 145(4): 1099-110.
[http://dx.doi.org/10.1002/ijc.32151] [PMID: 30671927]
[105]
Brawley C, Matunis E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 2004; 304(5675): 1331-4.
[http://dx.doi.org/10.1126/science.1097676] [PMID: 15143218]
[106]
Sun X, Yu Q. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol Sin 2015; 36(10): 1219-27.
[http://dx.doi.org/10.1038/aps.2015.92] [PMID: 26388155]
[107]
Kumar V, Vashishta M, Kong L, et al. The role of Notch, Hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies. Front Cell Dev Biol 2021; 9: 650772.
[http://dx.doi.org/10.3389/fcell.2021.650772] [PMID: 33968932]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy