Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Natural Cycloartane Triterpenoids from Corypha utan Lamk. with Anticancer Activity towards P388 Cell Lines and their Predicted Interaction with FLT3

Author(s): Leny Heliawati*, Dikdik Kurnia, Eti Apriyanti, Putri Nabila Adinda Adrian Syah and Sun Theo Constan Lotebulo Ndruru

Volume 26, Issue 13, 2023

Published on: 16 March, 2023

Page: [2293 - 2303] Pages: 11

DOI: 10.2174/1386207326666230210141218

Price: $65

Abstract

Background: Cancer is the second leading cause of death in the world. Leukemia is a type of cancer that accounts for 31.5% of all cancers in children under the age of 15 in industrialized countries and 15.7% in developing countries. The inhibition of FMS-like tyrosine kinase 3 (FLT3) is a suitable approach for acute myeloid leukemia (AML) therapy as it is overexpressed in AML.

Aim and Objective: This study intends to explore the natural constituents from the bark of Corypha utan Lamk., and assess their cytotoxicity on murine leukemia cell lines (P388) in addition to predicting their interaction with FLT3 as a studied target by computational methods.

Methods: Compounds 1 and 2 were isolated from Corypha utan Lamk using the stepwise radial chromatography method. These compounds were assessed for their cytotoxicity against Artemia salina using the BSLT and P388 cells and the MTT assay. The docking simulation was employed to predict the possible interaction between triterpenoid and FLT3.

Results: Isolation from the bark of C. utan Lamk. generated two triterpenoids, cycloartanol (1) and cycloartanone (2). Based on the in vitro and in silico studies, both compounds were found to have anticancer activity. The evaluation of cytotoxicity from this study reveals that cycloartanol (1) and cycloartanone (2) could inhibit P388 cell growth (IC50 value at 102.6 and 110.0 μg/mL, respectively). The binding energy of cycloartanone was -9.94 Kcal/mol with a Ki value of 0.051 μM, while the binding energy and Ki value of cycloartanol (1) were found to be 8.76 Kcal/mol and 0.38 μM, respectively. These compounds also demonstrate a stable interaction by forming hydrogen bonds with FLT3.

Conclusion: Cycloartanol (1) and cycloartanone (2) exhibit potency as anticancer agents by inhibiting P388 cells in vitro and the FLT3 gene in silico.

Graphical Abstract

[1]
Elhady, S.S.; Eltamany, E.E.; Shaaban, A.E.; Bagalagel, A.A.; Muhammad, Y.A.; El-Sayed, N.M.; Ayyad, S.N.; Ahmed, A.A.M.; Elgawish, M.S.; Ahmed, S.A. Jaceidin flavonoid isolated from Chiliadenus montanus attenuates tumor progression in mice via VEGF inhibition: In vivo and in silico studies. Plants, 2020, 9(8), 1031.
[http://dx.doi.org/10.3390/plants9081031] [PMID: 32823927]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Vora, H.H.; Shukla, S.N.; Brahambhatt, B.V.; Mehta, S.H.; Patel, N.A.; Parikh, S.K.; Shah, K.N.; Shah, P.M. Clinical relevance of FLT3 receptor protein expression in Indian patients with acute leukemia. Asia Pac. J. Clin. Oncol., 2010, 6(4), 306-319.
[http://dx.doi.org/10.1111/j.1743-7563.2010.01322.x] [PMID: 21114781]
[4]
Suzanna, E.; Sirait, T.; Rahayu, P.S.; Shalmont, G.; Anwar, E.; Andalusia, R.; Harjati; Panigoro, S.S. Registrasi kanker berbasis rumah sakit di rumah sakit kanker dharmais. Ind. J. Cancer, 2012, 6, 181-196.
[http://dx.doi.org/10.33371/ijoc.v6i4.299]
[5]
Hwang, D.; Kim, M.; Park, H.; Jeong, M.I.; Jung, W.; Kim, B. Natural products and acute myeloid leukimia: A review highlighting mechanisms of action. Nutrients, 2019, 11(5), 1010.
[http://dx.doi.org/10.3390/nu11051010] [PMID: 31058874]
[6]
Yang, X.; Wang, J. Precision therapy for acute myeloid leukemia. J. Hematol. Oncol., 2018, 11(1), 3.
[http://dx.doi.org/10.1186/s13045-017-0543-7] [PMID: 29301553]
[7]
Liao, D.; Wang, M.; Liao, Y.; Li, J.; Niu, T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front. Pharmacol., 2019, 10, 609.
[http://dx.doi.org/10.3389/fphar.2019.00609] [PMID: 31244654]
[8]
Garg, M.; Nagata, Y.; Kanojia, D.; Mayakonda, A.; Yoshida, K.; Haridas Keloth, S.; Zang, Z.J.; Okuno, Y.; Shiraishi, Y.; Chiba, K.; Tanaka, H.; Miyano, S.; Ding, L.W.; Alpermann, T.; Sun, Q.Y.; Lin, D.C.; Chien, W.; Madan, V.; Liu, L.Z.; Tan, K.T.; Sampath, A.; Venkatesan, S.; Inokuchi, K.; Wakita, S.; Yamaguchi, H.; Chng, W.J.; Kham, S.K.Y.; Yeoh, A.E.J.; Sanada, M.; Schiller, J.; Kreuzer, K.A.; Kornblau, S.M.; Kantarjian, H.M.; Haferlach, T.; Lill, M.; Kuo, M.C.; Shih, L.Y.; Blau, I.W.; Blau, O.; Yang, H.; Ogawa, S.; Koeffler, H.P. Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood, 2015, 126(22), 2491-2501.
[http://dx.doi.org/10.1182/blood-2015-05-646240] [PMID: 26438511]
[9]
Lucas, D.; Scheiermann, C.; Chow, A.; Kunisaki, Y.; Bruns, I.; Barrick, C.; Tessarollo, L.; Frenette, P.S. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat. Med., 2013, 19(6), 695-703.
[http://dx.doi.org/10.1038/nm.3155] [PMID: 23644514]
[10]
May, J.E.; Donaldson, C.; Gynn, L.; Morse, H.R. Chemotherapy-induced genotoxic damage to bone marrow cells: long-term implications. Mutagenesis, 2018, 33(3), 241-251.
[http://dx.doi.org/10.1093/mutage/gey014] [PMID: 30239865]
[11]
Bhujbal, S.P.; Keretsu, S.; Cho, S.J. Design of new therapeutic agents targeting FLT3 receptor tyrosine kinase using molecular docking and 3D-QSAR approach. Lett. Drug Des. Discov., 2020, 17(5), 585-596.
[http://dx.doi.org/10.2174/1570180816666190618104632]
[12]
Zorn, J.A.; Wang, Q.; Fujimura, E.; Barros, T.; Kuriyan, J. Crystal structure of the FLT3 kinase domain bound to the inhibitor Quizartinib (AC220). PLoS One, 2015, 10(4), e0121177.
[http://dx.doi.org/10.1371/journal.pone.0121177] [PMID: 25837374]
[13]
Sudhindra, A.; Smith, C.C. FLT3 inhibitors in AML: are we there yet? Curr. Hematol. Malig. Rep., 2014, 9(2), 174-185.
[http://dx.doi.org/10.1007/s11899-014-0203-8] [PMID: 24682858]
[14]
Jarusiewicz, J.A.; Jeon, J.Y.; Connelly, M.C.; Chen, Y.; Yang, L.; Baker, S.D.; Guy, R.K. Discovery of a diaminopyrimidine FLT3 inhibitor active against acute myeloid leukemia. ACS Omega, 2017, 2(5), 1985-2009.
[http://dx.doi.org/10.1021/acsomega.7b00144] [PMID: 28580438]
[15]
Ji, H.F.; Li, X.J.; Zhang, H.Y. Natural products and drug discovery. EMBO Rep., 2009, 10(3), 194-200.
[http://dx.doi.org/10.1038/embor.2009.12] [PMID: 19229284]
[16]
Katz, L.; Baltz, R.H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176.
[http://dx.doi.org/10.1007/s10295-015-1723-5] [PMID: 26739136]
[17]
Karakaya, S.; Koca, M.; Yılmaz, S.; Yıldırım, K.; Pınar, N.; Demirci, B.; Brestic, M.; Sytar, O. Molecular docking studies of coumarins isolated from extracts and essential oils of Zosima absinthifolia link as potential inhibitors for Alzheimer’s disease. Molecules, 2019, 24(4), 722.
[http://dx.doi.org/10.3390/molecules24040722] [PMID: 30781573]
[18]
Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol., 2018, 227, 300-315.
[http://dx.doi.org/10.1016/j.jep.2018.09.004] [PMID: 30205181]
[19]
Kurnia, D.; Hutabarat, G.S.; Windaryanti, D.; Herlina, T.; Herdiyati, Y.; Satari, M.H. Potential allylpyrocatechol derivatives as antibacterial agent against oral pathogen of S. sanguinis ATCC 10,556 and as inhibitor of MurA enzymes: In vitro and in silico study. Drug Des. Devel. Ther., 2020, 14, 2977-2985.
[http://dx.doi.org/10.2147/DDDT.S255269] [PMID: 32801638]
[20]
Darwati, D.; Safitri, A.N.; Ambardhani, N.; Mayanti, T.; Nurlelasari, N.; Kurnia, D. Effectiveness and anticancer activity of a novel phenolic compound from Garcinia porrecta against the mcf-7 breast cancer cell line in vitro and in silico. Drug Des. Devel. Ther., 2021, 15, 3523-3533.
[http://dx.doi.org/10.2147/DDDT.S321824] [PMID: 34408404]
[21]
Abdelhameed, R.; Elgawish, M.S.; Mira, A.; Ibrahim, A.K.; Ahmed, S.A.; Shimizu, K.; Yamada, K. Anti-choline esterase activity of ceramides from the Red Sea marine sponge Mycale euplectellioides. RSC Advances, 2016, 6(24), 20422-20430.
[http://dx.doi.org/10.1039/C5RA26424C]
[22]
Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules, 2020, 25(6), 1375.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[23]
Marica Bakovic, N.H. Biologically active triterpenoids and their cardioprotective and anti-inflammatory effects. J. Bioanal. Biomed., 2015, 1(s12)
[http://dx.doi.org/10.4172/1948-593X.S12-005]
[24]
Ma, L.; Zhang, M.; Zhao, R.; Wang, D.; Ma, Y.; Ai, L. Plant natural products: Promising resources for cancer chemoprevention. Molecules, 2021, 26(4), 933.
[http://dx.doi.org/10.3390/molecules26040933] [PMID: 33578780]
[25]
Chen, F.; Liu, D.L.; Wang, W.; Lv, X.M.; Li, W.; Shao, L.D.; Wang, W.J. Bioactive triterpenoids from Sambucus javanica Blume. Nat. Prod. Res., 2020, 34(19), 2816-2821.
[http://dx.doi.org/10.1080/14786419.2019.1596092] [PMID: 30968700]
[26]
Patlolla, J.M.; Rao, C.V. Triterpenoids for cancer prevention and treatment: current status and future prospects. Curr. Pharm. Biotechnol., 2012, 13(1), 147-155.
[http://dx.doi.org/10.2174/138920112798868719] [PMID: 21466427]
[27]
Sultana, N.; Saeed Saify, Z. Naturally occurring and synthetic agents as potential anti-inflammatory and immunomodulants. Antiinflamm. Antiallergy Agents Med. Chem., 2012, 11(1), 3-19.
[http://dx.doi.org/10.2174/187152312803476264] [PMID: 22934748]
[28]
Zhao, X.; Liu, M.; Li, D. Oleanolic acid suppresses the proliferation of lung carcinoma cells by miR-122/Cyclin G1/MEF2D axis. Mol. Cell. Biochem., 2015, 400(1-2), 1-7.
[http://dx.doi.org/10.1007/s11010-014-2228-7] [PMID: 25472877]
[29]
Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci., 2011, 16(1), 980-996.
[http://dx.doi.org/10.2741/3730] [PMID: 21196213]
[30]
Ren, Y.; Kinghorn, A.D. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med., 2019, 85(11/12), 802-814.
[http://dx.doi.org/10.1055/a-0832-2383] [PMID: 30658371]
[31]
Li, S.; Kuo, H.C.D.; Yin, R.; Wu, R.; Liu, X.; Wang, L.; Hudlikar, R.; Peter, R.M.; Kong, A.N. Epigenetics/epigenomics of triterpenoids in cancer prevention and in health. Biochem. Pharmacol., 2020, 175, 113890.
[http://dx.doi.org/10.1016/j.bcp.2020.113890] [PMID: 32119837]
[32]
Pan, L.; Yong, Y.; Deng, Y.; Lantvit, D.D.; Ninh, T.N.; Chai, H.; Carcache de Blanco, E.J.; Soejarto, D.D.; Swanson, S.M.; Kinghorn, A.D. Isolation, structure elucidation, and biological evaluation of 16,23-epoxycucurbitacin constituents from Eleaocarpus chinensis. J. Nat. Prod., 2012, 75(3), 444-452.
[http://dx.doi.org/10.1021/np200879p] [PMID: 22239601]
[33]
Ren, Y.; Anaya-Eugenio, G.D.; Czarnecki, A.A.; Ninh, T.N.; Yuan, C.; Chai, H.B.; Soejarto, D.D.; Burdette, J.E.; de Blanco, E.J.C.; Kinghorn, A.D. Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives. Bioorg. Med. Chem., 2018, 26(15), 4452-4460.
[http://dx.doi.org/10.1016/j.bmc.2018.07.025] [PMID: 30057155]
[34]
Tung, N.H.; Song, G.Y.; Minh, C.V.; Kiem, P.V.; Jin, L.G.; Boo, H.J.; Kang, H.K.; Kim, Y.H. Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells. Chem. Pharm. Bull. (Tokyo), 2010, 58(8), 1111-1115.
[http://dx.doi.org/10.1248/cpb.58.1111] [PMID: 20686271]
[35]
Tuchinda, P.; Kornsakulkarn, J.; Pohmakotr, M.; Kongsaeree, P.; Prabpai, S.; Yoosook, C.; Kasisit, J.; Napaswad, C.; Sophasan, S.; Reutrakul, V. Dichapetalin-type triterpenoids and lignans from the aerial parts of Phyllanthus acutissima. J. Nat. Prod., 2008, 71(4), 655-663.
[http://dx.doi.org/10.1021/np7007347] [PMID: 18271551]
[36]
Nandika, D.; Darmawan, W.; Karlinasari, L.; Hadi, Y.S.; Abdillah, I.B.; Hiziroglu, S. Evaluation of color change and biodeterioration resistance of Gewang (Corypha utan Lamk.) wood. Appl. Sci. (Basel), 2020, 10(21), 7501.
[http://dx.doi.org/10.3390/app10217501]
[37]
Heliawati, L.; Kardinan, A.; Mayanti, T.; Tjokronegoro, R. ati Piceatanol: Anti-cancer compound from Gewang seed extract. J. Appl. Pharm. Sci., 2015, 5, 110-113.
[http://dx.doi.org/10.7324/JAPS.2015.50119]
[38]
Waghulde, S.; Kale, M.K.; Patil, V. Brine shrimp lethality assay of the aqueous and ethanolic extracts of the selected species of medicinal plants. Proceedings, 2019, 41, 47.
[http://dx.doi.org/10.3390/ecsoc-23-06703]
[39]
Aykul, S.; Martinez-Hackert, E. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal. Biochem., 2016, 508, 97-103.
[http://dx.doi.org/10.1016/j.ab.2016.06.025] [PMID: 27365221]
[40]
Bell, E.W.; Zhang, Y. DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J. Cheminform., 2019, 11(1), 40.
[http://dx.doi.org/10.1186/s13321-019-0362-7] [PMID: 31175455]
[41]
Kim, N.; Park, S.; Nhiem, N.X.; Song, J.H.; Ko, H.J.; Kim, S.H. Cycloartane-type triterpenoid derivatives and a flavonoid glycoside from the burs of Castanea crenata. Phytochemistry, 2019, 158, 135-141.
[http://dx.doi.org/10.1016/j.phytochem.2018.11.001] [PMID: 30529974]
[42]
Baniadam, S.; Rahiminejad, M.R.; Ghannadian, M.; Saeidi, H.; Ayatollahi, A.M.; Aghaei, M. Cycloartane triterpenoids from Euphorbia macrostegia with their cytotoxicity against MDA- MB48 and MCF-7 cancer cell lines. Iran. J. Pharm. Res., 2014, 13(1), 135-141.
[http://dx.doi.org/10.22037/ijpr.2014.1419] [PMID: 24734064]
[43]
Yadav, V.R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B.B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel), 2010, 2(10), 2428-2466.
[http://dx.doi.org/10.3390/toxins2102428] [PMID: 22069560]
[44]
Thanh, L.N.; Thoa, H.T.; Oanh, N.T.T.; Giap, T.H.; Quyen, V.T.; Ha, N.T.T.; Phuong, D.T.L.; Lien, N.T.P.; Hang, N.T.M. Cycloartane triterpenoids and biological activities from the propolis of thestingless bee Lisotrigona furva. Vietnam J. Chem., 2021, 59, 426-430.
[http://dx.doi.org/10.1002/vjch.201900143]
[45]
Kennedy, V.E.; Smith, C.C. FLT3 Mutations in acute myeloid leukemia: Key concepts and emerging controversies. Front. Oncol., 2020, 10, 612880.
[http://dx.doi.org/10.3389/fonc.2020.612880] [PMID: 33425766]
[46]
Wiji Prasetyaningrum, P.; Bahtiar, A.; Hayun, H. Synthesis and cytotoxicity evaluation of novel asymmetrical mono-carbonyl analogs of curcumin (AMACs) against vero, HeLa, and MCF7 cell lines. Sci. Pharm., 2018, 86(2), 25.
[http://dx.doi.org/10.3390/scipharm86020025] [PMID: 29880783]
[47]
Arcanjo, D.; Albuquerque, A.; Melo-Neto, B.; Santana, L.; Medeiros, M.G.F.; Citó, A. Bioactivity evaluation against Artemia salina Leach of medicinal plants used in Brazilian Northeastern folk medicine. Braz. J. Biol., 2012, 72(3), 505-509.
[http://dx.doi.org/10.1590/S1519-69842012000300013] [PMID: 22990821]
[48]
Meyer, B.; Ferrigni, N.; Putnam, J.; Jacobsen, L.; Nichols, D.; McLaughlin, J. Brine Shrimp: A convenient general bioassay for active plant constituents. Planta Med., 1982, 45(5), 31-34.
[http://dx.doi.org/10.1055/s-2007-971236]
[49]
Rahman, M.A.; Ramli, F.; Karimian, H.; Dehghan, F.; Nordin, N.; Mohd Ali, H.; Mohan, S.; Mohd Hashim, N. Artonin E induces apoptosis via mitochondrial dysregulation in SKOV-3 ovarian cancer cells. PLoS One, 2016, 11(3), e0151466.
[http://dx.doi.org/10.1371/journal.pone.0151466] [PMID: 27019365]
[50]
Etti, I.; Rasedee, A.; Mohd Hashim, N.; Bustamam Bin Abdul, A.; Abdul Kadir, A.; Yeap, S.K.; Waziri, P.; Malami, I.; Lim, K.L.; Etti, C. Artonin E induces p53-independent G1 cell cycle arrest and apoptosis through ROS-mediated mitochondrial pathway and livin suppression in MCF-7 cells. Drug Des. Devel. Ther., 2017, 11, 865-879.
[http://dx.doi.org/10.2147/DDDT.S124324] [PMID: 28356713]
[51]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[52]
Chen, G.; Seukep, A.J.; Guo, M. Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar. Drugs, 2020, 18(11), 545.
[http://dx.doi.org/10.3390/md18110545] [PMID: 33143025]
[53]
Musthapa, I.; Latip, J.; Takayama, H.; Juliawaty, L.D.; Hakim, E.H.; Syah, Y.M. Prenylated flavones from Artocarpus lanceifolius and their cytotoxic properties against P-388 cells. Nat. Prod. Commun., 2009, 4(7), 1934578X0900400.
[http://dx.doi.org/10.1177/1934578X0900400710] [PMID: 19731595]
[54]
Zhu, R.; Li, L.; Nguyen, B.; Seo, J.; Wu, M.; Seale, T.; Levis, M.; Duffield, A.; Hu, Y.; Small, D. FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation. Signal Transduct. Target. Ther., 2021, 6(1), 186.
[http://dx.doi.org/10.1038/s41392-021-00578-4] [PMID: 34024909]
[55]
Gupta, A.; Chaudhary, N.; Kakularam, K.R.; Pallu, R.; Polamarasetty, A. The augmenting effects of desolvation and conformational energy terms on the predictions of docking programs against mPGES-1. PLoS One, 2015, 10(8), e0134472.
[http://dx.doi.org/10.1371/journal.pone.0134472] [PMID: 26305898]
[56]
Cao, H.; Hu, H.; Colagiuri, B.; Liu, J. Medicinal cupping therapy in 30 patients with fibromyalgia: A case series observation. Forsch. Komplement. Med., 2011, 18(3), 3.
[http://dx.doi.org/10.1159/000329329] [PMID: 21701180]
[57]
Vargas, J.A.R.; Lopez, A.G.; Piñol, M.C.; Froeyen, M. Molecular docking study on the interaction between 2-substituted-4,5-difuryl Imidazoles with different protein target for antileishmanial activity. J. Appl. Pharm. Sci., 2018, 8, 14-22.
[http://dx.doi.org/10.7324/JAPS.2018.8303]
[58]
Maulana Hidayatullah, I.; Setiadi, T.; Tri Ari Penia Kresnowati, M.; Boopathy, R. Xylanase inhibition by the derivatives of lignocellulosic material. Bioresour. Technol., 2020, 300, 122740.
[http://dx.doi.org/10.1016/j.biortech.2020.122740] [PMID: 31952895]
[59]
Vepuri, S.B.; Anbazhagan, S.; Divya, D.; Padmin, D. A review on supramolecular chemistry in drug design and formulation research. Indones. J. Pharm., 2013, 24, 131-150.
[http://dx.doi.org/10.14499/INDONESIANJPHARM0ISS0PP131-150]
[60]
Katragadda, M.; Magotti, P.; Sfyroera, G.; Lambris, J.D. Hydrophobic effect and hydrogen bonds account for the improved activity of a complement inhibitor, compstatin. J. Med. Chem., 2006, 49(15), 4616-4622.
[http://dx.doi.org/10.1021/jm0603419] [PMID: 16854067]
[61]
Sashidhara, K.V.; Singh, S.P.; Kant, R.; Maulik, P.R.; Sarkar, J.; Kanojiya, S.; Ravi Kumar, K. Cytotoxic cycloartane triterpene and rare isomeric bisclerodane diterpenes from the leaves of Polyalthia longifolia var. pendula. Bioorg. Med. Chem. Lett., 2010, 20(19), 5767-5771.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.141] [PMID: 20732814]
[62]
Choodej, S.; Pudhom, K. Cycloartane triterpenoids from the leaves of Euphorbia neriifolia. Phytochem. Lett., 2020, 35, 1-5.
[http://dx.doi.org/10.1016/j.phytol.2019.10.005]
[63]
Nair, A.N.S.; Nair, R.V.R.; Nair, A.P.R.; Nair, A.S.; Thyagarajan, S.; Johnson, A.J.; Baby, S. Antidiabetes constituents, cycloartenol and 24-methylenecycloartanol, from Ficus krishnae. PLoS One, 2020, 15(6), e0235221.
[http://dx.doi.org/10.1371/journal.pone.0235221] [PMID: 32584888]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy