Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Effect of Synthesis Conditions on the Catalytic Performances of CuO/Al2O3 in Microwave-enhanced Fenton-like System

Author(s): Menghan Cao, Ke Tian, Fengyin Shi and Guangshan Zhang*

Volume 9, Issue 2, 2022

Published on: 24 February, 2023

Page: [109 - 120] Pages: 12

DOI: 10.2174/2213335610666230213113809

Price: $65

Abstract

Background: In previous work, we successfully prepared CuO/Al2O3 catalysts and evaluated their catalytic activity, kinetics and degradation mechanism for Fenton-like oxidation of p-nitrophenol (PNP) under microwave irradiation. However, we did not study the effect of important preparation parameters on the activities of catalysts.

Objectives: (1) The effect of preparation conditions: CuSO4 concentration of the impregnating solution, Al2O3 to CuSO4 solution ratio, type and concentration of precipitant and calcination temperature on the physico-chemical properties and catalytic activity were studied. (2) The catalytic performance of the Fenton-like oxidation reaction of PNP under microwave irradiation was evaluated and correlated with the characterization results. (3) The stability and catalytic mechanism of the catalysts were investigated.

Methods: The CuO/Al2O3 catalyst was prepared by the impregnation deposition method. The 20 g pretreated Al2O3 particles were immersed in 0.6 mol/L Cu (NO3)2 solution and 0.4 mol/L NaOH solution for 24 h before and after. After cleaning and drying, the samples were calcined in an air muffle furnace for 4 h at a certain temperature to obtain CuO/Al2O3 catalyst. Then the catalyst was characterized and catalyzed.

Results: XRD, BET and FESEM results have demonstrated that the catalyst claimed at 300 and 350°C showed a smaller size, a higher specific surface area and a better distribution of the CuO species than their counterparts prepared at higher calcination temperatures. The CuO/Al2O3 catalyst claimed at 300 and 350°C also showed higher removal efficiencies for PNP than other catalysts prepared at higher calcination temperatures.

Conclusion: It was found that the catalysts prepared at 350°C as calcination temperature showed higher surface area, smaller CuO particle size, and uniform CuO particle size distribution, and consequently showed better catalytic activities with better stability and reusability. Moreover, the XPS results of the catalysts showed a decrease in the Isat/Ip ratio after microwave enhanced Fenton- like reaction, confirming that CuO species has been reduced to Cu2O to some extent.

[1]
Yang, Y.; Gu, Y.; Lin, H.; Jie, B.; Zheng, Z.; Zhang, X. Bicarbonate-enhanced iron-based Prussian blue analogs catalyze the Fenton-like degradation of p-nitrophenol. J. Colloid Interface Sci., 2022, 608(Pt 3), 2884-2895.
[http://dx.doi.org/10.1016/j.jcis.2021.11.015] [PMID: 34802757]
[2]
Wang, Q.; Wang, P.; Xu, P.; Hu, L.; Wang, X.; Qu, J.; Zhang, G. Submerged membrane photocatalytic reactor for advanced treatment of p-nitrophenol wastewater through visible-light-driven photo-Fenton reactions. Separ. Purif. Tech., 2021, 256(3), 117783.
[http://dx.doi.org/10.1016/j.seppur.2020.117783]
[3]
Hu, L.; Wang, P.; Liu, G.; Zheng, Q.; Zhang, G. Catalytic degradation of p-nitrophenol by magnetically recoverable Fe3O4 as a persulfate activator under microwave irradiation. Chemosphere, 2020, 240, 124977.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124977] [PMID: 31726600]
[4]
Anitha, P.; Kavitha, N.; Palanivelu, K. Removal and recovery of p-nitrophenol from aqueous solution using natural solid triglycerides. Desalination, 2011, 272(1-3), 196-200.
[http://dx.doi.org/10.1016/j.desal.2011.01.019]
[5]
Garcia-Costa, A.L.; Luengo, A.; Zazo, J.A.; Casas, J.A. Cutting oil-water emulsion wastewater treatment by microwave assisted catalytic wet peroxide oxidation. Separ. Purif. Tech., 2021, 257, 117940.
[http://dx.doi.org/10.1016/j.seppur.2020.117940]
[6]
Guo, H.; Yang, H.; Huang, J.; Tong, J.; Liu, X.; Wang, Y.; Qiao, W.; Han, J. Theoretical and experimental insight into plasma-catalytic degradation of aqueous p-nitrophenol with graphene-ZnO nanoparticles. Separ. Purif. Tech., 2022, 295, 121362.
[http://dx.doi.org/10.1016/j.seppur.2022.121362]
[7]
Rodrigues, C.S.D.; Soares, O.S.G.P.; Pereira, M.F.R.; Madeira, L.M. Fenton’s oxidation using iron-containing activated carbon as catalyst for degradation of p-nitrophenol in a continuous stirred tank reactor. J. Water Process Eng., 2021, 44, 102386.
[http://dx.doi.org/10.1016/j.jwpe.2021.102386]
[8]
Zhao, B.; Gong, J.; Song, B.; Sang, F.; Zhou, C.; Zhang, C.; Cao, W.; Niu, Q.; Chen, Z. Effects of activated carbon, biochar, and carbon nanotubes on the heterogeneous Fenton oxidation catalyzed by pyrite for ciprofloxacin degradation. Chemosphere, 2022, 308(Pt 3), 136427.
[http://dx.doi.org/10.1016/j.chemosphere.2022.136427] [PMID: 36122753]
[9]
Fan, J.; Jiang, X.; Min, H.; Li, D.; Ran, X.; Zou, L.; Sun, Y.; Li, W.; Yang, J.; Teng, W.; Li, G.; Zhao, D. Facile preparation of Cu–Mn/CeO2/SBA-15 catalysts using ceria as an auxiliary for advanced oxidation processes. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(27), 10654-10661.
[http://dx.doi.org/10.1039/c4ta01355g]
[10]
Arredondo Valdez, H.C.; García Jiménez, G.; Gutiérrez Granados, S.; Ponce de León, C. Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO2 and CuO/TiO2/Al2O3. Chemosphere, 2012, 89(10), 1195-1201.
[http://dx.doi.org/10.1016/j.chemosphere.2012.07.020] [PMID: 22932644]
[11]
Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng., 2016, 4(1), 762-787.
[http://dx.doi.org/10.1016/j.jece.2015.12.016]
[12]
Pacheco-Álvarez, M.; Picos Benítez, R.; Rodríguez-Narváez, O.M.; Brillas, E.; Peralta-Hernández, J.M. A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods. Chemosphere, 2022, 303(Pt 1), 134883.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134883] [PMID: 35577132]
[13]
Karthikeyan, S.; Ahamed, R.B.; Velan, M.; Sekaran, G. Synthesis and characterization of Co-NPAC and in situ hydroxyl radical generation for the oxidation of dye laden wastewater from the leather industry. RSC Advances, 2014, 4(108), 63354-63366.
[http://dx.doi.org/10.1039/C4RA10536B]
[14]
Wang, N.; Sun, X.; Zhao, Q.; Wang, P. Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement: System parameters, kinetics, and proposed mechanism. Chem. Eng. J., 2021, 406, 126734.
[http://dx.doi.org/10.1016/j.cej.2020.126734]
[15]
Pan, S.; Zhao, T.; Liu, H.; Li, X.; Zhao, M.; Yuan, D.; Jiao, T.; Zhang, Q.; Tang, S. Enhancing ferric ion/sodium percarbonate Fenton-like reaction with tungsten disulfide cocatalyst for metronidazole decomposition over wide pH range. Chem. Eng. J., 2022, 452, 139245.
[http://dx.doi.org/10.1016/j.cej.2022.139245]
[16]
He, Z.; Xu, X.; Wang, B.; Lu, Z.; Shi, D.; Wu, W. Evaluation of iron-loaded granular activated carbon used as heterogeneous fenton catalyst for degradation of tetracycline. J. Environ. Manage., 2022, 322, 116077.
[http://dx.doi.org/10.1016/j.jenvman.2022.116077] [PMID: 36055098]
[17]
Ribeiro, J.P.; Sarinho, L.; Neves, M.C.; Nunes, M.I. Valorisation of residual iron dust as Fenton catalyst for pulp and paper wastewater treatment. Environ. Pollut., 2022, 310, 119850.
[http://dx.doi.org/10.1016/j.envpol.2022.119850] [PMID: 35944783]
[18]
Parimala, L.; Santhanalakshmi, J. CuO nanoparticles with biostabilizers for the catalytic decolorization of bromocresol green, crystal violet, methyl red dyes based on H2O2 in aqueous medium. React. Kinet. Mech. Catal., 2013, 109(2), 393-403.
[http://dx.doi.org/10.1007/s11144-013-0556-3]
[19]
Bradu, C.; Frunza, L.; Mihalche, N.; Avramescu, S-M.; Neaţă, M.; Udrea, I. Removal of Reactive Black 5 azo dye from aqueous solutions by catalytic oxidation using CuO/Al2O3 and NiO/Al2O3. Appl. Catal. B, 2010, 96(3-4), 548-556.
[http://dx.doi.org/10.1016/j.apcatb.2010.03.019]
[20]
Li, J.; Pham, A.N.; Dai, R.; Wang, Z.; Waite, T.D. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites. J. Hazard. Mater., 2020, 392, 122261.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122261] [PMID: 32066018]
[21]
Zhu, G.; Jin, Y.; Ge, M. Efficiently enhanced fenton-like reaction via CuO@γ-Al2O3 Particles for the catalytic hydrogen peroxide degradation of polyvinyl alcohol, rhodamine-B, and reactive red X-3B over a wide pH range. Water Air Soil Pollut., 2022, 233(7), 229.
[http://dx.doi.org/10.1007/s11270-022-05699-2]
[22]
Yao, X.; Lin, Q.; Zeng, L.; Xiang, J.; Yin, G.; Liu, Q. Degradation of humic acid using hydrogen peroxide activated by CuO-Co3O4@AC under microwave irradiation. Chem. Eng. J., 2017, 330, 783-791.
[http://dx.doi.org/10.1016/j.cej.2017.08.008]
[23]
Qi, Y.; Mei, Y.; Li, J.; Yao, T.; Yang, Y.; Jia, W.; Tong, X.; Wu, J.; Xin, B. Highly efficient microwave-assisted Fenton degradation of metacycline using pine-needle-like CuCo2O4 nanocatalyst. Chem. Eng. J., 2019, 373, 1158-1167.
[http://dx.doi.org/10.1016/j.cej.2019.05.097]
[24]
Zhang, T.; Chen, Y.; Wang, Y.; Le Roux, J.; Yang, Y.; Croué, J.P. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environ. Sci. Technol., 2014, 48(10), 5868-5875.
[http://dx.doi.org/10.1021/es501218f] [PMID: 24779765]
[25]
Sathish, S.; Supriya, S.; Aravind kumar, J.; Prabu, D.; Marshiana, D.; Rajasimman, M.; Vasseghian, Y. Enhanced photocatalytic degradation of caffeine using Co–Zn/Al2O3 nanocomposite. Chemosphere, 2022, 307(Pt 3), 135773.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135773] [PMID: 35944678]
[26]
Dong, S.; Wang, Y.; Yang, J.; Cao, J.; Su, L.; Wu, X.; Nengzi, L.; Liu, S. Performance and mechanism analysis of degradation of toluene by DBD plasma-catalytic method with MnOx/Al2O3 catalyst. Fuel, 2022, 319, 123721.
[http://dx.doi.org/10.1016/j.fuel.2022.123721]
[27]
Tamimi, K.; Alavi, S.M.; Rezaei, M.; Akbari, E. Preparation of the Mn-Promoted NiO–Al2O3 nanocatalysts for low temperature CO2 methanation. Journal of the Energy Institute, 2021, 99, 48-58.
[http://dx.doi.org/10.1016/j.joei.2021.08.008]
[28]
Tong, R.; Fu, R.; Yang, Z.; Jiang, Y.; Jiang, K.; Sun, X. Efficient degradation of sulfachloropyridazine by sulfite activation with CuO-Al2O3 composites under neutral pH conditions: Radical and non-radical. J. Environ. Chem. Eng., 2022, 10(2), 107276.
[http://dx.doi.org/10.1016/j.jece.2022.107276]
[29]
Sodeifian, G.; Behnood, R. Application of microwave irradiation in preparation and characterization of CuO/Al 2 O 3 nanocomposite for removing MB dye from aqueous solution. J. Photochem. Photobiol. Chem., 2017, 342, 25-34.
[http://dx.doi.org/10.1016/j.jphotochem.2017.03.038]
[30]
Bi, X.; Wang, P.; Jiang, H.; Xu, H.; Shi, S.; Huang, J. Treatment of phenol wastewater by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process. J. Environ. Sci., 2007, 19(12), 1510-1515.
[http://dx.doi.org/10.1016/S1001-0742(07)60246-0] [PMID: 18277658]
[31]
Dong, G.; Li, W. Microwave dielectric properties of Al2O3 ceramics sintered at low temperature. Ceram. Int., 2021, 47(14), 19955-19958.
[http://dx.doi.org/10.1016/j.ceramint.2021.03.330]
[32]
Jamaluddin, N.S.; Alias, N.H.; Samitsu, S.; Othman, N.H.; Jaafar, J.; Marpani, F.; Lau, W.J.; Tan, Y.Z. Efficient chromium (VI) removal from wastewater by adsorption-assisted photocatalysis using MXene. J. Environ. Chem. Eng., 2022, 10(6), 108665.
[http://dx.doi.org/10.1016/j.jece.2022.108665]
[33]
Meng, L.; Chang, L.; Hou, J. Degradation of methyl green from wastewater with ultrasound synergized with Bi2O2CO3 catalysis: Kinetics, products, and pathways. J. Clean. Prod., 2022, 342, 130976.
[http://dx.doi.org/10.1016/j.jclepro.2022.130976]
[34]
Bose, S.; Kumar, M. Microwave-assisted persulfate/peroxymonosulfate process for environmental remediation. Curr. Opin. Chem. Eng., 2022, 36, 100826.
[http://dx.doi.org/10.1016/j.coche.2022.100826]
[35]
Xia, H.; Li, C.; Yang, G.; Shi, Z.; Jin, C.; He, W.; Xu, J.; Li, G. A review of microwave-assisted advanced oxidation processes for wastewater treatment. Chemosphere, 2022, 287(Pt 2), 131981.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131981] [PMID: 34826886]
[36]
Wang, Y.; Wang, R.; Lin, N.; Wang, Y.; Zhang, X. Highly efficient microwave-assisted Fenton degradation bisphenol A using iron oxide modified double perovskite intercalated montmorillonite composite nanomaterial as catalyst. J. Colloid Interface Sci., 2021, 594, 446-459.
[http://dx.doi.org/10.1016/j.jcis.2021.03.046] [PMID: 33774400]
[37]
An, J.; Wang, Q.; Shang, X.; Ma, J.; Bao, H.; Wu, D.; Zhang, Y.; Wang, T.; Jia, H. Aerobic and anaerobic regulation induced different degradation behaviors of parachloronitrobenzene in soil by microwave activated persulfate oxidation. Separ. Purif. Tech., 2022, 295, 121333.
[http://dx.doi.org/10.1016/j.seppur.2022.121333]
[38]
Mishra, S.; Kumari, S.; Kumar, P.; Samanta, S.K. Microwave synthesized strontium hexaferrite 2D sheets as versatile and efficient microwave catalysts for degradation of organic dyes and antibiotics. Sci. Total Environ., 2021, 790, 147853.
[http://dx.doi.org/10.1016/j.scitotenv.2021.147853] [PMID: 34087737]
[39]
Dai, Y.; Qi, C.; Cao, H.; Wen, Y.; Zhao, Y.; Xu, C.; Yang, S.; He, H. Enhanced degradation of sulfamethoxazole by microwave-activated peracetic acid under alkaline condition: Influencing factors and mechanism. Separ. Purif. Tech., 2022, 288, 120716.
[http://dx.doi.org/10.1016/j.seppur.2022.120716]
[40]
Ge, X.; Li, H.; Liu, M.; Zhao, Z.; Jin, X.; Fan, X.; Gao, X. Microwave-assisted catalytic alcoholysis of fructose to ethoxymethylfurfural (EMF) over carbon-based microwave-responsive catalyst. Fuel Process. Technol., 2022, 233, 107305.
[http://dx.doi.org/10.1016/j.fuproc.2022.107305]
[41]
Feng, Y.; Tao, Y.; Meng, Q.; Qu, J.; Ma, S.; Han, S.; Zhang, Y. Microwave-combined advanced oxidation for organic pollutants in the environmental remediation: An overview of influence, mechanism, and prospective. Chem. Eng. J., 2022, 441, 135924.
[http://dx.doi.org/10.1016/j.cej.2022.135924]
[42]
Cai, B.; Feng, J.; Peng, Q.; Zhao, H.; Miao, Y.; Pan, H. Super-fast degradation of high concentration methyl orange over bifunctional catalyst Fe/Fe3C@C with microwave irradiation. J. Hazard. Mater., 2020, 392, 122279.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122279] [PMID: 32087399]
[43]
Fatimah, I.; Purwiandono, G.; Sahroni, I.; Sagadevan, S.; Doong, R. Flower-like hierarchical Sn3O4/montmorillonite nanostructure for the enhanced microwave-induced degradation of rhodamine B. Adv. Powder Technol., 2022, 33(6), 103623.
[http://dx.doi.org/10.1016/j.apt.2022.103623]
[44]
Guo, J.; Zheng, L.; Li, Z. Preliminary test of a newly developed pilot-scale movable microwave drying equipment for the treatment of solid organic waste. Process Saf. Environ. Prot., 2021, 148, 903-907.
[http://dx.doi.org/10.1016/j.psep.2021.02.020]
[45]
Homem, V.; Alves, A.; Santos, L. Microwave-assisted Fenton’s oxidation of amoxicillin. Chem. Eng. J., 2013, 220, 35-44.
[http://dx.doi.org/10.1016/j.cej.2013.01.047]
[46]
Pan, W.; Zhang, G.; Zheng, T.; Wang, P. Degradation of p-nitrophenol using CuO/Al 2 O 3 as a Fenton-like catalyst under microwave irradiation. RSC Advances, 2015, 5(34), 27043-27051.
[http://dx.doi.org/10.1039/C4RA14516J]
[47]
Awadh, A.J.; Ammar, S.H.; Ban, A.A. Preparation and characteristics of CuO/γ-Al2O3 nanocomposite as efficient adsorbent for adsorption of sulfur compounds from Iraqi naphtha. Mater. Today, 2021, 42, 2596-2602.
[48]
Bi, X.; Wang, P.; Jiang, H. Catalytic activity of CuOn–La2O3/γ-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater. J. Hazard. Mater., 2008, 154(1-3), 543-549.
[http://dx.doi.org/10.1016/j.jhazmat.2007.10.069] [PMID: 18061342]
[49]
Wang, N.; Zheng, T.; Jiang, J.; Wang, P. Cu(II)–Fe(II)–H2O2 oxidative removal of 3-nitroaniline in water under microwave irradiation. Chem. Eng. J., 2015, 260, 386-392.
[http://dx.doi.org/10.1016/j.cej.2014.09.002]
[50]
Zou, X.; Chen, T.; Liu, H.; Zhang, P.; Ma, Z.; Xie, J.; Chen, D. An insight into the effect of calcination conditions on catalytic cracking of toluene over 3Fe8Ni/palygorskite: Catalysts characterization and performance. Fuel, 2017, 190, 47-57.
[http://dx.doi.org/10.1016/j.fuel.2016.11.038]
[51]
Chen, X.Y.; Ma, Q.L.; Bao, G.R.; Li, F.S.; Li, X.F. Catalytic liquefaction of cellulose over CuO-ZnO/Al2O3 bi-functional catalyst: Effect of calcination temperature. Yingyong Huagong, 2015, 6, 39-42.
[52]
Zhao, Y.Q.; Chen, J.X.; Zhang, J.Y. Effects of calcination temperature on the performance of CuO-ZnO-Al2O3/HZSM-5 catalyst for the synthesis of dimethyl ether by hydrogenation of carbon dioxide. Nat. Gas Chem. Ind., 2008, 1, 13-17.
[53]
An, H.; Zhang, L.; Zhao, X.; Wang, Y. Effect of preparation conditions on the catalytic performance of Cu–Fe/ZrO2 for the synthesis of DPU from aniline and CO2. Chem. Eng. J., 2014, 255, 266-273.
[http://dx.doi.org/10.1016/j.cej.2014.05.061]
[54]
Feyzi, M.; Khodaei, M.M.; Shahmoradi, J. Effect of preparation and operation conditions on the catalytic performance of cobalt-based catalysts for light olefins production. Fuel Process. Technol., 2012, 93(1), 90-98.
[http://dx.doi.org/10.1016/j.fuproc.2011.09.021]
[55]
Liu, H.; Huang, Z.; Kang, H.; Xia, C.; Chen, J. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2- and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts. Chin. J. Catal., 2016, 37(5), 700-710.
[http://dx.doi.org/10.1016/S1872-2067(15)61080-4]
[56]
Wang, Z.; Xu, T.; Tang, D.; Zhou, Y.; Zheng, B.; Qiu, Y.; He, D.; Zeng, X.; Jiang, R.; Mao, X. Catalytic ozonation with γ-Al2O3 sphere supported highly dispersed iron species: Preparation, performance and catalytic mechanism. Colloids Surf. A Physicochem. Eng. Asp., 2022, 658, 130560.
[http://dx.doi.org/10.1016/j.colsurfa.2022.130560]
[57]
Koo, K.Y.; Jung, U.H.; Yoon, W.L. A highly dispersed Pt/γ-Al2O3 catalyst prepared via deposition–precipitation method for preferential CO oxidation. Int. J. Hydrogen Energy, 2014, 39(11), 5696-5703.
[http://dx.doi.org/10.1016/j.ijhydene.2014.01.128]
[58]
Wang, X.; Zhang, B.; Ma, J.; Ning, P. Novel synthesis of aluminum hydroxide gel-coated nano zero-valent iron and studies of its activity in flocculation-enhanced removal of tetracycline. J. Environ. Sci., 2020, 89, 194-205.
[http://dx.doi.org/10.1016/j.jes.2019.09.017] [PMID: 31892391]
[59]
Deng, J.; Deng, X.; Yuan, S.; Ma, D.; Liu, J.; Xie, X.; He, R.; Yang, T. Effect of precipitating agents for the preparation of Fe-based catalysts on coal pyrolysis: Effect of Ba and Mg additives. Fuel, 2022, 320(15), 124000.
[http://dx.doi.org/10.1016/j.fuel.2022.124000]
[60]
Kumar, A.; Gangawane, K.M. Effect of precipitating agents on the magnetic and structural properties of the synthesized ferrimagnetic nanoparticles by co-precipitation method. Powder Technol., 2022, 401, 117298.
[http://dx.doi.org/10.1016/j.powtec.2022.117298]
[61]
Dulnee, S.; Luengnaruemitchai, A.; Wanchanthuek, R. Activity of Au/ZnO catalysts prepared by photo-deposition for the preferential CO oxidation in a H2-rich gas. Int. J. Hydrogen Energy, 2014, 39(12), 6443-6453.
[http://dx.doi.org/10.1016/j.ijhydene.2014.02.038]
[62]
Zhao, P.; Zhao, Y.; Guo, Y.; Guo, R.; Tian, Y.; Zhao, W. Preparation of CuO/γAl2O3 catalyst for degradation of azo dyes (reactive brilliant red X–3B): An optimization study. J. Clean. Prod., 2021, 328, 129624.
[http://dx.doi.org/10.1016/j.jclepro.2021.129624]
[63]
Xu, D.; Cheng, F.; Lu, Q.; Dai, P. Microwave enhanced catalytic degradation of methyl orange in aqueous solution over CuO/CeO 2 catalyst in the absence and presence of H 2 O 2. Ind. Eng. Chem. Res., 2014, 53(7), 2625-2632.
[http://dx.doi.org/10.1021/ie4033022]
[64]
Liu, J.; Chen, H.; Zhu, C.; Han, S.; Li, J.; She, S.; Wu, X. Efficient simultaneous removal of tetracycline hydrochloride and Cr(VI) through photothermal-assisted photocatalytic-Fenton-like processes with CuOx/γ-Al2O3. J. Colloid Interface Sci., 2022, 622, 526-538.
[http://dx.doi.org/10.1016/j.jcis.2022.04.091] [PMID: 35526411]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy