Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Electrochemical Detection of Sulfadiazine by Sensors based on Chemically Modified Carbon Electrodes: A Review

Author(s): Khalid Ait Ben Brahim, Mohamed Bendany, Youssra El Hamdouni, Khaoula Abbi, Chaymae Bakkouche, Hatim Fattoumi, Lina Hermouche, Najoua Labjar*, Mohamed Dalimi and Souad El Hajjaji

Volume 23, Issue 15, 2023

Published on: 01 March, 2023

Page: [1464 - 1476] Pages: 13

DOI: 10.2174/1568026623666230210115740

Price: $65

Abstract

The consumption of medicines (usually pharmaceuticals and chemical health products) has increased in recent decades due to the demand for medicines for various diseases (headache, relapsing fever, dental absence, streptococcal infection, bronchitis, ear and eye infections). Instead, their overuse can lead to serious environmental damage. Sulfadiazine is one of the most often used antimicrobial medications for both human and veterinary therapy, yet its presence in the environment, even in low quantities, offers a potential concern as an emergency pollutant. It is vital to have a monitoring that's quick, selective, sensitive, stable, reversible, reproducible, and easy to use. Electrochemical techniques realizing cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV), using a modified electrode based on carbon as a surface modifier are an excellent option that makes control simple and quick owing to their cheap cost and convenience of use, while also safeguarding human health from drug residue buildup.

This study discusses different chemically modified carbon-based electrodes such as graphene paste, screen printed electrode, glassy carbon, and boron diamond doped electrodes for SDZ (sulfadiazine) detection in various formulation feeds, pharmaceuticals, milk, and urine samples, the results obtained also show high sensitivity and selectivity with lower detection limits compared to matrix studies, which may explain its use in trace detection. Furthermore, the effectiveness of the sensors is assessed by other parameters including buffer solution, scan rate, and pH. Also, a method for real sample preparation was also discussed in addition to the different methods mentioned.

« Previous
Graphical Abstract

[1]
Marzo, A.; Dal Bo, L. Chromatography as an analytical tool for selected antibiotic classes: A reappraisal addressed to pharmacokinetic applications. J. Chromatogr. A, 1998, 812(1-2), 17-34.
[http://dx.doi.org/10.1016/S0021-9673(98)00282-9] [PMID: 9691307]
[2]
García-Galán, M.J.; Silvia Díaz-Cruz, M.; Barceló, D. Identification and determination of metabolites and degradation products of sulfonamide antibiotics. Trends Analyt. Chem., 2008, 27(11), 1008-1022.
[http://dx.doi.org/10.1016/j.trac.2008.10.001]
[3]
Long, A.R.; Short, C.R.; Barker, S.A. Method for the isolation and liquid chromatographic determination of eight sulfonamides in milk. J. Chromutogr., 1990, 502, 87-94.
[http://dx.doi.org/10.1016/S0021-9673(01)89566-2]
[4]
Mohamed, R.; Hammel, Y.A.; LeBreton, M.H.; Tabet, J.C.; Jullien, L.; Guy, P.A. Evaluation of atmospheric pressure ionization interfaces for quantitative measurement of sulfonamides in honey using isotope dilution liquid chromatography coupled with tandem mass spectrometry techniques. J. Chromatogr. A, 2007, 1160(1-2), 194-205.
[http://dx.doi.org/10.1016/j.chroma.2007.05.071] [PMID: 17560585]
[5]
Schebeliski, A.H.; Lima, D.; Marchesi, L.F.Q.P.; Calixto, C.M.F.; Pessôa, C.A. Preparation and characterization of a carbon nanotube-based ceramic electrode and its potential application at detecting sulfonamide drugs. J. Appl. Electrochem., 2018, 48(4), 471-485.
[http://dx.doi.org/10.1007/s10800-018-1171-9]
[6]
Dmitrienko, S.G.; Kochuk, E.V.; Apyari, V.V.; Tolmacheva, V.V.; Zolotov, Y.A. Recent advances in sample preparation techniques and methods of sulfonamides detection - A review. Anal. Chim. Acta, 2014, 850, 6-25.
[http://dx.doi.org/10.1016/j.aca.2014.08.023] [PMID: 25441155]
[7]
Ait Lahcen, A.; Amine, A. Mini-review: Recent advances in electrochemical determination of sulfonamides.In: Analytical Letters; Taylor and Francis Inc.: UK, 2018, pp. 424-441.
[http://dx.doi.org/10.1080/00032719.2017.1295977]
[8]
Baran, W.; Adamek, E. Ziemiańska, J.; Sobczak, A. Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater., 2011, 196, 1-15.
[http://dx.doi.org/10.1016/j.jhazmat.2011.08.082] [PMID: 21955662]
[9]
Vivekanandan, A.K.; Muthukutty, B.; Chen, S.M.; Sivakumar, M.; Chen, S.H. Intermetallic compound Cu2 Sb nanoparticles for effective electrocatalytic oxidation of an antibiotic drug. Sulphadiazine. ACS Sustain. Chem. Eng., 2020, 8(48), 17718-17726.
[http://dx.doi.org/10.1021/acssuschemeng.0c05629]
[10]
Joseph, R.; Girish Kumar, K. Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20- tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. Drug Test. Anal., 2010, 2(6), 278-283.
[http://dx.doi.org/10.1002/dta.129] [PMID: 20564608]
[11]
Hasebe, K.; Osteryoung, J. Differential pulse polarographic determination of some carcinogenic nitrosamines. Anal. Chem., 1975, 47(14), 2412-2418.
[http://dx.doi.org/10.1021/ac60364a002] [PMID: 1190479]
[12]
Wutz, K.; Niessner, R.; Seidel, M. Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Mikrochim. Acta, 2011, 173(1-2), 1-9.
[http://dx.doi.org/10.1007/s00604-011-0548-9]
[13]
Fang, G.Z.; He, J.X.; Wang, S. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. J. Chromatogr. A, 2006, 1127(1-2), 12-17.
[http://dx.doi.org/10.1016/j.chroma.2006.06.024] [PMID: 16820156]
[14]
Chung, H.H.; Lee, J.B.; Chung, Y-H.; Lee, K-G. Analysis of sulfonamide and quinolone antibiotic residues in Korean milk using microbial assays and high performance liquid chromatography. Food Chem., 2009, 113(1), 297-301.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.021]
[15]
Vargas Mamani, M.C.; Reyes Reyes, F.G.; Rath, S. Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD. Food Chem., 2009, 117(3), 545-552.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.032]
[16]
Zhang, W.; Duan, C.; Wang, M. Analysis of seven sulphonamides in milk by cloud point extraction and high performance liquid chromatography. Food Chem., 2011, 126(2), 779-785.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.072]
[17]
Ramos Payán, M.; López, M.Á.B.; Fernández-Torres, R.; Navarro, M.V.; Mochón, M.C. Hollow fiber-based liquid phase microextraction (HF-LPME) for a highly sensitive HPLC determination of sulfonamides and their main metabolites. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(2), 197-204.
[http://dx.doi.org/10.1016/j.jchromb.2010.12.006] [PMID: 21185241]
[18]
Sun, N.; Wu, S.; Chen, H.; Zheng, D.; Xu, J.; Ye, Y. Determination of sulfamethoxazole in milk using molecularly imprinted polymer monolith microextraction coupled to HPLC. Mikrochim. Acta, 2012, 179(1-2), 33-40.
[http://dx.doi.org/10.1007/s00604-012-0862-x]
[19]
Pang, G.F.; Cao, Y.Z.; Fan, C.L.; Zhang, J.J.; Li, X.M.; Li, Z.Y. Liquid chromatography-fluorescence detection for simultaneous analysis of sulfonamide residues in honey. Anal. Bioanal. Chem., 2003, 376(4), 534-541.
[http://dx.doi.org/10.1007/s00216-003-1883-4]
[20]
Maudens, K.E.; Zhang, G.F.; Lambert, W.E. Quantitative analysis of twelve sulfonamides in honey after acidic hydrolysis by high-performance liquid chromatography with post-column derivatization and fluorescence detection. J. Chromatogr. A, 2004, 1047(1), 85-92.
[http://dx.doi.org/10.1016/j.chroma.2004.07.007] [PMID: 15481463]
[21]
Mor, F.; Sahindokuyucu, K.F.; Ozdemir, G.; Oz, B. Determination of sulphonamide residues in cattle meats by the Charm-II system and validation with high performance liquid chromatography with fluorescence detection. Food Chem., 2012, 134(3), 1645-1649.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.049] [PMID: 25005994]
[22]
Malintan, N.T.; Mohd, M.A. Determination of sulfonamides in selected Malaysian swine wastewater by high-performance liquid chromatography. J. Chromatogr. A, 2006, 1127(1-2), 154-160.
[http://dx.doi.org/10.1016/j.chroma.2006.06.005] [PMID: 16806241]
[23]
Granja, R.H.M.M.; Niño, A.M.M.; Rabone, F.; Salerno, A.G. A reliable high-performance liquid chromatography with ultraviolet detection for the determination of sulfonamides in honey. Anal. Chim. Acta, 2008, 613(1), 116-119.
[http://dx.doi.org/10.1016/j.aca.2008.02.048] [PMID: 18374709]
[24]
Hartig, C.; Storm, T.; Jekel, M. Detection and identification of sulphonamide drugs in municipal waste water by liquid chromatography coupled with electrospray ionisation tandem mass spectrometry. J. Chromatogr. A, 1999, 854(1-2), 163-173.
[http://dx.doi.org/10.1016/s0021-9673(99)00378-7] [PMID: 10497937]
[25]
Göbel, A.; McArdell, C.S.; Suter, M.J.F.; Giger, W. Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Anal. Chem., 2004, 76(16), 4756-4764.
[http://dx.doi.org/10.1021/ac0496603] [PMID: 15307787]
[26]
Lu, K.H.; Chen, C.Y.; Lee, M.R. Trace determination of sulfonamides residues in meat with a combination of solid-phase microextraction and liquid chromatography–mass spectrometry. Talanta, 2007, 72(3), 1082-1087.
[http://dx.doi.org/10.1016/j.talanta.2007.01.022] [PMID: 19071729]
[27]
Borràs, S.; Companyó, R.; Guiteras, J.; Bosch, J.; Medina, M.; Termes, S. Multiclass method for antimicrobial analysis in animal feeds by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem., 2013, 405(26), 8475-8486.
[http://dx.doi.org/10.1007/s00216-013-7268-4] [PMID: 23922055]
[28]
She, Y.; Liu, J.; Wang, J.; Liu, Y.; Wang, R.; Cao, W. Determination of sulfonamides in bovine milk by ultra performance liquid chromatography combined with quadrupole mass spectrometry. Anal. Lett., 2010, 43(14), 2246-2256.
[http://dx.doi.org/10.1080/00032711003698796]
[29]
Won, S.Y.; Lee, C.H.; Chang, H.S.; Kim, S.O.; Lee, S.H.; Kim, D.S. Monitoring of 14 sulfonamide antibiotic residues in marine products using HPLC-PDA and LC-MS/MS. Food Control, 2011, 22(7), 1101-1107.
[http://dx.doi.org/10.1016/j.foodcont.2011.01.005]
[30]
Yu, H.; Tao, Y.; Chen, D.; Wang, Y.; Huang, L.; Peng, D.; Dai, M.; Liu, Z.; Wang, X.; Yuan, Z. Development of a high performance liquid chromatography method and a liquid chromatography–tandem mass spectrometry method with the pressurized liquid extraction for the quantification and confirmation of sulfonamides in the foods of animal origin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(25), 2653-2662.
[http://dx.doi.org/10.1016/j.jchromb.2011.07.032] [PMID: 21840270]
[31]
Yudthavorasit, S.; Chiaochan, C.; Leepipatpiboon, N. Simultaneous determination of multi-class antibiotic residues in water using carrier-mediated hollow-fiber liquid-phase microextraction coupled with ultra-high performance liquid chromatography tandem mass spectrometry. Mikrochim. Acta, 2011, 172(1-2), 39-49.
[http://dx.doi.org/10.1007/s00604-010-0454-6]
[32]
Chiavarino, B.; Elisa Crestoni, M.; Di Marzio, A.; Fornarinì, S. Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection. J. Chromatogr., Biomed. Appl., 1998, 706(2), 269-277.
[http://dx.doi.org/10.1016/S0378-4347(97)00568-9] [PMID: 9551813]
[33]
Assil, H.I.; Sheth, H.; Sporns, P. An ELISA for sulfonamide detection using affinity-purified polyclonal antibodies. Food Res. Int., 1992, 25(5), 343-353.
[http://dx.doi.org/10.1016/0963-9969(92)90109-I]
[34]
Shelver, W.L.; Shappell, N.W.; Franek, M.; Rubio, F.R. ELISA for sulfonamides and its application for screening in water contamination. J. Agric. Food Chem., 2008, 56(15), 6609-6615.
[http://dx.doi.org/10.1021/jf800657u] [PMID: 18616276]
[35]
Zhang, Z.; Liu, J.; Shao, B.; Jiang, G. Time-resolved fluoroimmunoassay as an advantageous approach for highly efficient determination of sulfonamides in environmental waters. Environ. Sci. Technol., 2010, 44(3), 1030-1035.
[http://dx.doi.org/10.1021/es903328b] [PMID: 20039709]
[36]
García-Campaña, A.M.; Gámiz-Gracia, L.; Lara, F.J.; del Olmo Iruela, M.; Cruces-Blanco, C. Applications of capillary electrophoresis to the determination of antibiotics in food and environmental samples. Anal. Bioanal. Chem., 2009, 395(4), 967-986.
[http://dx.doi.org/10.1007/s00216-009-2867-9] [PMID: 19533105]
[37]
Lara, F.J.; García-Campaña, A.M.; Neusüss, C.; Alés-Barrero, F. Determination of sulfonamide residues in water samples by in-line solid-phase extraction-capillary electrophoresis. J. Chromatogr. A, 2009, 1216(15), 3372-3379.
[http://dx.doi.org/10.1016/j.chroma.2009.01.097] [PMID: 19232622]
[38]
Reeves, V.B. Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography–positive chemical ionization mass spectrometry. J. Chromatogr., Biomed. Appl., 1999, 723(1-2), 127-137.
[http://dx.doi.org/10.1016/S0378-4347(98)00548-9] [PMID: 10080640]
[39]
Nagaraja, P.; Sunitha, K.R.; Vasantha, R.A.; Yathirajan, H.S. Iminodibenzyl as a novel coupling agent for the spectrophotometric determination of sulfonamide derivatives. Eur. J. Pharm. Biopharm., 2002, 53(2), 187-192.
[40]
Fotouhi, L.; Hashkavayi, A.B.; Heravi, M.M. Electrochemical behaviour and voltammetric determination of sulphadiazine using a multi-walled carbon nanotube composite film-glassy carbon electrode. J. Exp. Nanosci., 2013, 8(7-8), 947-956.
[http://dx.doi.org/10.1080/17458080.2011.624554]
[41]
Msagati, T.; Ngila, J.C. Voltammetric detection of sulfonamides at a poly(3-methylthiophene) electrode. Talanta, 2002, 58(3), 605-610.
[http://dx.doi.org/10.1016/S0039-9140(02)00327-2] [PMID: 18968788]
[42]
Vinoth, S.; Govindasamy, M.; Wang, S.F.; Alothman, A.A.; Alshgari, R.A. Hydrothermally synthesized cubical zinc manganite nanostructure for electrocatalytic detection of sulfadiazine. Mikrochim. Acta, 2021, 188(4), 131.
[http://dx.doi.org/10.1007/s00604-021-04768-3]
[43]
Kokulnathan, T.; Ashok Kumar, E.; Wang, T.J. Design and in situ synthesis of titanium carbide/boron nitride nanocomposite: Investigation of electrocatalytic activity for the sulfadiazine sensor. ACS Sustain. Chem.& Eng., 2020, 8(33), 12471-12481.
[http://dx.doi.org/10.1021/acssuschemeng.0c03281]
[44]
Calaça, G.N.; Pessoa, C.A.; Wohnrath, K.; Nagata, N. Simultaneous determination of sulfamethoxazole and trimethoprim in pharmaceutical formulations by square wave voltammetry. Int. J. Pharm. Pharm. Sci., 2014, 6(9), 438-442.
[45]
Andrade, L.S.; Rocha-Filho, R.C.; Cass, Q.B.; Fatibello-Filho, O. Simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim on a boron-doped diamond electrode. Electroanalysis, 2009, 21(13), 1475-1480.
[http://dx.doi.org/10.1002/elan.200804551]
[46]
Hermouche, L.; Aqil, Y.; Abbi, K.; El Hamdouni, Y.; Ouanji, F.; El Hajjaji, S. Eco-friendly modified carbon paste electrode by Bigarreau Burlat kernel shells for simultaneous trace detection of cadmium, lead, and copper. Chem Data Collect, 2021, 1, 32.
[http://dx.doi.org/10.1016/j.cdc.2020.100642]
[47]
Scholar, E. xPharm: The comprehensive pharmacology reference; Elsevier, Amsterdam, 2007, pp. 1-5.
[48]
Ozkan, S. Principles and techniques of electroanalytical stripping methods for pharmaceutically active compounds in dosage forms and biological samples. Curr. Pharm. Anal., 2009, 5(2), 127-143.
[http://dx.doi.org/10.2174/157341209788172870]
[49]
Cano, C.; Bernardo, J. título Del Artículo. 2014. Available from: http://www.redalyc.org/articulo.oa?id=43031750009
[50]
Alarcon-Angeles, G.; Álvarez-Romero, G.A.; Merkoçi, A. Electrochemical biosensors: Enzyme kinetics and role of nanomaterials.In: Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Elsevier: Amsterdam, 2018, pp. 140-155.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.13477-8]
[51]
Apetrei, C.; Ghasemi-Varnamkhasti, M. Biosensors in food PDO authentication.In: Comprehensive Analytical Chemistry; Elsevier B.V.: Amsterdam, 2013, pp. 279-297.
[http://dx.doi.org/10.1016/B978-0-444-59562-1.00011-6]
[52]
Songa, E.A.; Okonkwo, J.O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review. In: Talanta; Elsevier: 2016, 155, pp. 289-304.
[http://dx.doi.org/10.1016/j.talanta.2016.04.046]
[53]
Kissinger, P.T.; Heineman, W.R. Cyclic voltammetry. J. Chem. Educ., 1983, 60(9), 702.
[http://dx.doi.org/10.1021/ed060p702]
[54]
Guy, O.J.; Walker, K-A.D. Graphene functionalization for biosensor applications.In: Silicon Carbide Biotechnology; Elsevier: Amsterdam, 2016, pp. 85-141.
[http://dx.doi.org/10.1016/B978-0-12-802993-0.00004-6]
[55]
Simões, F.R.; Xavier, M.G. Electrochemical sensors. In: Nanoscience and its Applications. Micro and Nano Technologies. , 2017, , Pages 155-178.
[http://dx.doi.org/10.1016/B978-0-323-49780-0.00006-5]
[56]
Souza, D.; Machado, S.A.S.; Avaca, L.A. Voltametria de onda quadrada. Primeira parte: aspectos teóricos. Quim. Nova, 2003, 26(1), 81-89.
[http://dx.doi.org/10.1590/S0100-40422003000100015]
[57]
Sotiropoulou, S.; Gavalas, V.; Vamvakaki, V.; Chaniotakis, N.A. Novel carbon materials in biosensor systems. Biosens. Bioelectron., 2003, 18(2-3), 211-215.
[http://dx.doi.org/10.1016/S0956-5663(02)00183-5] [PMID: 12485767]
[58]
Van der Linden, W.E.; Dieker, J.W. Glassy carbon as electrode material in electro- analytical chemistry. In: Analytica Chimica Acta; Elsevier: Amsterdam, 1980, 119, pp. 1-24.
[http://dx.doi.org/10.1016/S0003-2670(00)00025-8]
[59]
Harris, P.J.F. Fullerene-related structure of commercial glassy carbons. Philos. Mag., 2004, 84(29), 3159-3167.
[http://dx.doi.org/10.1080/14786430410001720363]
[60]
Jasmin, J-P. Development of nanostructured sensors for the detection of trace metal pollutants. 2015. Available from: https://www.theses.fr/2015SACLE010
[61]
Pally, D. Electrochemical functionalization of carbonaceous materials: application to the detection of metallic micropollutants: nickel and lead. 2016. Available from: https://tel.archives-ouvertes.fr/tel-01956592v2
[62]
Larbi, O. Study of polypyrrole/carbon nanoparticle nanocomposites by electrochemical impedance and Ac-electrogravimetry: Application to electrochemical sensors. 2018.
[63]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[64]
Vanpeene, V. Étude par tomographie RX d’anodes à base de silicium pour batteries Li-ion To cite this version. 2019. Available from: http://theses.insa-lyon.fr/publication/2019LYSEI023/these.pdf
[65]
Luong, J.H.T.; Male, K.B.; Glennon, J.D. Boron-doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. Anal. Royal Soc. Chem., 2009, 134, 1965-1979.
[http://dx.doi.org/10.1039/B910206J]
[66]
Dragoe, D. Spătaru, N.; Kawasaki, R.; Manivannan, A.; Spătaru, T.; Tryk, D.A.; Fujishima, A. Detection of trace levels of Pb2+ in tap water at boron-doped diamond electrodes with anodic stripping voltammetry. Electrochim. Acta, 2006, 51(12), 2437-2441.
[http://dx.doi.org/10.1016/j.electacta.2005.07.022]
[67]
Adams, R.N. Carbon paste electrodes. Anal. Chem., 1958, 30(9), 1576.
[http://dx.doi.org/10.1021/ac60141a600]
[68]
Achary, G.; Kumaraswamy, M.N.; Viswanatha, R.; Arthoba Nayaka, Y. An organically modified exfoliated graphite electrode for the voltammetric determination of lead ions in contaminated water samples. Russ. J. Electrochem., 2015, 51(7), 679-685.
[http://dx.doi.org/10.1134/S1023193515020020]
[69]
Vicentini, F.C.; Silva, T.A.; Pellatieri, A.; Janegitz, B.C.; Fatibello-Filho, O.; Faria, R.C. Pb(II) determination in natural water using a carbon nanotubes paste electrode modified with crosslinked chitosan. Microchem. J., 2014, 116, 191-196.
[http://dx.doi.org/10.1016/j.microc.2014.05.008]
[70]
Wonsawat, W.; Chuanuwatanakul, S.; Dungchai, W.; Punrat, E.; Motomizu, S.; Chailapakul, O. Graphene-carbon paste electrode for cadmium and lead ion monitoring in a flow-based system. Talanta, 2012, 100, 282-289.
[http://dx.doi.org/10.1016/j.talanta.2012.07.045] [PMID: 23141338]
[71]
Bahrami, A.; Besharati-Seidani, A.; Abbaspour, A.; Shamsipur, M. A highly selective voltammetric sensor for sub-nanomolar detection of lead ions using a carbon paste electrode impregnated with novel ion imprinted polymeric nanobeads. Electrochim. Acta, 2014, 118, 92-99.
[http://dx.doi.org/10.1016/j.electacta.2013.11.180]
[72]
Svancara, I.; Kalcher, K. Carbon paste electrodes.In: Electrochemistry of Carbon Electrodes; Elsevier, 2015, pp. 379-423.
[73]
Malha, S.I.R.; Lahcen, A.A.; Arduini, F.; Ourari, A.; Amine, A. Electrochemical characterization of carbon solid-like paste electrode assembled using different carbon nanoparticles. Electroanalysis, 2016, 28(5), 1044-1051.
[http://dx.doi.org/10.1002/elan.201500637]
[74]
Schultz, F.A.; Kuwana, T. Electrochemical studies of organic compounds dissolved in carbon-paste electrodes. J. Electroanal. Chem., 1965, 10(2), 95-103.
[http://dx.doi.org/10.1016/0022-0728(65)85002-1]
[75]
Ait Lahcen, A.; Ait Errayess, S.; Amine, A. Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials. Mikrochim. Acta, 2016, 183(7), 2169-2176.
[http://dx.doi.org/10.1007/s00604-016-1850-3]
[76]
Souza, C.D.; Braga, O.C.; Vieira, I.C.; Spinelli, A. Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sens. Actuators B Chem., 2008, 135(1), 66-73.
[http://dx.doi.org/10.1016/j.snb.2008.07.020]
[77]
Braga, O.C.; Campestrini, I.; Vieira, I.C.; Spinelli, A. Sulfadiazine determination in pharmaceuticals by electrochemical reduction on a glassy carbon electrode. J. Braz. Chem. Soc., 2010, 21(5), 813-820.
[http://dx.doi.org/10.1590/S0103-50532010000500008]
[78]
Pingarron Carrazon, J.M.; Corona Corona, P.; Polo Diez, L.M. Electroanalytical study of sulphadiazine at solid electrodes. Determination in pharmaceutical preparations. Electrochim. Acta, 1987, 32(11), 1573-1575.
[http://dx.doi.org/10.1016/0013-4686(87)90006-5]
[79]
Anderson, J.L.; Coury, L.A., Jr; Leddy, J. Dynamic electrochemistry: Methodology and application. Anal. Chem., 2000, 72(18), 4497-4520.
[http://dx.doi.org/10.1021/ac0007837] [PMID: 11008788]
[80]
Durst, R.A.; Baumner, A.J.; Murray, R.W.; Buck, R.P.; Andrieux, C. Production of activated carbon nanofibers using natural catalysts and their use in miRNA biosensors. PhD Thesis, Department of Textile Engineering, Bursa Uludağ University, 1997.
[81]
Hong, X.P.; Ma, J.Y. Electrochemical study of sulfadiazine on a novel phthalocyanine-containing chemically modified electrode. Chin. Chem. Lett., 2013, 24(4), 329-331.
[http://dx.doi.org/10.1016/j.cclet.2013.02.010]
[82]
Wang, J.; Li, M.; Shi, Z.; Li, N.; Gu, Z. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem., 2002, 74(9), 1993-1997.
[http://dx.doi.org/10.1021/ac010978u] [PMID: 12033297]
[83]
Wang, J.; Golden, T.; Li, R. Cobalt phthalocyanine/cellulose acetate chemically modified electrodes for electrochemical detection in flowing streams. Multifunctional operation based upon the coupling of electrocatalysis and permselectivity. Anal. Chem., 1988, 60(15), 1642-1645.
[http://dx.doi.org/10.1021/ac00166a038] [PMID: 3223577]
[84]
Kang, T.F.; Shen, G.L.; Yu, R.Q. Voltammetric behaviour of dopamine at nickel phthalocyanine polymer modified electrodes and analytical applications. Anal. Chim. Acta, 1997, 354(1-3), 343-349.
[http://dx.doi.org/10.1016/S0003-2670(97)00424-8]
[85]
Hong, X.; Ma, J. Sensitive sulfadiazine sensor based on multiwalled carbon nanotubes wrapped with polystyrene sulfonate polymer chain. Int. J. Electrochem. Sci., 2017, 12(7), 6779-6787.
[http://dx.doi.org/10.20964/2017.07.28]
[86]
Correa-Duarte, M.A.; Sobal, N.; Liz-Marzán, L.M.; Giersig, M. Linear assemblies of silica-coated gold nanoparticles using carbon nanotubes as templates. Adv. Mater., 2004, 16(23-24), 2179-2184.
[http://dx.doi.org/10.1002/adma.200400626]
[87]
Jeong, Y.J.; Lee, X.; Bae, J.; Jang, J.; Joo, S.W.; Lim, S.; Kim, S.H.; Park, C.E. Direct patterning of conductive carbon nanotube/polystyrene sulfonate composites via electrohydrodynamic jet printing for use in organic field-effect transistors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(22), 4912-4919.
[http://dx.doi.org/10.1039/C6TC01371F]
[88]
Hong, X.; Zhu, Y.; Zhang, Y. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine. J. Zhejiang Univ. Sci. B, 2012, 13(6), 503-510.
[http://dx.doi.org/10.1631/jzus.B1100337] [PMID: 22661213]
[89]
Tse, Y.H.; Janda, P.; Lam, H.; Lever, A.B.P. Electrode with electropolymerized tetraaminophthalocyanatocobalt(II) for detection of sulfide ion. Anal. Chem., 1995, 67(5), 981-985.
[http://dx.doi.org/10.1021/ac00101a028]
[90]
Ozkorucuklu, S.P.; Ozcan, L.; Sahin, Y.; Alsancak, G. Electroanalytical determination of some sulfonamides on overoxidized polypyrrole electrodes. Aust. J. Chem., 2011, 64(7), 965-972.
[http://dx.doi.org/10.1071/CH10481]
[91]
Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci., 2011, 12(9), 5908-5945.
[http://dx.doi.org/10.3390/ijms12095908] [PMID: 22016636]
[92]
Sadeghi, S.; Motaharian, A. Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum. Mater. Sci. Eng. C, 2013, 33(8), 4884-4891.
[http://dx.doi.org/10.1016/j.msec.2013.08.001] [PMID: 24094201]
[93]
Sun, Y.; He, J.; Waterhouse, G.I.N.; Xu, L.; Zhang, H.; Qiao, X.; Xu, Z. A selective molecularly imprinted electrochemical sensor with GO@COF signal amplification for the simultaneous determination of sulfadiazine and acetaminophen. Sens. Actuators B Chem., 2019, 300, 126993.
[http://dx.doi.org/10.1016/j.snb.2019.126993]
[94]
Chen, Y.; Chen, Z. COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel. Talanta, 2017, 165, 188-193.
[http://dx.doi.org/10.1016/j.talanta.2016.12.051] [PMID: 28153241]
[95]
Liu, B.; Ma, Y.; Zhou, F.; Wang, Q.; Liu, G. Voltammetric determination of sulfadiazine based on molecular imprinted electrochemical sensor. Int. J. Electrochem. Sci., 2020, 15, 9590-9596.
[http://dx.doi.org/10.20964/2020.10.10]
[96]
Xin, X.; Sun, S.; Li, H.; Wang, M.; Jia, R. Electrochemical bisphenol A sensor based on core–shell multiwalled carbon nanotubes/graphene oxide nanoribbons. Sens. Actuators B Chem., 2015, 209, 275-280.
[http://dx.doi.org/10.1016/j.snb.2014.11.128]
[97]
Sun, C.L.; Chang, C.T.; Lee, H.H.; Zhou, J.; Wang, J.; Sham, T.K.; Pong, W.F. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano, 2011, 5(10), 7788-7795.
[http://dx.doi.org/10.1021/nn2015908] [PMID: 21910421]
[98]
Zhu, L.; Cao, Y.; Cao, G. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles at surfactant modified magnetic electrode for determination of bisphenol A. Biosens. Bioelectron., 2014, 54, 258-261.
[http://dx.doi.org/10.1016/j.bios.2013.10.072] [PMID: 24287413]
[99]
Campestrini, I.; de Braga, O.C.; Vieira, I.C.; Spinelli, A. Application of bismuth-film electrode for cathodic electroanalytical determination of sulfadiazine. Electrochim. Acta, 2010, 55(17), 4970-4975.
[http://dx.doi.org/10.1016/j.electacta.2010.03.105]
[100]
Wang, J.; Lu, J.; Hocevar, S.B.; Ogorevc, B. Bismuth-coated screen-printed electrodes for stripping voltammetric measurements of trace lead. Electroanalysis, 2001, 13(1), 13-16.
[http://dx.doi.org/10.1002/1521-4109(200101)13:1<13:AID-ELAN13>3.0.CO;2-F]
[101]
Hutton, E.A.; Ogorevc, B. Hočevar, S.B.; Weldon, F.; Smyth, M.R.; Wang, J. An introduction to bismuth film electrode for use in cathodic electrochemical detection. Electrochem. Commun., 2001, 3(12), 707-711.
[http://dx.doi.org/10.1016/S1388-2481(01)00240-5]
[102]
Wang, J.; Lu, J.; Hocevar, S.B.; Farias, P.A.M.; Ogorevc, B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem., 2000, 72(14), 3218-3222.
[http://dx.doi.org/10.1021/ac000108x] [PMID: 10939390]
[103]
Hermouche, L.; Bendany, M.; Abbi, K.; El Hamdouni, Y.; Labjar, N.; El Mahi, M. Electrochemical sensors for tetracycline antibiotics detection based on carbon electrode materials modified by biological and chemical compounds: A review. Int. J. Environ. Anal. Chem., 2021, 2021, 1946525.
[http://dx.doi.org/10.1080/03067319.2021.1946525]
[104]
Ma, J.Y.; Hong, X.P. Simple fabrication of reduced graphene oxide-ionic liquid composite modified electrode for sensitive detection of sulfadiazine. Int. J. Electrochem. Sci., 2020, 15, 3729-3739.
[http://dx.doi.org/10.20964/2020.05.76]
[105]
Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev., 2012, 41(2), 666-686.
[http://dx.doi.org/10.1039/C1CS15078B] [PMID: 21796314]
[106]
Liu, S.; Tian, J.; Wang, L.; Li, H.; Zhang, Y.; Sun, X. Stable aqueous dispersion of graphene nanosheets: Noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules, 2010, 43(23), 10078-10083.
[http://dx.doi.org/10.1021/ma102230m]
[107]
Ortiz Balbuena, J.; Tutor De Ureta, P.; Rivera Ruiz, E.; Mellor Pita, S. Enfermedad de vogt-koyanagi-harada. Med. Clin. Kluwer, 2016, 146, 93, 94. http://science.sciencemag.org/
[108]
Zhang, H.; Feng, J.; Fei, T.; Liu, S.; Zhang, T. SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B Chem., 2014, 190, 472-478.
[http://dx.doi.org/10.1016/j.snb.2013.08.067]
[109]
Nasr-Esfahani, P.; Ensafi, A.A.; Rezaei, B. Fabrication of a highly sensitive and selective modified electrode for imidacloprid determination based on designed nanocomposite graphene quantum dots/ionic liquid/multiwall carbon nanotubes/polyaniline. Sens. Actuators B Chem., 2019, 296, 126682.
[http://dx.doi.org/10.1016/j.snb.2019.126682]
[110]
Wei, D.; Ivaska, A. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta, 2008, 607(2), 126-135.
[http://dx.doi.org/10.1016/j.aca.2007.12.011] [PMID: 18190800]
[111]
Canales, C.; Ramos, D.; Fierro, A.; Antilén, M. Electrochemical, theoretical and analytical studies of the electro-oxidation of sulfamerazine and norfloxacin on a glassy carbon electrode. Electrochim. Acta, 2019, 318, 847-856.
[http://dx.doi.org/10.1016/j.electacta.2019.06.035]
[112]
Balasubramanian, P.; Settu, R.; Chen, S.M.; Chen, T.W. Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite. Microchim. Acta, 2018, 185(8), 396.
[http://dx.doi.org/10.1007/s00604-018-2934-z]
[113]
Nugent, J.M.; Santhanam, K.S.V.; Rubio, A.; Ajayan, P.M. Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett., 2001, 1(2), 87-91.
[http://dx.doi.org/10.1021/nl005521z]
[114]
Gong, K.; Yan, Y.; Zhang, M.; Su, L.; Xiong, S.; Mao, L. Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal. Sci., 2005, 21(12), 1383-1393.
[http://dx.doi.org/10.2116/analsci.21.1383] [PMID: 16379375]
[115]
Hong, X.; Zhu, Y.; Ma, J. Application of multiwalled carbon nanotubes/ionic liquid modified electrode for amperometric determination of sulfadiazine. Drug Test. Anal., 2012, 4(12), 1034-1039.
[http://dx.doi.org/10.1002/dta.329] [PMID: 21953836]
[116]
Sun, Y.; Fei, J.; Hou, J.; Zhang, Q.; Liu, Y.; Hu, B. Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Mikrochim. Acta, 2009, 165(3-4), 373-379.
[http://dx.doi.org/10.1007/s00604-009-0147-1]
[117]
Sakthivel, R.; Kubendhiran, S.; Chen, S.M.; Chen, T.W.; Al-Zaqri, N.; Alsalme, A.; Alharthi, F.A.; Abu Khanjer, M.M.; Tseng, T.W.; Huang, C.C. Exploring the promising potential of MoS2–RuS2 binary metal sulphide towards the electrocatalysis of antibiotic drug sulphadiazine. Anal. Chim. Acta, 2019, 1086, 55-65.
[http://dx.doi.org/10.1016/j.aca.2019.07.073] [PMID: 31561794]
[118]
Huang, F.; Meng, R.; Sui, Y.; Wei, F.; Qi, J.; Meng, Q.; He, Y. One-step hydrothermal synthesis of a CoS2@MoS2 nanocomposite for high-performance supercapacitors. J. Alloys Compd., 2018, 742, 844-851.
[http://dx.doi.org/10.1016/j.jallcom.2018.01.324]
[119]
Mafa, P.J.; Ntsendwana, B.; Mamba, B.B.; Kuvarega, A.T. Visible light driven ZnMoO4/BiFeWO6/rGO Z-scheme photocatalyst for the degradation of anthraquinonic dye. J. Phys. Chem. C, 2019, 123(33), 20605-20616.
[http://dx.doi.org/10.1021/acs.jpcc.9b05008]
[120]
Sundaresan, P.; Krishnapandi, A.; Chen, S.M. Design and investigation of ytterbium tungstate nanoparticles: An efficient catalyst for the sensitive and selective electrochemical detection of antipsychotic drug chlorpromazine. J. Taiwan Inst. Chem. Eng., 2019, 96, 509-519.
[http://dx.doi.org/10.1016/j.jtice.2018.10.021]
[121]
Sczancoski, J.C.; Cavalcante, L.S.; Joya, M.R.; Espinosa, J.W.M.; Pizani, P.S.; Varela, J.A.; Longo, E. Synthesis, growth process and photoluminescence properties of SrWO4 powders. J. Colloid Interface Sci., 2009, 330(1), 227-236.
[http://dx.doi.org/10.1016/j.jcis.2008.10.034] [PMID: 18990407]
[122]
Kokulnathan, T.; Kumar, J.V.; Chen, S.M.; Karthik, R.; Elangovan, A.; Muthuraj, V. One-step sonochemical synthesis of 1D β-stannous tungstate nanorods: An efficient and excellent electrocatalyst for the selective electrochemical detection of antipsychotic drug chlorpromazine. Ultrason. Sonochem., 2018, 44, 231-239.
[http://dx.doi.org/10.1016/j.ultsonch.2018.02.025] [PMID: 29680607]
[123]
Wang, S.; Gao, H.; Wang, Y.; Sun, G.; Zhao, X.; Liu, H.; Chen, C.; Yang, L. Effect of the sintering process on the structure, colorimetric, optical and photoluminescence properties of SrWO4 phosphor powders. J. Electron. Mater., 2020, 49(4), 2450-2462.
[http://dx.doi.org/10.1007/s11664-020-07941-1]
[124]
Cavalcante, L.S.; Sczancoski, J.C.; Batista, N.C.; Longo, E.; Varela, J.A.; Orlandi, M.O. Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution. Adv. Powder Technol., 2013, 24(1), 344-353.
[http://dx.doi.org/10.1016/j.apt.2012.08.007]
[125]
Sriram, B.; Baby, J.N.; Wang, S.F.; Govindasamy, M.; George, M.; Jothiramalingam, R. Cobalt molybdate nanorods decorated on boron-doped graphitic carbon nitride sheets for electrochemical sensing of furazolidone. Mikrochim. Acta, 2020, 187(12), 654.
[http://dx.doi.org/10.1007/s00604-020-04590-3]
[126]
Mani, V.; Selvaraj, S.; Jeromiyas, N.; Huang, S.T.; Ikeda, H.; Hayakawa, Y.; Ponnusamy, S.; Muthamizhchelvan, C.; Salama, K.N. Growth of large-scale MoS2 nanosheets on double layered ZnCo2O4 for real-time in situ H2S monitoring in live cells. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(33), 7453-7465.
[http://dx.doi.org/10.1039/D0TB01162B] [PMID: 32667020]
[127]
Govindasamy, M.; Shanthi, S.; Elaiyappillai, E.; Wang, S.F.; Johnson, P.M.; Ikeda, H.; Hayakawa, Y.; Ponnusamy, S.; Muthamizhchelvan, C. Fabrication of hierarchical NiCo2S4@CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance. Electrochim. Acta, 2019, 293, 328-337.
[http://dx.doi.org/10.1016/j.electacta.2018.10.051]
[128]
Baby, J.N.; Sriram, B.; Wang, S.F.; George, M. Integration of samarium vanadate/carbon nanofiber through synergy: An electrochemical tool for sulfadiazine analysis. J. Hazard. Mater., 2021, 408, 124940.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124940] [PMID: 33387714]
[129]
Kokulnathan, T.; Chen, S.M. Robust and selective electrochemical detection of antibiotic residues: The case of integrated lutetium vanadate/graphene sheets architectures. J. Hazard. Mater., 2020, 384, 121304.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121304] [PMID: 31581009]
[130]
Adijanto, L.; Balaji, P.V.; Holmes, K.J.; Gorte, R.J.; Vohs, J.M. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates. J. Solid State Chem., 2012, 190, 12-17.
[http://dx.doi.org/10.1016/j.jssc.2012.01.065]
[131]
Kokulnathan, T.; Chen, S.M. Rational design for the synthesis of europium vanadate-encapsulated graphene oxide nanocomposite: An excellent and efficient catalyst for the electrochemical detection of clioquinol. ACS Sustain. Chem. Eng., 2019, 7(4), 4136-4146.
[http://dx.doi.org/10.1021/acssuschemeng.8b05650]
[132]
Hwa, K.Y.; Ganguly, A.; Tata, S.K.S. Influence of temperature variation on spinel-structure MgFe2O4 anchored on reduced graphene oxide for electrochemical detection of 4-cyanophenol. Mikrochim. Acta, 2020, 187(11), 633.
[http://dx.doi.org/10.1007/s00604-020-04613-z] [PMID: 33128642]
[133]
Kokulnathan, T.; Kumar, E.A.; Wang, T.J.; Cheng, I.C. Strontium tungstate-modified disposable strip for electrochemical detection of sulfadiazine in environmental samples. Ecotoxicol. Environ. Saf., 2021, 208, 111516.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111516] [PMID: 33120260]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy