Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Perspective and Prospects on Persistent Luminescent Nanoparticles for Biological Imaging and Tumor Therapy

Author(s): Minghui Sun, Ming Chen* and Jun Wang*

Volume 31, Issue 8, 2024

Published on: 05 April, 2023

Page: [938 - 951] Pages: 14

DOI: 10.2174/0929867330666230210093411

Price: $65

Abstract

Persistent luminescent nanoparticles (PLNPs) are photoluminescent materials that can still emit luminescence after the cessation of the excitation light source. In recent years, due to their unique optical properties, the PLNPs have attracted extensive attention in the biomedical field. Since the PLNPs effectively eliminate autofluorescence interference from biological tissues, many researchers have contributed a lot of work in the fields of biological imaging and tumor therapy. This article mainly introduces the synthesis methods of the PLNPs and their progress in the application of biological imaging and tumor therapy, as well as the challenges and development prospects.

[1]
Meng, X.; Yang, F.; Dong, H.; Dou, L.; Zhang, X. Recent advances in optical imaging of biomarkers in vivo. Nano Today, 2021, 38, 101156.
[http://dx.doi.org/10.1016/j.nantod.2021.101156]
[2]
Kenry; Duan, Y.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater., 2018, 30(47), 1802394.
[http://dx.doi.org/10.1002/adma.201802394]
[3]
Miao, Q.; Pu, K. Organic semiconducting agents for deep-tissue molecular imaging: Second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater., 2018, 30(49), 1801778.
[http://dx.doi.org/10.1002/adma.201801778] [PMID: 30058244]
[4]
Zhu, S.; Tian, R.; Antaris, A.L.; Chen, X.; Dai, H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater., 2019, 31(24), 1900321.
[http://dx.doi.org/10.1002/adma.201900321] [PMID: 31025403]
[5]
Huang, J.; Pu, K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew. Chem. Int. Ed., 2020, 59(29), 11717-11731.
[http://dx.doi.org/10.1002/anie.202001783] [PMID: 32134156]
[6]
Wu, Y.; Ali, M.R.K.; Chen, K.; Fang, N.; El-Sayed, M.A. Gold nanoparticles in biological optical imaging. Nano Today, 2019, 24, 120-140.
[http://dx.doi.org/10.1016/j.nantod.2018.12.006]
[7]
Zhang, C.; Gao, X.; Chen, W.; He, M.; Yu, Y.; Gao, G.; Sun, T. Advances of gold nanoclusters for bioimaging. iScience, 2022, 25(10), 105022.
[http://dx.doi.org/10.1016/j.isci.2022.105022] [PMID: 36147954]
[8]
Zhu, H.; Zhou, Y.; Wang, Y.; Xu, S.; James, T.D.; Wang, L. Stepwise-enhanced tumor targeting of near-infrared emissive Au nanoclusters with high quantum yields and long-term stability. Anal. Chem., 2022, 94(38), 13189-13196.
[http://dx.doi.org/10.1021/acs.analchem.2c02717] [PMID: 36106565]
[9]
Baghdasaryan, A.; Wang, F.; Ren, F.; Ma, Z.; Li, J.; Zhou, X.; Grigoryan, L.; Xu, C.; Dai, H. Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR-II fluorescence imaging in preclinical cancer models. Nat. Commun., 2022, 13(1), 5613.
[http://dx.doi.org/10.1038/s41467-022-33341-6] [PMID: 34983933]
[10]
McHugh, K.J.; Jing, L.; Behrens, A.M.; Jayawardena, S.; Tang, W.; Gao, M.; Langer, R.; Jaklenec, A. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater., 2018, 30(18), 1706356.
[http://dx.doi.org/10.1002/adma.201706356] [PMID: 29468747]
[11]
Li, J.; Rao, J.; Pu, K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials, 2018, 155, 217-235.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.025] [PMID: 29190479]
[12]
Bai, X.; Wang, K.; Chen, L.; Zhou, J.; Wang, J. Semiconducting polymer dots as fluorescent probes for in vitro biosensing. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(33), 6248-6262.
[http://dx.doi.org/10.1039/D2TB01385A] [PMID: 35971822]
[13]
Guo, L.; Wong, M.S. Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes. Adv. Mater., 2014, 26(31), 5400-5428.
[http://dx.doi.org/10.1002/adma.201400084] [PMID: 24981591]
[14]
Zhu, X.; Wang, X.; Zhang, H.; Zhang, F. Luminescence lifetime imaging based on lanthanide nanoparticles. Angew. Chem. Int. Ed., 2022, 61(42), e202209378.
[http://dx.doi.org/10.1002/anie.202209378] [PMID: 35918764]
[15]
Li, C.; Ye, J.; Yang, X.; Liu, S.; Zhang, Z.; Wang, J.; Zhang, K.; Xu, J.; Fu, Y.; Yang, P. Fe/Mn bimetal-doped ZIF-8-coated luminescent nanoparticles with up/downconversion dual-mode emission for tumor self-enhanced NIR-II imaging and catalytic therapy. ACS Nano, 2022, 16(11), 18143-18156.
[http://dx.doi.org/10.1021/acsnano.2c05152] [PMID: 36260703]
[16]
Jin, Y.; Bae, J.; Kim, T.Y.; Hwang, H.; Kim, T.; Yu, M.; Oh, H.; Hashiya, K.; Bando, T.; Sugiyama, H.; Jo, K. Twelve colors of streptavidin-fluorescent proteins (SA-FPs): a versatile tool to visualize genetic information in single-molecule DNA. Anal. Chem., 2022, 94(48), 16927-16935.
[http://dx.doi.org/10.1021/acs.analchem.2c04344] [PMID: 36377840]
[17]
Liang, G.T.; Lai, C.; Yue, Z.; Zhang, H.; Li, D.; Chen, Z.; Lu, X.; Tao, L.; Subach, F.V.; Piatkevich, K.D. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front. Bioeng. Biotechnol., 2022, 10, 1039317.
[http://dx.doi.org/10.3389/fbioe.2022.1039317] [PMID: 36324888]
[18]
Chen, M.; Feng, Z.; Fan, X.; Sun, J.; Geng, W.; Wu, T.; Sheng, J.; Qian, J.; Xu, Z. Long-term monitoring of intravital biological processes using fluorescent protein-assisted NIR-II imaging. Nat. Commun., 2022, 13(1), 6643-6643.
[http://dx.doi.org/10.1038/s41467-022-34274-w] [PMID: 36333308]
[19]
Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E.P.; Zboril, R.; Rogach, A.L. Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9(5), 590-603.
[http://dx.doi.org/10.1016/j.nantod.2014.09.004]
[20]
Zhou, B.; Guo, Z.; Lin, Z.; Zhang, L.; Jiang, B.P.; Shen, X.C. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg. Chem. Front., 2019, 6(5), 1116-1128.
[http://dx.doi.org/10.1039/C9QI00201D]
[21]
Patel, K.D.; Singh, R.K.; Kim, H.W. Carbon-based nanomaterials as an emerging platform for theranostics. Mater. Horiz., 2019, 6(3), 434-469.
[http://dx.doi.org/10.1039/C8MH00966J]
[22]
Huang, K.; Le, N.; Wang, J.S.; Huang, L.; Zeng, L.; Xu, W.-C.; Li, Z.; Li, Y.; Han, G. Designing next generation of persistent luminescence: Recent advances in uniform persistent luminescence nanoparticles. 2022, 34(14), 2107962.
[http://dx.doi.org/10.1002/adma.202107962]
[23]
Algar, W.R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K.D.; Darwish, G.H.; Peveler, W.J.; Xiao, Z.; Tsai, H.Y.; Gupta, R.; Lix, K.; Tran, M.V.; Kim, H. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev., 2021, 121(15), 9243-9358.
[http://dx.doi.org/10.1021/acs.chemrev.0c01176] [PMID: 34282906]
[24]
Jiang, Y.; Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev., 2021, 121(21), 13086-13131.
[http://dx.doi.org/10.1021/acs.chemrev.1c00506] [PMID: 34558282]
[25]
Li, Y.; Gecevicius, M.; Qiu, J. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev., 2016, 45(8), 2090-2136.
[http://dx.doi.org/10.1039/C5CS00582E] [PMID: 26839022]
[26]
Liu, H.; Li, Z.; Shen, R.; Li, Z.; Yang, Y.; Yuan, Q. Point-of-care pathogen testing using photonic crystals and machine vision for diagnosis of urinary tract infections. Nano Lett., 2021, 21(7), 2854-2860.
[http://dx.doi.org/10.1021/acs.nanolett.0c04942] [PMID: 33769062]
[27]
Zhao, Y.; Zheng, F.; Shi, L.; Liu, H.; Ke, W. Autoluminescence-free prostate-specific antigen detection by persistent luminous nanorods and Au@Ag@SiO2 nanoparticles. ACS Appl. Mater. Interfaces, 2019, 11(43), 40669-40676.
[http://dx.doi.org/10.1021/acsami.9b14901] [PMID: 31599571]
[28]
Wu, B.Y.; Yan, X.P. Bioconjugated persistent luminescence nanoparticles for Föster resonance energy transfer immunoassay of prostate specific antigen in serum and cell extracts without in situ excitation. Chem. Commun. (Camb.), 2015, 51(18), 3903-3906.
[http://dx.doi.org/10.1039/C5CC00286A] [PMID: 25656741]
[29]
Feng, F.; Chen, X.; Li, G.; Liang, S.; Hong, Z.; Wang, H.F. Afterglow resonance energy transfer inhibition for fibroblast activation protein-α assay. ACS Sens., 2018, 3(9), 1846-1854.
[http://dx.doi.org/10.1021/acssensors.8b00680] [PMID: 30188115]
[30]
Li, J.; Yang, C.; Wang, W.L.; Yan, X.P. Functionalized gold and persistent luminescence nanoparticle-based ratiometric absorption and TR-FRET nanoplatform for high- throughput sequential detection of L-cysteine and insulin. Nanoscale, 2018, 10(31), 14931-14937.
[http://dx.doi.org/10.1039/C8NR04414G] [PMID: 30046773]
[31]
Wang, Y.; Li, Z.; Lin, Q.; Wei, Y.; Wang, J.; Li, Y.; Yang, R.; Yuan, Q. Highly sensitive detection of bladder cancer-related miRNA in urine using time-gated luminescent biochip. ACS Sens., 2019, 4(8), 2124-2130.
[http://dx.doi.org/10.1021/acssensors.9b00927] [PMID: 31313911]
[32]
Wang, X.; Wang, Y.; Chen, S.; Fu, P.; Lin, Y.; Ye, S.; Long, Y.; Gao, G.; Zheng, J. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens. Bioelectron., 2022, 198, 113849.
[http://dx.doi.org/10.1016/j.bios.2021.113849] [PMID: 34861528]
[33]
Feng, Y.; Zhang, L.; Liu, R.; Lv, Y. Modulating near-infrared persistent luminescence of core-shell nanoplatform for imaging of glutathione in tumor mouse model. Biosens. Bioelectron., 2019, 144, 111671.
[http://dx.doi.org/10.1016/j.bios.2019.111671] [PMID: 31513961]
[34]
Li, J.; Huang, X.; Zhao, X.; Chen, L.J.; Yan, X.P. pH- pH-responsive torpedo-like persistent luminescence nanoparticles for autofluorescence-free biosensing and high-level information encryption. Angew. Chem. Int. Ed., 2021, 60(5), 2398-2405.
[http://dx.doi.org/10.1002/anie.202011553] [PMID: 33073905]
[35]
Pan, Z.; Lu, Y.Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater., 2012, 11(1), 58-63.
[http://dx.doi.org/10.1038/nmat3173] [PMID: 22101812]
[36]
Zhao, F.; Song, Z.; Zhao, J.; Liu, Q. Double perovskite Cs2 AgInCl6 :Cr3+ : Broadband and near-infrared luminescent materials. Inorg. Chem. Front., 2019, 6(12), 3621-3628.
[http://dx.doi.org/10.1039/C9QI00905A]
[37]
Lim, J.H.; Kim, B.N.; Kim, Y.; Kang, S.; Xie, R.J.; Chong, I.S.; Morita, K.; Yoshida, H.; Hiraga, K. Non-rare earth white emission phosphor: Ti-doped MgAl2O4. Appl. Phys. Lett., 2013, 102(3), 031104.
[http://dx.doi.org/10.1063/1.4788929]
[38]
Jin, L.; Zhang, H.; Pan, R.; Xu, P.; Han, J.; Zhang, X.; Yuan, Q.; Zhang, Z.; Wang, X.; Wang, Y.; Song, B. Observation of the long afterglow in AlN helices. Nano Lett., 2015, 15(10), 6575-6581.
[http://dx.doi.org/10.1021/acs.nanolett.5b02300] [PMID: 26372072]
[39]
Wu, S.; Li, Y.; Ding, W.; Xu, L.; Ma, Y.; Zhang, L. Recent advances of persistent luminescence nanoparticles in bioapplications. Nano-Micro Lett., 2020, 12(1), 70.
[http://dx.doi.org/10.1007/s40820-020-0404-8] [PMID: 34138268]
[40]
Luo, H.; Bos, A.J.J.; Dobrowolska, A.; Dorenbos, P. Low-temperature VUV photoluminescence and thermoluminescence of UV excited afterglow phosphor Sr3 Alx Si1−xO5 : Ce3+, Ln 3+ (Ln = Er, Nd, Sm, Dy and Tm). Phys. Chem. Chem. Phys., 2015, 17(23), 15419-15427.
[http://dx.doi.org/10.1039/C5CP01710F] [PMID: 26007307]
[41]
Xia, Z.; Li, Q.; Li, G.; Xiong, M.; Liao, L. Crystal growth of Ca3SiO4Br2: New photoluminescence bromosilicate host. J. Cryst. Growth, 2011, 318(1), 958-961.
[http://dx.doi.org/10.1016/j.jcrysgro.2010.10.058]
[42]
Abdukayum, A.; Chen, J.T.; Zhao, Q.; Yan, X.P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc., 2013, 135(38), 14125-14133.
[http://dx.doi.org/10.1021/ja404243v] [PMID: 23988232]
[43]
le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J.P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA, 2007, 104(22), 9266-9271.
[http://dx.doi.org/10.1073/pnas.0702427104] [PMID: 17517614]
[44]
Wang, J.; Ma, Q.; Hu, X.X.; Liu, H.; Zheng, W.; Chen, X.; Yuan, Q.; Tan, W. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano, 2017, 11(8), 8010-8017.
[http://dx.doi.org/10.1021/acsnano.7b02643] [PMID: 28771315]
[45]
Li, Z.; Zhang, Y.; Wu, X.; Huang, L.; Li, D.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc., 2015, 137(16), 5304-5307.
[http://dx.doi.org/10.1021/jacs.5b00872] [PMID: 25836338]
[46]
Li, J.L.; Shi, J.P.; Wang, C.C.; Li, P.H.; Yu, Z.F.; Zhang, H.W. Five-nanometer ZnSn2O4: Cr,Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm. Nanoscale, 2017, 9(25), 8631-8638.
[http://dx.doi.org/10.1039/C7NR02468A] [PMID: 28608898]
[47]
Shi, J.; Sun, X.; Zhu, J.; Li, J.; Zhang, H. One-step synthesis of amino-functionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging. Nanoscale, 2016, 8(18), 9798-9804.
[http://dx.doi.org/10.1039/C6NR00590J] [PMID: 27120221]
[48]
Wang, J.; Ma, Q.; Zheng, W.; Liu, H.; Yin, C.; Wang, F.; Chen, X.; Yuan, Q.; Tan, W. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano, 2017, 11(8), 8185-8191.
[http://dx.doi.org/10.1021/acsnano.7b03128] [PMID: 28665583]
[49]
Zhou, Z.; Zheng, W.; Kong, J.; Liu, Y.; Huang, P.; Zhou, S.; Chen, Z.; Shi, J.; Chen, X. Rechargeable and LED-activated ZnGa2O4: Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale, 2017, 9(20), 6846-6853.
[http://dx.doi.org/10.1039/C7NR01209H] [PMID: 28497817]
[50]
Srivastava, B.B.; Kuang, A.; Mao, Y. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. (Camb.), 2015, 51(34), 7372-7375.
[http://dx.doi.org/10.1039/C5CC00377F] [PMID: 25823608]
[51]
Li, Z.; Wang, Q.; Wang, Y.; Ma, Q.; Wang, J.; Li, Z.; Li, Y.; Lv, X.; Wei, W.; Chen, L.; Yuan, Q. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res., 2018, 11(12), 6167-6176.
[http://dx.doi.org/10.1007/s12274-018-2133-6]
[52]
Wang, J.; Ma, Q.; Liu, H.; Wang, Y.; Shen, H.; Hu, X.; Ma, C.; Yuan, Q.; Tan, W. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem., 2017, 89(23), 12764-12770.
[http://dx.doi.org/10.1021/acs.analchem.7b03003] [PMID: 29111687]
[53]
Chen, W.; Song, Y.; Zhang, W.; Deng, R.; Zhuang, Y.; Xie, R.J. Time-gated imaging of latent fingerprints with level 3 details achieved by persistent luminescent fluoride nanoparticles. ACS Appl. Mater. Interfaces, 2022, 14(24), 28230-28238.
[http://dx.doi.org/10.1021/acsami.2c06097] [PMID: 35687348]
[54]
Huang, K.; Li, Z.; Li, Y.; Yu, N.; Gao, X.; Huang, L.; Lim, S.F.; Han, G. Three-dimensional colloidal controlled growth of core-shell heterostructured persistent luminescence nanocrystals. Nano Lett., 2021, 21(12), 4903-4910.
[http://dx.doi.org/10.1021/acs.nanolett.0c04940] [PMID: 34100617]
[55]
Huang, K.; Dou, X.; Zhang, Y.; Gao, X.; Lin, J.; Qu, J.; Li, Y.; Huang, P.; Han, G. Enhancing light and X-Ray charging in persistent luminescence nanocrystals for orthogonal afterglow anti-counterfeiting. Adv. Funct. Mater., 2021, 31(22), 2009920.
[http://dx.doi.org/10.1002/adfm.202009920]
[56]
Chen, Z.Z.; Wang, L.C.; Manoharan, D.; Lee, C.L.; Wu, L.C.; Huang, W.T.; Huang, E.Y.; Su, C.H.; Sheu, H.S.; Yeh, C.S. Low dose of X-ray-excited long-lasting luminescent concave nanocubes in highly passive targeting deep- seated hepatic tumors. Adv. Mater., 2019, 31(49), 1905087.
[http://dx.doi.org/10.1002/adma.201905087] [PMID: 31625638]
[57]
Wang, J.; Li, Q.; Zhao, H.; Yue, W.; Zhang, K.; Jiang, X.; Li, K. Facile and controllable synthesis of the renal-clearable “luminous pearls” for in vivo afterglow/magnetic resonance imaging. ACS Nano, 2022, 16(1), 462-472.
[http://dx.doi.org/10.1021/acsnano.1c07243] [PMID: 34919374]
[58]
Zou, R.; Gao, Y.; Zhang, Y.; Jiao, J.; Wong, K.L.; Wang, J. 68Ga-labeled magnetic-NIR persistent luminescent hybrid mesoporous nanoparticles for multimodal imaging-guided chemotherapy and photodynamic therapy. ACS Appl. Mater. Interfaces, 2021, 13(8), 9667-9680.
[http://dx.doi.org/10.1021/acsami.0c21623] [PMID: 33617721]
[59]
Wang, J.; Li, J.; Yu, J.; Zhang, H.; Zhang, B. Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies. ACS Nano, 2018, 12(5), 4246-4258.
[http://dx.doi.org/10.1021/acsnano.7b07606] [PMID: 29676899]
[60]
Shi, J.; Sun, X.; Zheng, S.; Li, J.; Fu, X.; Zhang, H. A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy. Biomaterials, 2018, 152, 15-23.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.032] [PMID: 29078137]
[61]
Shi, J.; Sun, X.; Li, J.; Man, H.; Shen, J.; Yu, Y.; Zhang, H. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials, 2015, 37, 260-270.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.033] [PMID: 25453956]
[62]
Zou, R.; Gong, S.; Shi, J.; Jiao, J.; Wong, K.L.; Zhang, H.; Wang, J.; Su, Q. Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd2O3 core–shell nanoprobes for in vivo imaging. Chem. Mater., 2017, 29(9), 3938-3946.
[http://dx.doi.org/10.1021/acs.chemmater.7b00087]
[63]
Shi, J.; Fu, H.; Sun, X.; Shen, J.; Zhang, H. Magnetic, long persistent luminescent and mesoporous nanoparticles as trackable transport drug carriers. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(4), 635-641.
[http://dx.doi.org/10.1039/C4TB01721H] [PMID: 32262346]
[64]
Shi, J.; Sun, M.; Sun, X.; Zhang, H. Near-infrared persistent luminescence hollow mesoporous nanospheres for drug delivery and in vivo renewable imaging. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(48), 7845-7851.
[http://dx.doi.org/10.1039/C6TB02674E] [PMID: 32263774]
[65]
Yu, Z.; Liu, B.; Pan, W.; Zhang, T.; Tong, L.; Li, N.; Tang, B. A simple approach for glutathione functionalized persistent luminescence nanoparticles as versatile platforms for multiple in vivo applications. Chem. Commun. (Camb.), 2018, 54(28), 3504-3507.
[http://dx.doi.org/10.1039/C8CC00743H] [PMID: 29564449]
[66]
Bessière, A.; Lecointre, A.; Priolkar, K.R.; Gourier, D. Role of crystal defects in red long-lasting phosphorescence of CaMgSi2O6:Mn diopsides. J. Mater. Chem., 2012, 22(36), 19039-19046.
[http://dx.doi.org/10.1039/c2jm32953k]
[67]
Fu, X.; Liu, C.; Shi, J.; Man, H.; Xu, J.; Zhang, H. Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging. Opt. Mater., 2014, 36(11), 1792-1797.
[http://dx.doi.org/10.1016/j.optmat.2014.04.018]
[68]
Wang, J.; Ma, Q.; Wang, Y.; Shen, H.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale, 2017, 9(19), 6204-6218.
[http://dx.doi.org/10.1039/C7NR01488K] [PMID: 28466913]
[69]
Maldiney, T.; Viana, B.; Bessière, A.; Gourier, D.; Bessodes, M.; Scherman, D.; Richard, C. In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt. Mater., 2013, 35(10), 1852-1858.
[http://dx.doi.org/10.1016/j.optmat.2013.03.028]
[70]
Wang, Y.; Yang, C.X.; Yan, X.P. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale, 2017, 9(26), 9049-9055.
[http://dx.doi.org/10.1039/C7NR02038D] [PMID: 28639659]
[71]
Zou, R.; Huang, J.; Shi, J.; Huang, L.; Zhang, X.; Wong, K.L.; Zhang, H.; Jin, D.; Wang, J.; Su, Q. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res., 2017, 10(6), 2070-2082.
[http://dx.doi.org/10.1007/s12274-016-1396-z]
[72]
Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S.K.; Viana, B.; Bos, A.J.J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; Scherman, D.; Richard, C. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater., 2014, 13(4), 418-426.
[http://dx.doi.org/10.1038/nmat3908] [PMID: 24651431]
[73]
Zhao, H.; Liu, C.; Gu, Z.; Dong, L.; Li, F.; Yao, C.; Yang, D. Persistent luminescent nanoparticles containing hydrogels for targeted, sustained, and autofluorescence-free tumor metastasis imaging. Nano Lett., 2020, 20(1), 252-260.
[http://dx.doi.org/10.1021/acs.nanolett.9b03755] [PMID: 31793303]
[74]
Li, Z.; Huang, L.; Zhang, Y.; Zhao, Y.; Yang, H.; Han, G. Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res., 2017, 10(5), 1840-1846.
[http://dx.doi.org/10.1007/s12274-017-1548-9]
[75]
Song, L.; Lin, X.H.; Song, X.R.; Chen, S.; Chen, X.F.; Li, J.; Yang, H.H. Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale, 2017, 9(8), 2718-2722.
[http://dx.doi.org/10.1039/C6NR09553D] [PMID: 28198899]
[76]
Xue, Z.; Li, X.; Li, Y.; Jiang, M.; Liu, H.; Zeng, S.; Hao, J. X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging. ACS Appl. Mater. Interfaces, 2017, 9(27), 22132-22142.
[http://dx.doi.org/10.1021/acsami.7b03802] [PMID: 28603963]
[77]
Lin, X.H.; Song, L.; Chen, S.; Chen, X.F.; Wei, J.J.; Li, J.; Huang, G.; Yang, H.H. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging. ACS Appl. Mater. Interfaces, 2017, 9(47), 41181-41187.
[http://dx.doi.org/10.1021/acsami.7b13920] [PMID: 29111643]
[78]
Zheng, S.; Shi, J.; Fu, X.; Wang, C.; Sun, X.; Chen, C.; Zhuang, Y.; Zou, X.; Li, Y.; Zhang, H. X-ray recharged long afterglow luminescent nanoparticles MgGeO3:Mn2+, Yb3+, Li+ in the first and second biological windows for long-term bioimaging. Nanoscale, 2020, 12(26), 14037-14046.
[http://dx.doi.org/10.1039/C9NR10622G] [PMID: 32579636]
[79]
Pei, P.; Chen, Y.; Sun, C.; Fan, Y.; Yang, Y.; Liu, X.; Lu, L.; Zhao, M.; Zhang, H.; Zhao, D.; Liu, X.; Zhang, F. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol., 2021, 16(9), 1011-1018.
[http://dx.doi.org/10.1038/s41565-021-00922-3] [PMID: 34112994]
[80]
Abdukayum, A.; Yang, C.X.; Zhao, Q.; Chen, J.T.; Dong, L.X.; Yan, X.P. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal. Chem., 2014, 86(9), 4096-4101.
[http://dx.doi.org/10.1021/ac500644x] [PMID: 24702120]
[81]
Maldiney, T.; Doan, B.T.; Alloyeau, D.; Bessodes, M.; Scherman, D.; Richard, C. Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging. Adv. Funct. Mater., 2015, 25(2), 331-338.
[http://dx.doi.org/10.1002/adfm.201401612]
[82]
Lu, Y.C.; Yang, C.X.; Yan, X.P. Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging. Nanoscale, 2015, 7(42), 17929-17937.
[http://dx.doi.org/10.1039/C5NR05623C] [PMID: 26462601]
[83]
Liu, J.M.; Liu, Y.Y.; Zhang, D.D.; Fang, G.Z.; Wang, S. Synthesis of GdAlO3:Mn4+, Ge4+@Au core–shell nanoprobes with plasmon-enhanced near-infrared persistent luminescence for in vivo trimodality bioimaging. ACS Appl. Mater. Interfaces, 2016, 8(44), 29939-29949.
[http://dx.doi.org/10.1021/acsami.6b09580] [PMID: 27759378]
[84]
Zhao, H.; Shu, G.; Zhu, J.; Fu, Y.; Gu, Z.; Yang, D. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials, 2019, 217, 119332.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119332] [PMID: 31284124]
[85]
Feng, Y.; Liu, R.; Zhang, L.; Li, Z.; Su, Y.; Lv, Y. Raspberry-like mesoporous Zn1.07Ga2.34Si0.98O6.56: Cr0.01 nanocarriers for enhanced near-infrared afterglow imaging and combined cancer chemotherapy. ACS Appl. Mater. Interfaces, 2019, 11(48), 44978-44988.
[http://dx.doi.org/10.1021/acsami.9b18124] [PMID: 31722170]
[86]
Wang, Z.H.; Liu, J.M.; Zhao, N.; Li, C.Y.; Lv, S.W.; Hu, Y.; Lv, H.; Wang, D.; Wang, S. Cancer cell macrophage membrane camouflaged persistent luminescent nanoparticles for imaging-guided photothermal therapy of colorectal cancer. ACS Appl. Nano Mater., 2020, 3(7), 7105-7118.
[http://dx.doi.org/10.1021/acsanm.0c01433]
[87]
Chen, L.J.; Sun, S.K.; Wang, Y.; Yang, C.X.; Wu, S.Q.; Yan, X.P. Activatable multifunctional persistent luminescence nanoparticle/copper sulfide nanoprobe for in vivo luminescence imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces, 2016, 8(48), 32667-32674.
[http://dx.doi.org/10.1021/acsami.6b10702] [PMID: 27934189]
[88]
Yang, J.; Zhao, Y.; Meng, Y.; Zhu, H.; Yan, D.; Liu, C.; Xu, C.; Zhang, H.; Xu, L.; Li, Y.; Liu, Y. Irradiation-free photodynamic therapy in vivo induced by enhanced deep red afterglow within NIR-I bio-window. Chem. Eng. J., 2020, 387, 124067.
[http://dx.doi.org/10.1016/j.cej.2020.124067]
[89]
Wang, R.; Shi, J.; Song, L.; Zheng, S.; Liu, X.; Hong, M.; Zhang, Y. Sustained antitumor immunity based on persistent luminescence nanoparticles for cancer immunotherapy. Adv. Funct. Mater., 2021, 31(52), 2106884.
[http://dx.doi.org/10.1002/adfm.202106884]
[90]
Wu, S.; Qiao, Z.; Li, Y.; Hu, S.; Ma, Y.; Wei, S.; Zhang, L. Persistent luminescence nanoplatform with fenton-like catalytic activity for tumor multimodal imaging and photoenhanced combination therapy. ACS Appl. Mater. Interfaces, 2020, 12(23), 25572-25580.
[http://dx.doi.org/10.1021/acsami.0c04438] [PMID: 32412741]
[91]
Li, Y.; Teng, X.; Wang, Y.; Yang, C.; Yan, X.; Li, J. Neutrophil delivered hollow titania covered persistent luminescent nanosensitizer for ultrosound augmented chemo/immuno glioblastoma therapy. Adv. Sci. (Weinh.), 2021, 8(17), 2004381.
[http://dx.doi.org/10.1002/advs.202004381] [PMID: 34196474]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy