Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

A Decenary Update on the Deep Eutectic Solvents in Heterocyclic Scaffold Synthesis-A Green Solvent Approach

Author(s): Kantharaju Kamanna*, Krishnappa B. Badiger and Aravind Kamath

Volume 10, Issue 1, 2023

Published on: 08 March, 2023

Page: [25 - 41] Pages: 17

DOI: 10.2174/2213346110666230213113824

Price: $65

Abstract

Deep eutectic solvents (DESs) are a mixture of two or more chemicals (hydrogen bond donors and acceptors) that are solid at room temperature, but combined at a unique molar ratio, presenting a melting point recession and becoming liquid. These solvents emerged as an alternative to hazardous solvents employed in various organic transformations and fulfilled the green chemistry concept. The convenience of synthesis, recyclability, inexpensiveness, non-toxicity, high solvent capacity, high biodegradation, low volatile organic character, and environmentally benign nature give DESs an edge over other solvents. Due to the numerous benefits to present environmental concerns and the necessity to replace hazardous solvents, the DESs solvent system is appealing to chemists in recent decades. The most important role played by the DESs showed component interactions via covalent or ionic bonds, and is thus considered a good candidate to replace ionic liquids or traditional solvents. The present review article focuses mainly on recent highlights of DESs, preparation, properties and applications to various heterocyclic molecule construction for the period 2012 to 2022.

Graphical Abstract

[1]
(a) Cavani, F.; Centi, G.; Perathoner, S.; Trifiro, F. In: Sustainable industrial chemistry; Wiley-VCH, Verlag Gmbh & Co. KGaA, 2009. ;
b) Dach, R.; Song, J.J.; Roschangar, F.; Samstag, W.; Senanayake, C.H. The eight criteria defining a good chemical manufacturing process. Org. Process Res. Dev., 2012, 16(11), 1697-1706.
[http://dx.doi.org/10.1021/op300144g]
[2]
Henderson, R.K.; Jiménez-González, C.; Constable, D.J.C.; Alston, S.R.; Inglis, G.G.A.; Fisher, G.; Sherwood, J.; Binks, S.P.; Curzons, A.D. Expanding GSK’s solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem., 2011, 13(4), 854-862.
[http://dx.doi.org/10.1039/c0gc00918k]
[3]
Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod., 2018, 81(3), 679-690.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00945] [PMID: 29513526]
[4]
Rahman, M.S.; Roy, R.; Jadhav, B.; Hossain, M.N.; Halim, M.A.; Raynie, D.E. Formulation, structure, and applications of therapeutic and amino acid-based deep eutectic solvents: An overview. J. Mol. Liq., 2021, 321, 114745.
[http://dx.doi.org/10.1016/j.molliq.2020.114745]
[5]
Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater., 2009, 8(8), 621-629.
[http://dx.doi.org/10.1038/nmat2448] [PMID: 19629083]
[6]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[7]
Marsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib., 2004, 219(1), 93-98.
[http://dx.doi.org/10.1016/j.fluid.2004.02.003]
[8]
Abbott, A.P.; McKenzie, K.J. Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys., 2006, 8(37), 4265-4279.
[http://dx.doi.org/10.1039/b607329h] [PMID: 16986069]
[9]
Roy, R.; Rahman, M.S.; Raynie, D.E. Recent advances of greener pretreatment technologies of lignocellulose. Curr. Res. Green Sustain. Chem., 2020, 3, 100035.
[http://dx.doi.org/10.1016/j.crgsc.2020.100035]
[10]
Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun., 2001, 1(19), 2010-2011.
[http://dx.doi.org/10.1039/b106357j] [PMID: 12240264]
[11]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[12]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures Electronic supplementary information (ESI) available: Spectroscopic data. Chem. Commun., 2003, (1), 70-71.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
[13]
Tucker, J.L. Green chemistry: Cresting a summit toward sustainability. Org. Process Res. Dev., 2010, 14(2), 328-331.
[http://dx.doi.org/10.1021/op9000548]
[14]
Kaur, S.; Malik, A.; Kashyap, H.K. Anatomy of microscopic structure of ethaline deep eutectic solvent decoded through molecular dynamics simulations. J. Phys. Chem. B, 2019, 123(39), 8291-8299.
[http://dx.doi.org/10.1021/acs.jpcb.9b06624] [PMID: 31448914]
[15]
Lindberg, D.; de la Fuente Revenga, M.; Widersten, M. Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J. Biotechnol., 2010, 147(3-4), 169-171.
[http://dx.doi.org/10.1016/j.jbiotec.2010.04.011] [PMID: 20438773]
[16]
Abbott, A.P.; Alhaji, A.I.; Ryder, K.S.; Horne, M.; Rodopoulos, T. Electrodeposition of copper–tin alloys using deep eutectic solvents. Transactions of the IMF, 2016, 94(2), pp. 104-113.
[http://dx.doi.org/10.1080/00202967.2016.1148442]
[17]
Wagle, D.V.; Zhao, H.; Baker, G.A. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res., 2014, 47(8), 2299-2308.
[http://dx.doi.org/10.1021/ar5000488] [PMID: 24892971]
[18]
Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 16365643]
[19]
Vidal, C.; García-Álvarez, J.; Hernán-Gómez, A.; Kennedy, A.R.; Hevia, E. Introducing deep eutectic solvents to polar organometallic chemistry: Chemoselective addition of organolithium and Grignard reagents to ketones in air. Angew. Chem. Int. Ed., 2014, 53(23), 5969-5973.
[http://dx.doi.org/10.1002/anie.201400889] [PMID: 24771680]
[20]
Ríos-Lombardía, N.; Cicco, L.; Yamamoto, K.; Hernández-Fernández, J.A.; Morís, F.; Capriati, V.; García-Álvarez, J.; González-Sabín, J. Deep eutectic solvent-catalyzed Meyer–Schuster rearrangement of propargylic alcohols under mild and bench reaction conditions. Chem. Commun., 2020, 56(96), 15165-15168.
[http://dx.doi.org/10.1039/D0CC06584F]
[21]
Cicco, L.; Ríos-Lombardía, N.; Rodríguez-Álvarez, M.J.; Morís, F.; Perna, F.M.; Capriati, V.; García-Álvarez, J.; González-Sabín, J. Programming cascade reactions interfacing biocatalysis with transition-metal catalysis in Deep Eutectic Solvents as biorenewable reaction media. Green Chem., 2018, 20(15), 3468-3475.
[http://dx.doi.org/10.1039/C8GC00861B]
[22]
Martínez, R.; Berbegal, L.; Guillena, G.; Ramón, D.J. Bio-renewable enantioselective aldol reaction in natural deep eutectic solvents. Green Chem., 2016, 18(6), 1724-1730.
[http://dx.doi.org/10.1039/C5GC02526E]
[23]
Millia, L.; Dall’Asta, V.; Ferrara, C.; Berbenni, V.; Quartarone, E.; Perna, F.M.; Capriati, V.; Mustarelli, P. Bio-inspired choline chloride-based deep eutectic solvents as electrolytes for lithium-ion batteries. Solid State Ion., 2018, 323, 44-48.
[http://dx.doi.org/10.1016/j.ssi.2018.05.016]
[24]
Milano, F.; Giotta, L.; Guascito, M.R.; Agostiano, A.; Sblendorio, S.; Valli, L.; Perna, F.M.; Cicco, L.; Trotta, M.; Capriati, V. Functional enzymes in nonaqueous environment: The case of photosynthetic reaction centers in deep eutectic solvents. ACS Sustain. Chem.& Eng., 2017, 5(9), 7768-7776.
[http://dx.doi.org/10.1021/acssuschemeng.7b01270]
[25]
Boldrini, C.L.; Manfredi, N.; Perna, F.M.; Trifiletti, V.; Capriati, V.; Abbotto, A. Dye-sensitized solar cells that use an aqueous choline chloride-based deep eutectic solvent as effective electrolyte solution. Energy Technol., 2017, 5(2), 345-353.
[http://dx.doi.org/10.1002/ente.201600420]
[26]
Garcia, A. J.; Hevia, E.; Capriati, V. Reactivity of polar organometallic compounds in unconventional reaction media: Challenges and opportunities. Eur. J. Org. Chem., 2015, 2015
[27]
Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem., 2013, 85(13), 6272-6278.
[http://dx.doi.org/10.1021/ac400432p] [PMID: 23710664]
[28]
Gutiérrez, M.C.; Ferrer, M.L.; Mateo, C.R.; del Monte, F. Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir, 2009, 25(10), 5509-5515.
[http://dx.doi.org/10.1021/la900552b] [PMID: 19432491]
[29]
Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustain. Chem.& Eng., 2014, 2(10), 2416-2425.
[http://dx.doi.org/10.1021/sc500439w]
[30]
Crawford, D.E.; Wright, L.A.; James, S.L.; Abbott, A.P. Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion. Chem. Commun., 2016, 52(22), 4215-4218.
[http://dx.doi.org/10.1039/C5CC09685E] [PMID: 26911554]
[31]
Rodriguez Rodriguez, N.; van den Bruinhorst, A.; Kollau, L.J.B.M.; Kroon, M.C.; Binnemans, K. Degradation of deep-eutectic solvents based on choline chloride and carboxylic acids. ACS Sustain. Chem.& Eng., 2019, 7(13), 11521-11528.
[http://dx.doi.org/10.1021/acssuschemeng.9b01378]
[32]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. New generation ionic liquids: Cations derived from amino acids. Chem. Commun., 2003, 70-71.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
[33]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[34]
Meng, X.; Ballerat-Busserolles, K.; Husson, P.; Andanson, J.M. Impact of water on the melting temperature of urea + choline chloride deep eutectic solvent. New J. Chem., 2016, 40(5), 4492-4499.
[http://dx.doi.org/10.1039/C5NJ02677F]
[35]
Mjalli, F.S.; Naser, J. Viscosity model for choline chloride-based deep eutectic solvents. Asia-Pac. J. Chem. Eng., 2015, 10(2), 273-281.
[http://dx.doi.org/10.1002/apj.1873]
[36]
Haghbakhsh, R.; Parvaneh, K.; Raeissi, S.; Shariati, A. A general viscosity model for deep eutectic solvents: The free volume theory coupled with association equations of state. Fluid Phase Equilib., 2018, 470, 193-202.
[http://dx.doi.org/10.1016/j.fluid.2017.08.024]
[37]
Bakhtyari, A.; Haghbakhsh, R.; Duarte, A.R.C.; Raeissi, S. A simple model for the viscosities of deep eutectic solvents. Fluid Phase Equilib., 2020, 521, 112662-112674.
[http://dx.doi.org/10.1016/j.fluid.2020.112662]
[38]
Lemaoui, T.; Darwish, A.S.; Attoui, A.; Abu Hatab, F.; Hammoudi, N.E.H.; Benguerba, Y.; Vega, L.F.; Alnashef, I.M. Predicting the density and viscosity of hydrophobic eutectic solvents: Towards the development of sustainable solvents. Green Chem., 2020, 22(23), 8511-8530.
[http://dx.doi.org/10.1039/D0GC03077E]
[39]
Reuter, D.; Binder, C.; Lunkenheimer, P.; Loidl, A. Ionic conductivity of deep eutectic solvents: The role of orientational dynamics and glassy freezing. Phys. Chem. Chem. Phys., 2019, 21(13), 6801-6809.
[http://dx.doi.org/10.1039/C9CP00742C] [PMID: 30843909]
[40]
Shahbaz, K.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Prediction of the surface tension of deep eutectic solvents. Fluid Phase Equilib., 2012, 319, 48-54.
[http://dx.doi.org/10.1016/j.fluid.2012.01.025]
[41]
Chen, Y.; Chen, W.; Fu, L.; Yang, Y.; Wang, Y.; Hu, X.; Wang, F.; Mu, T. Surface tension of 50 deep eutectic solvents: Effect of hydrogen-bonding donors, hydrogen-bonding acceptors, other solvents, and temperature. Ind. Eng. Chem. Res., 2019, 58(28), 12741-12750.
[http://dx.doi.org/10.1021/acs.iecr.9b00867]
[42]
Taherzadeh, M.; Haghbakhsh, R.; Duarte, A.R.C.; Raeissi, S. Estimation of the heat capacities of deep eutectic solvents. J. Mol. Liq., 2020, 307, 112940-112948.
[http://dx.doi.org/10.1016/j.molliq.2020.112940]
[43]
Pandey, A.; Rai, R.; Pal, M.; Pandey, S. How polar are choline chloride-based deep eutectic solvents? Phys. Chem. Chem. Phys., 2014, 16(4), 1559-1568.
[http://dx.doi.org/10.1039/C3CP53456A] [PMID: 24305780]
[44]
Valvi, A.; Dutta, J.; Tiwari, S. Temperature-dependent empirical parameters for polarity in choline chloride based deep eutectic solvents. J. Phys. Chem. B, 2017, 121(50), 11356-11366.
[http://dx.doi.org/10.1021/acs.jpcb.7b07754] [PMID: 29148788]
[45]
Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc., 2004, 126(29), 9142-9147.
[http://dx.doi.org/10.1021/ja048266j] [PMID: 15264850]
[46]
Makoś P.; Przyjazny, A.; Boczkaj, G. Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr. A, 2018, 1570, 28-37.
[http://dx.doi.org/10.1016/j.chroma.2018.07.070] [PMID: 30082124]
[47]
Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem., 2020, 21, 27-33.
[http://dx.doi.org/10.1016/j.cogsc.2019.09.004]
[48]
Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.Z.; Marrucho, I.M. Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS Sustain. Chem.& Eng., 2015, 3(10), 2469-2477.
[http://dx.doi.org/10.1021/acssuschemeng.5b00532]
[49]
Najmadin, A.; Elham, B.; Said, B.; Hossein, G. Natural deep eutectic salt promoted regioselective reduction of epoxides and carbonyl compounds. RSC Adv, 2012, 2, 289-2293.
[50]
Azizi, N.; Dezfuli, S.; Hahsemi, M.M. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction. Sci. World J., 2012, 2012, 1-6.
[http://dx.doi.org/10.1100/2012/908702] [PMID: 22649326]
[51]
Pawar, P.M.; Jarag, K.J.; Shankarling, G.S. Environmentally benign and energy efficient methodology for condensation: An interesting facet to the classical Perkin reaction. Green Chem., 2011, 13(8), 2130-2134.
[http://dx.doi.org/10.1039/c0gc00712a]
[52]
Azizi, N.; Batebi, E. Highly efficient deep eutectic solvent catalyzed ring opening of epoxides. Catal. Sci. Technol., 2012, 2(12), 2445-2448.
[http://dx.doi.org/10.1039/c2cy20456h]
[53]
Lobo, H.R.; Singh, B.S.; Shankarling, G.S. Deep eutectic solvents and glycerol: A simple, environmentally benign and efficient catalyst/reaction media for synthesis of N- aryl phthalimide derivatives. Green Chem. Lett. Rev., 2012, 5(4), 487-533.
[http://dx.doi.org/10.1080/17518253.2012.669500]
[54]
Azizi, N.; Gholibeglo, E. A highly efficient synthesis of dithiocarbamates in green reaction media. RSC Adv, 2012, 2(19), 7413-7416.
[http://dx.doi.org/10.1039/c2ra20615c]
[55]
Singh, B.S.; Lobo, H.R.; Shankarling, G.S. Choline chloride based eutectic solvents: Magical catalytic system for carbon–carbon bond formation in the rapid synthesis of β-hydroxy functionalized derivatives. Catal. Commun., 2012, 24, 70-74.
[http://dx.doi.org/10.1016/j.catcom.2012.03.021]
[56]
Ma, F.P.; Cheng, G.T.; He, Z.G.; Zhang, Z-H. A new and efficient procedure for friedlander synthesis of quinolines in low melting tartaric acid-urea mixtures. Aust. J. Chem., 2012, 65(4), 409-416.
[http://dx.doi.org/10.1071/CH12025]
[57]
Lobo, H.R.; Singh, B.S.; Shankarling, G.S. Bio-compatible eutectic mixture for multi-component synthesis: A valuable acidic catalyst for synthesis of novel 2,3-dihydroquinazolin-4(1H)-one derivatives. Catal. Commun., 2012, 27, 179-183.
[http://dx.doi.org/10.1016/j.catcom.2012.07.020]
[58]
Azizi, N.; Manocheri, Z. Eutectic salts promote green synthesis of bis(indolyl) methanes. Res. Chem. Intermed., 2012, 38(7), 1495-1500.
[http://dx.doi.org/10.1007/s11164-011-0479-4]
[59]
Borude, V.S.; Shah, R.V.; Shukla, S.R. Efficient synthesis of polysubstituted cyclohexene derivatives by using lipase in biodegradable solvent. Curr. Catal., 2012, 1, 191-196.
[http://dx.doi.org/10.2174/2211544711201030191]
[60]
Azizi, N.; Dezfooli, S.; Hashemi, M.M. A sustainable approach to the Ugi reaction in deep eutectic solvent. C. R. Chim., 2013, 16(12), 1098-1102.
[http://dx.doi.org/10.1016/j.crci.2013.05.013]
[61]
Azizi, N.; Dezfooli, S.; Hashemi, M.M. Chemoselective synthesis of xanthenes and tetraketones in a choline chloride-based deep eutectic solvent. C. R. Chim., 2013, 16(11), 997-1001.
[http://dx.doi.org/10.1016/j.crci.2013.05.002]
[62]
Wang, L.; Zhou, M.; Chen, Q.; He, M.Y. Bronsted acidic deep eutectic solvent catalysed the one-pot synthesis of 2H-indazolo[2,1-b]phthalazine-triones. J. Chem. Res., 2013, 37(10), 598-600.
[http://dx.doi.org/10.3184/174751913X13787347508252]
[63]
Mobinikhaledi, A.; Amiri, A.K. Natural eutectic salts catalyzed one-pot synthesis of 5-arylidene-2-imino-4-thiazolidinones. Res. Chem. Intermed., 2013, 39(3), 1491-1498.
[http://dx.doi.org/10.1007/s11164-012-0707-6]
[64]
Hawkins, I.; Handy, S.T. Synthesis of aurones under neutral conditions using a deep eutectic solvent. Tetrahedron, 2013, 69(44), 9200-9204.
[http://dx.doi.org/10.1016/j.tet.2013.08.060]
[65]
Azizi, N.; Khajeh, M.; Alipour, M. Rapid and selective oxidation of alcohols in deep eutectic solvent. Ind. Eng. Chem. Res., 2014, 53(40), 15561-15565.
[http://dx.doi.org/10.1021/ie502019z]
[66]
Dai, D.; Wang, L.; Chen, Q.; He, M.Y. Selective oxidation of sulfides to sulfoxides catalysed by deep eutectic solvent with H2O2. J. Chem. Res., 2014, 38(3), 183-185.
[http://dx.doi.org/10.3184/174751914X13923144871332]
[67]
Saberi, D.; Akbari, J.; Mahdudi, S.; Heydari, A. Reductive amination of aldehydes and ketones catalyzed by deep eutectic solvent using sodium borohydride as a reducing agent. J. Mol. Liq., 2014, 196, 208-210.
[http://dx.doi.org/10.1016/j.molliq.2014.03.024]
[68]
More, P.A.; Gadilohar, B.L.; Shankarling, G.S. In situ generated cetyltrimethylammonium bisulphate in choline chloride–urea deep eutectic solvent: A novel catalytic system for one pot synthesis of 1,3,4-oxadiazole. Catal. Lett., 2014, 144(8), 1393-1398.
[http://dx.doi.org/10.1007/s10562-014-1288-3]
[69]
Handy, S.; Wright, M. An acid-free Pictet–Spengler reaction using deep eutectic solvents (DES). Tetrahedron Lett., 2014, 55(23), 3440-3442.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.077]
[70]
Rajawat, A.; Khandelwal, S.; Kumar, M. Deep eutectic solvent promoted efficient and environmentally benign four-component domino protocol for synthesis of spirooxindoles. RSC Adv, 2014, 4(10), 5105-5112.
[http://dx.doi.org/10.1039/c3ra44600j]
[71]
Vidal, C.; Suárez, F.J.; García-Álvarez, J. Deep eutectic solvents (DES) as green reaction media for the redox isomerization of allylic alcohols into carbonyl compounds catalyzed by the ruthenium complex. [Ru(η3:η3-C10H16)Cl2(benzimidazole)]. Catal. Commun., 2014, 44, 76-79.
[http://dx.doi.org/10.1016/j.catcom.2013.04.002]
[72]
Hu, H.C.; Liu, Y.H.; Li, B.L.; Cui, Z.S.; Zhang, Z.H. Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles. RSC Adv, 2015, 5(10), 7720-7728.
[http://dx.doi.org/10.1039/C4RA13577F]
[73]
Pinxterhuis, E.B.; Giannerini, M.; Hornillos, V.; Feringa, B.L. Fast, greener and scalable direct coupling of organolithium compounds with no additional solvents. Nat. Commun., 2016, 7(1), 11698.
[http://dx.doi.org/10.1038/ncomms11698] [PMID: 27251636]
[74]
Wang, A.; Xing, P.; Zheng, X.; Cao, H.; Yang, G.; Zheng, X. Deep eutectic solvent catalyzed Friedel–Crafts alkylation of electron-rich arenes with aldehydes. RSC Advances, 2015, 5(73), 59022-59026.
[http://dx.doi.org/10.1039/C5RA08950F]
[75]
Cao, J.; Qi, B.; Liu, J.; Shang, Y.; Liu, H.; Wang, W.; Lv, J.; Chen, Z.; Zhang, H.; Zhou, X. Deep eutectic solvent choline chloride•2CrCl 3 •6H 2 O: an efficient catalyst for esterification of formic and acetic acid at room temperature. RSC Adv, 2016, 6(26), 21612-21616.
[http://dx.doi.org/10.1039/C6RA01029F]
[76]
González-Martínez, D.; Gotor, V.; Gotor-Fernández, V. Application of deep eutectic solvents in promiscuous lipase-catalysed aldol reactions. Eur. J. Org. Chem., 2016, 2016(8), 1513-1519.
[http://dx.doi.org/10.1002/ejoc.201501553]
[77]
Shaabani, A.; Afshari, R.; Hooshmand, S.E. Passerini three-component cascade reactions in deep eutectic solvent: An environmentally benign and rapid system for the synthesis of α-acyloxyamides. Res. Chem. Intermed., 2016, 42(6), 5607-5616.
[http://dx.doi.org/10.1007/s11164-015-2390-x]
[78]
Bakht, M.A.; Ansari, M.J.; Riadi, Y.; Ajmal, N.; Ahsan, M.J.; Yar, M.S. Physicochemical characterization of benzalkonium chloride and urea based deep eutectic solvent (DES): A novel catalyst for the efficient synthesis of isoxazolines under ultrasonic irradiation. J. Mol. Liq., 2016, 224, 1249-1255.
[http://dx.doi.org/10.1016/j.molliq.2016.10.105]
[79]
Azizi, N.; Dezfooli, S. Catalyst-free synthesis of imidazo [1,2-a] pyridines via Groebke multicomponent reaction. Environ. Chem. Lett., 2016, 14(2), 201-206.
[http://dx.doi.org/10.1007/s10311-015-0541-3]
[80]
Lee, Y.R.; Lee, Y.J.; Ma, W.; Row, K.H. Determination of deep eutectic solvents as eco-friendly catalysts for biodiesel esterification from an alcohol-palmitic acid mixture. Korean J. Chem. Eng., 2016, 33(8), 2337-2341.
[http://dx.doi.org/10.1007/s11814-016-0073-y]
[81]
Shaabani, A.; Hooshmand, S.E.; Nazeri, M.T.; Afshari, R.; Ghasemi, S. Deep eutectic solvent as a highly efficient reaction media for the one-pot synthesis of benzo-fused seven-membered heterocycles. Tetrahedron Lett., 2016, 57(33), 3727-3730.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.005]
[82]
Marset, X.; Khoshnood, A.; Sotorríos, L.; Gómez-Bengoa, E.; Alonso, D.A.; Ramón, D.J. Deep eutectic solvent compatible metallic catalysts: Cationic pyridiniophosphine ligands in palladium catalyzed cross-coupling reactions. ChemCatChem, 2017, 9(7), 1269-1275.
[http://dx.doi.org/10.1002/cctc.201601544]
[83]
Azizi, N.; Ahooie, T.S.; Hashemi, M.M. Multicomponent domino reactions in deep eutectic solvent: An efficient strategy to synthesize multisubstituted cyclohexa-1,3-dienamines. J. Mol. Liq., 2017, 246, 221-224.
[http://dx.doi.org/10.1016/j.molliq.2017.09.049]
[84]
Miraki, M.K.; Mehraban, J.A.; Yazdani, E.; Heydari, A. Deep eutectic solvent (DES) as dual solvent/catalyst for synthesis of α-diazocarbonyl compounds using aldol-type coupling. J. Mol. Liq., 2017, 234, 129-132.
[http://dx.doi.org/10.1016/j.molliq.2017.03.065]
[85]
Shaabani, A.; Afshari, R. Magnetic Ugi-functionalized graphene oxide complexed with copper nanoparticles: Efficient catalyst toward Ullman coupling reaction in deep eutectic solvents. J. Colloid Interface Sci., 2018, 510, 384-394.
[http://dx.doi.org/10.1016/j.jcis.2017.09.089] [PMID: 28964946]
[86]
Dilauro, G.; García, S.M.; Tagarelli, D.; Vitale, P.; Perna, F.M.; Capriati, V. Ligand-free bioinspired suzuki-miyaura coupling reactions using aryltrifluoroborates as effective partners in deep eutectic solvents. ChemSusChem, 2018, 11(19), 3495-3501.
[http://dx.doi.org/10.1002/cssc.201801382] [PMID: 30074303]
[87]
Jin, X.; Wang, A.; Cao, H.; Zhang, S.; Wang, L.; Zheng, X.; Zheng, X. A new efficient method for the preparation of intermediate aromatic ketones by Friedel–Crafts acylation. Res. Chem. Intermed., 2018, 44(9), 5521-5530.
[http://dx.doi.org/10.1007/s11164-018-3437-6]
[88]
Shaibuna, M.; Theresa, L.V.; Sreekumar, K. A new green and efficient Brønsted: Lewis acidic DES for pyrrole synthesis. Catal. Lett., 2018, 148(8), 2359-2372.
[http://dx.doi.org/10.1007/s10562-018-2414-4]
[89]
Tipale, M.R.; Khillare, L.D.; Deshmukh, A.R.; Bhosle, M.R. An efficient four component domino synthesis of pyrazolopyranopyrimidines using recyclable choline chloride: Urea deep eutectic solvent. J. Heterocycl. Chem., 2018, 55(3), 716-728.
[http://dx.doi.org/10.1002/jhet.3095]
[90]
Dindarloo Inaloo, I.; Majnooni, S. Carbon dioxide utilization in the efficient synthesis of carbamates by deep eutectic solvents (DES) as green and attractive solvent/catalyst systems. New J. Chem., 2019, 43(28), 11275-11281.
[http://dx.doi.org/10.1039/C9NJ02810B]
[91]
Wang, T.; Wei, J.; Feng, Y.; Liu, H.; Tang, X.; Zeng, X.; Sun, Y.; Lei, T.; Lin, L. Efficient synthesis of bio-based monomer 2,5-bishydroxymethylfuran by the solvent-free hydrogenation of 5-hydroxymethylfurfural-based deep eutectic mixture. J. Chem. Technol. Biotechnol., 2020, 95(6), 1748-1755.
[http://dx.doi.org/10.1002/jctb.6373]
[92]
Marullo, S.; Meli, A.; D’Anna, F. Ionic liquid binary mixtures, zeolites, and ultrasound irradiation: A combination to promote carbohydrate conversion into 5-hydroxymethylfurfural. ACS Sustain. Chem.& Eng., 2020, 8, 4889-4899.
[http://dx.doi.org/10.1021/acssuschemeng.0c00193]
[93]
Nejrotti, S.; Iannicelli, M.; Jamil, S.S.; Arnodo, D.; Blangetti, M.; Prandi, C. Natural deep eutectic solvents as an efficient and reusable active system for the Nazarov cyclization. Green Chem., 2020, 22(1), 110-117.
[http://dx.doi.org/10.1039/C9GC03465J]
[94]
Messa, F.; Dilauro, G.; Perna, F.M.; Vitale, P.; Capriati, V.; Salomone, A. Sustainable ligand-free heterogeneous palladium-catalyzed sonogashira cross-coupling reaction in deep eutectic solvents. ChemCatChem, 2020, 12(7), 1979-1984.
[http://dx.doi.org/10.1002/cctc.201902380]
[95]
Piemontese, L.; Sergio, R.; Rinaldo, F.; Brunetti, L.; Perna, F.M.; Santos, M.A.; Capriati, V. Deep eutectic solvents as effective reaction media for the synthesis of 2-hydroxyphenylbenzimidazole-based scaffolds en route to donepezil-like compounds. Molecules, 2020, 25(3), 574.
[http://dx.doi.org/10.3390/molecules25030574] [PMID: 32013037]
[96]
Mao, S.; Wang, X.; Zhang, Z.; Wang, S.; Li, K.; Lu, F.; Qin, H. 15α-hydroxylation of D-ethylgonendione by Penicillium raistrickii in deep eutectic solvents DESs containing system. Biochem. Eng. J., 2020, 164, 107781.
[http://dx.doi.org/10.1016/j.bej.2020.107781]
[97]
Qin, H.; Zhou, Y.; Zeng, Q.; Cheng, H.; Chen, L.; Zhang, B.; Qi, Z. Efficient Knoevenagel condensation catalyzed by imidazole-based halogen-free deep eutectic solvent at room temperature. Green Energy & Environment, 2020, 5(2), 124-129.
[http://dx.doi.org/10.1016/j.gee.2019.11.002]
[98]
Hu, Z.; Jiang, G.; Zhu, Z.; Gong, B.; Xie, Z.; Le, Z. One-pot domino Henry–Friedel–Crafts alkylation reaction in deep eutectic solvent. Youji Huaxue, 2021, 41(1), 325-332.
[http://dx.doi.org/10.6023/cjoc202006029]
[99]
Riadi, Y.; Ouerghi, O.; Geesi, M.H.; Kaiba, A.; Anouar, E.H.; Guionneau, P. Efficient novel eutectic-mixture-mediated synthesis of benzoxazole-linked pyrrolidin-2-one heterocycles. J. Mol. Liq., 2021, 323, 115011.
[http://dx.doi.org/10.1016/j.molliq.2020.115011]
[100]
Shaibuna, M.; Kuniyil, M.J.K.; Sreekumar, K. Deep eutectic solvent assisted synthesis of dihydropyrimidinones/thiones via Biginelli reaction: Theoretical investigations on their electronic and global reactivity descriptors. New J. Chem., 2021, 45(44), 20765-20775.
[http://dx.doi.org/10.1039/D1NJ03879F]
[101]
Jayashri, D.B. Deep eutectic solvent catalyzed one-pot synthesis of biologically significant 1,3,5 trisubstituted pyrazoline derivatives. J. Sci. Res., 2021, 65, 8.
[102]
Komar, M.; Kraljević, T.G.; Jerković, I.; Molnar, M. Application of deep eutectic solvents in the synthesis of substituted 2-mercaptoquinazolin-4(3H)-ones: A comparison of selected green chemistry methods. Molecules, 2022, 27(2), 558.
[http://dx.doi.org/10.3390/molecules27020558] [PMID: 35056873]
[103]
Majid, S.; Sayyad, S.K. Deep eutectic solvent a highly efficient medium for the synthesis of imidazo [1,2-a] pen yridines having grechemistry approach. Am. J. Heterocycl. Chem., 2022, 8, 7-11.
[104]
Rather, I.A.; Ali, R. An efficient and versatile deep eutectic solvent-mediated green method for the synthesis of functionalized coumarins. ACS Omega, 2022, 7(12), 10649-10659.
[http://dx.doi.org/10.1021/acsomega.2c00293] [PMID: 35382332]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy