Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Letter Article

Regeneration of Aryl Ketones by Oxidative Cleavage of Pyridyl Hydrazones Mediated by Koser’s Reagent

Author(s): Monika Sihag, Rinku Soni, Neha Rani, Mayank Kinger and Deepak Kumar Aneja*

Volume 20, Issue 8, 2023

Published on: 08 March, 2023

Page: [696 - 700] Pages: 5

DOI: 10.2174/1570178620666230209145324

Price: $65

Abstract

[Hydroxy(tosyloxy)iodo]benzene mediated the oxidative cleavage of pyridyl hydrazones to regenerate aryl ketones efficiently. Reaction occurred by simply stirring the hydrazone with hypervalent iodine reagent in dichloromethane at room temperature, where aryl ketones are produced up to 90% yield.

Graphical Abstract

[1]
Greene, T.W.; Wuts, P.G.M. A Wiley-Interscience Publication, 1998.
[2]
Enders, D.; Wortmann, L.; Peters, R. Recovery of carbonyl compounds from N,N-dialkylhydrazones. Acc. Chem. Res., 2000, 33(3), 157-169.
[http://dx.doi.org/10.1021/ar990062y] [PMID: 10727205]
[3]
Shriner, R.L.; Fusion, R.C.; Curtin, D.H.; Mortil, T.C. The Systematic Identification Of Organic Compounds, 6th ed; Wiley: New York, 1980.
[4]
Juneja, S.K.; Gupta, M.; Paul, S.; Gupta, R. Solvent-free procedure for the regeneration of carbonyl compounds from nitrogeneous derivatives using dioxane-dibromide/SiO 2. Bull. Korean Chem. Soc., 2008, 29(12), 2337-2340.
[http://dx.doi.org/10.5012/bkcs.2008.29.12.2337]
[5]
Heravi, M.M.; Sabaghian, A.J.; Bakhtiari, K.; Ghassemzadeh, M. Ammonium chlorochromate adsorbed on alumina for cleavage of semicarbazones and phenylhydrazones under classical heating and microwave irradiation in solvent-free system. J. Braz. Chem. Soc., 2006, 17(3), 614-616.
[http://dx.doi.org/10.1590/S0103-50532006000300029]
[6]
Tajbakhsh, M.; Hosseinzadeh, R.; Ramzanian-Lahmali, F.; Sadatshahabi, M. 2,6-dicarboxypyridinium fluorochromate: A mild and efficient reagent for oxidative deprotection of oximes, phenylhydrazones, and semicarbazones to their corresponding carbonyl compounds under solvent-free conditions. J. Chin. Chem. Soc., 2005, 52(5), 1005-1009.
[http://dx.doi.org/10.1002/jccs.200500140]
[7]
Hajipour, A.R.; Adibi, H.; Ruoho, A.E. Wet silica-supported permanganate for the cleavage of semicarbazones and phenylhydrazones under solvent-free conditions. J. Org. Chem., 2003, 68(11), 4553-4555.
[http://dx.doi.org/10.1021/jo034217y] [PMID: 12762769]
[8]
Heravi, M.M.; Sabaghiani, A.J.; Bakavoli, M.; Ghassemzadeh, M.; Bakhtiari, K. A new application of hexamethylenetetramine-bromine supported onto wet alumina as an efficient reagent for cleavage of phenylhydrazones under classical heating and microwave irradiation. J. Chin. Chem. Soc., 2007, 54(1), 123-126.
[http://dx.doi.org/10.1002/jccs.200700020]
[9]
Norouzi, M.; Tajbakhsh, M.; Alinezhad, H.; Urimi, A.G. Deprotection of oximes, phenylhydrazones, semicarbazones and thiosemicarbazones to the corresponding carbonyl compounds using cetyltrimethylammonium peroxodisulfate as a new and selective oxidizing agent. J. Chin. Chem. Soc., 2008, 55(3), 508-511.
[http://dx.doi.org/10.1002/jccs.200800074]
[10]
Khazaei, A.; Vaghei, R. Microwave assisted facile cleavage of 2,4-dinitrophenylhydrazones to the corresponding carbonyl compounds with n,n′-dibromo-n,n′-1,2-ethanediylbis(p-toluenesulphonamide). Molecules, 2002, 7(5), 465-468.
[http://dx.doi.org/10.3390/70500465]
[11]
Bose, D.S.; Narasaiah, A.V. Quinolinium fluorochromate: An efficient reagent for the cleavage of c=n of oximes and hydrazones. Synth. Commun., 2000, 30(6), 1153-1158.
[http://dx.doi.org/10.1080/00397910008087132]
[12]
De, S.K. Mercuric nitrate-mediated deprotection of oximes, hydrazones, and semicarbazones. Synth. Commun., 2004, 34(12), 2289-2294.
[http://dx.doi.org/10.1081/SCC-120038512]
[13]
McKillop, A.; Sanderson, W.R. Sodium perborate and sodium percarbonate: Cheap, safe and versatile oxidising agents for organic synthesis. Tetrahedron, 1995, 51(22), 6145-6166.
[http://dx.doi.org/10.1016/0040-4020(95)00304-Q]
[14]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[15]
Soni, R.; Sihag, M.; Rani, N.; Kinger, M.; Aneja, D.K. Aqueous mediated reactions involving hypervalent iodine reagents. Asian J. Org. Chem., 2022, 2022 e202200125
[http://dx.doi.org/10.1002/ajoc.202200125]
[16]
Rimi, R.; Soni, S.; Uttam, B.; China, H.; Dohi, T.; Zhdankin, V.V.; Kumar, R. Synthesis, 2022, 54, 2731-2748.
[http://dx.doi.org/10.1055/s-0041-1737909]
[17]
Kamal, R.; Kumar, V.; Kumar, R. Hypervalent-iodine(III)-mediated oxidative methodology for the synthesis of fused triazoles. Chem. Asian J., 2016, 11(14), 1988-2000.
[http://dx.doi.org/10.1002/asia.201600119] [PMID: 27123538]
[18]
Aneja, D.K.; Ranjan, P.; Arora, L.; Prakash, O. [Hydroxy(tosyloxy)iodo]benzene-mediated regeneration of carbonyl compounds by cleavage of carbon nitrogen double bonds. C. R. Chim., 2014, 17(9), 881-889.
[http://dx.doi.org/10.1016/j.crci.2013.10.013]
[19]
Pundeer, R.; Chaudhri, V.; Kinger, M.; Prakash, O. Indian J. Chem. Sect. B, 2007, 46B, 834-837.
[20]
Bose, D.S.; Narsaiah, A.V. A facile method for the conversion of oximes and tosylhydrazones to carbonyl compounds with dess-martin periodinane. Synth. Commun., 1999, 29(6), 937-941.
[http://dx.doi.org/10.1080/00397919908086055]
[21]
Chen, D.J.; Cheng, D.P.; Chen, Z.C. Hypervalent Iodine in synthesis regeneration of carbonyl function from carbonyl derivatives using polymer-supported Phenyliodine Bis (Trifluoroacetate). Synth. Commun., 2001, 31(24), 3847-3850.
[http://dx.doi.org/10.1081/SCC-100108235]
[22]
Barton, D.H.R.; Jaszberenyi, J.C.; Liu, W.; Shinada, T. Oxidation of hydrazones by hypervalent organoiodine reagents: Regeneration of the carbonyl group and facile syntheses of α-acetoxy and α-alkoxy azo compounds. Tetrahedron, 1996, 52(47), 14673-14688.
[http://dx.doi.org/10.1016/0040-4020(96)00940-4]
[23]
Sadana, A.K.; Mirza, Y.; Aneja, K.R.; Prakash, O. Hypervalent iodine mediated synthesis of 1-aryl/hetryl-1,2,4-triazolo[4,3-a] pyridines and 1-aryl/hetryl 5-methyl-1,2,4-triazolo[4,3-a]quinolines as antibacterial agents. Eur. J. Med. Chem., 2003, 38(5), 533-536.
[http://dx.doi.org/10.1016/S0223-5234(03)00061-8] [PMID: 12767604]
[24]
Todeschini, A.R.; de Miranda, A.L.P.; da Silva, K.C.M.; Parrini, S.C.; Barreiro, E.J. Synthesis and evaluation of analgesic, antiinflammatory and antiplatelet properties of new 2-pyridylarylhydrazone derivatives. Eur. J. Med. Chem., 1998, 33(3), 189-199.
[http://dx.doi.org/10.1016/S0223-5234(98)80008-1]
[25]
Orrego-Hernández, J.; Portilla, J. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide. J. Org. Chem., 2017, 82(24), 13376-13385.
[http://dx.doi.org/10.1021/acs.joc.7b02460] [PMID: 29171269]
[26]
Garzón, L.M.; Portilla, J. Synthesis of Novel D-π-A Dyes for Colorimetric Cyanide Sensing Based on Hemicyanine-Functionalized N -(2-Pyridyl)pyrazoles. Eur. J. Org. Chem., 2019, 2019(42), 7079-7088.
[http://dx.doi.org/10.1002/ejoc.201901178]
[27]
Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: USA, 1996.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy