[1]
Lu H, Tang B, Zhou Y, et al. Short-term versus long-term adverse cardiovascular outcomes post percutaneous coronary intervention in patients with insulin-treated type 2 diabetes mellitus: A simple meta-analysis. Diabetes Ther 2019; 10(4): 1487-97.
[http://dx.doi.org/10.1007/s13300-019-0656-9] [PMID: 31256352]
[http://dx.doi.org/10.1007/s13300-019-0656-9] [PMID: 31256352]
[2]
Wang Y, Yu Q, Fan D, Cao F. Coronary heart disease in Type 2 diabetes: Mechanisms and comprehensive prevention strategies. Expert Rev Cardiovasc Ther 2012; 10(8): 1051-60.
[http://dx.doi.org/10.1586/erc.12.52] [PMID: 23030294]
[http://dx.doi.org/10.1586/erc.12.52] [PMID: 23030294]
[3]
Donahoe SM, Stewart GC, McCabe CH, et al. Diabetes and mortality following acute coronary syndromes. JAMA 2007; 298(7): 765-75.
[http://dx.doi.org/10.1001/jama.298.7.765] [PMID: 17699010]
[http://dx.doi.org/10.1001/jama.298.7.765] [PMID: 17699010]
[4]
Ritsinger V, Malmberg K, Mårtensson A, Rydén L, Wedel H, Norhammar A. Intensified insulin-based glycaemic control after myocardial infarction: mortality during 20 year follow-up of the randomised Diabetes Mellitus Insulin Glucose Infusion in Acute Myocardial Infarction (DIGAMI 1) trial. Lancet Diabetes Endocrinol 2014; 2(8): 627-33.
[http://dx.doi.org/10.1016/S2213-8587(14)70088-9] [PMID: 24831989]
[http://dx.doi.org/10.1016/S2213-8587(14)70088-9] [PMID: 24831989]
[5]
Koufakis T, Karras SN, Zebekakis P, Ajjan R, Kotsa K. Should the last be first? Questions and dilemmas regarding early short-term insulin treatment in Type 2 Diabetes Mellitus. Expert Opin Biol Ther 2018; 18(11): 1113-21.
[http://dx.doi.org/10.1080/14712598.2018.1526278] [PMID: 30244600]
[http://dx.doi.org/10.1080/14712598.2018.1526278] [PMID: 30244600]
[6]
Svensson AM, McGuire DK, Abrahamsson P, Dellborg M. Association between hyper and hypoglycaemia and 2 year all-cause mortality risk in diabetic patients with acute coronary events. Eur Heart J 2005; 26(13): 1255-61.
[http://dx.doi.org/10.1093/eurheartj/ehi230] [PMID: 15821004]
[http://dx.doi.org/10.1093/eurheartj/ehi230] [PMID: 15821004]
[7]
Draznin B, Aroda VR, Bakris G, et al. 16. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022; 45 (Suppl. 1): S244-53.
[http://dx.doi.org/10.2337/dc22-S016] [PMID: 34964884]
[http://dx.doi.org/10.2337/dc22-S016] [PMID: 34964884]
[8]
Johansson I, Dicembrini I, Mannucci E, Cosentino F. Glucose-lowering therapy in patients undergoing percutaneous coronary intervention. EuroIntervention 2021; 17(8): e618-30.
[http://dx.doi.org/10.4244/EIJ-D-20-01250] [PMID: 34596567]
[http://dx.doi.org/10.4244/EIJ-D-20-01250] [PMID: 34596567]
[9]
Koufakis T, Mustafa OG, Zebekakis P, Kotsa K. Oral antidiabetes agents for the management of inpatient hyperglycaemia: So far, yet so close. Diabet Med 2020; 37(9): 1418-26.
[http://dx.doi.org/10.1111/dme.14329] [PMID: 32445407]
[http://dx.doi.org/10.1111/dme.14329] [PMID: 32445407]
[10]
Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41(2): 255-323.
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[11]
Scheen AJ. Outcomes and lessons from the PROactive study. Diabetes Res Clin Pract 2012; 98(2): 175-86.
[http://dx.doi.org/10.1016/j.diabres.2012.09.001] [PMID: 23020930]
[http://dx.doi.org/10.1016/j.diabres.2012.09.001] [PMID: 23020930]
[12]
Wang MT, Huang YL, Lai JH, et al. Association between specificity of sulfonylureas to cardiac mitochondrial KATP channels and the risk of major adverse cardiovascular events in type 2 diabetes. Diabetes Care 2022; 45(5): 1276-87.
[http://dx.doi.org/10.2337/dc21-1779] [PMID: 35294529]
[http://dx.doi.org/10.2337/dc21-1779] [PMID: 35294529]
[13]
Kawai Y, Uneda K, Yamada T, et al. Comparison of effects of SGLT-2 inhibitors and GLP-1 receptor agonists on cardiovascular and renal outcomes in type 2 diabetes mellitus patients with/without albuminuria: A systematic review and network meta-analysis. Diabetes Res Clin Pract 2022; 183: 109146.
[http://dx.doi.org/10.1016/j.diabres.2021.109146] [PMID: 34780865]
[http://dx.doi.org/10.1016/j.diabres.2021.109146] [PMID: 34780865]
[14]
Karangelis D, Mazer CD, Stakos D, et al. Cardio-protective effects of sodium-glucose co-transporter 2 inhibitors: Focus on heart failure. Curr Pharm Des 2021; 27(8): 1051-60.
[http://dx.doi.org/10.2174/1381612826666201103122813] [PMID: 33143620]
[http://dx.doi.org/10.2174/1381612826666201103122813] [PMID: 33143620]
[15]
Koufakis T, Vas P, Maltese G, Kotsa K. Antiatherosclerotic effects of sodium-glucose cotransporter 2 inhibitors: An underrecognized piece of the big puzzle? J Clin Endocrinol Metab 2022; 107(10): e4244-5.
[http://dx.doi.org/10.1210/clinem/dgac116] [PMID: 35245937]
[http://dx.doi.org/10.1210/clinem/dgac116] [PMID: 35245937]
[16]
Koufakis T, Mustafa OG, Ajjan RA, et al. The use of sodium‐glucose co‐transporter 2 inhibitors in the inpatient setting: Is the risk worth taking? J Clin Pharm Ther 2020; 45(5): 883-91.
[http://dx.doi.org/10.1111/jcpt.13107] [PMID: 31905245]
[http://dx.doi.org/10.1111/jcpt.13107] [PMID: 31905245]
[17]
Voors AA, Angermann CE, Teerlink JR, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat Med 2022; 28(3): 568-74.
[http://dx.doi.org/10.1038/s41591-021-01659-1] [PMID: 35228754]
[http://dx.doi.org/10.1038/s41591-021-01659-1] [PMID: 35228754]
[18]
Mozawa K, Kubota Y, Hoshika Y, et al. Empagliflozin confers reno‐protection in acute myocardial infarction and type 2 diabetes mellitus. ESC Heart Fail 2021; 8(5): 4161-73.
[http://dx.doi.org/10.1002/ehf2.13509] [PMID: 34235875]
[http://dx.doi.org/10.1002/ehf2.13509] [PMID: 34235875]
[19]
von Lewinski D, Kolesnik E, Tripolt NJ, et al. Empagliflozin in acute myocardial infarction: The EMMY trial. Eur Heart J 2022; 43(41): 4421-32.
[http://dx.doi.org/10.1093/eurheartj/ehac494] [PMID: 36036746]
[http://dx.doi.org/10.1093/eurheartj/ehac494] [PMID: 36036746]
[20]
Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004; 109(8): 962-5.
[http://dx.doi.org/10.1161/01.CIR.0000120505.91348.58] [PMID: 14981009]
[http://dx.doi.org/10.1161/01.CIR.0000120505.91348.58] [PMID: 14981009]
[21]
Nozue T, Yamada M, Tsunoda T, et al. Effects of liraglutide, a glucagon-like peptide-1 analog, on left ventricular remodeling assessed by cardiac magnetic resonance imaging in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Heart Vessels 2016; 31(8): 1239-46.
[http://dx.doi.org/10.1007/s00380-015-0734-5] [PMID: 26293570]
[http://dx.doi.org/10.1007/s00380-015-0734-5] [PMID: 26293570]