Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Folate Pathway Inhibitors, An Underestimated and Underexplored Molecular Target for New Anti-tuberculosis Agents

Author(s): Sandra Valeria Vassiliades, Lara Gimenez Borges, Jeanine Giarolla and Roberto Parise-Filho*

Volume 23, Issue 17, 2023

Published on: 24 February, 2023

Page: [1711 - 1732] Pages: 22

DOI: 10.2174/1389557523666230206163154

Price: $65

Abstract

The folate metabolic cycle is an important biochemical process for the maintenance of cellular homeostasis, and is a widely studied pathway of cellular replication control in all organisms. In microorganisms such as M. tuberculosis (Mtb), for instance, dihydrofolate reductase (MtDHFR) is the enzyme commonly explored as a molecular target for the development of new antibiotics. In the same way, dihydropteroate synthase (MtDHPS) was studied extensively until the first multidrug-resistant strains of mycobacteria that could not be killed by sulfonamides were found. However, the other enzymes belonging to the metabolic cycle, until recently less explored, have drawn attention as potential molecular targets for obtaining new antituberculosis agents. Recent structural determinations and mechanism of action studies of Mtb flavin-dependent thymidylate synthase (MtFDTS) and MtRv2671, enzymes that acts on alternative metabolic pathways within the folate cycle, have greatly expanded the scope of potential targets that can be screened in drug design process. Despite the crystallographic elucidation of most cycle proteins, some enzymes, such as dihydrofolate synthase (MtDHFS) and serine hydroxylmethyltransferase (MtSHMT), remain underexplored. In this review, we highlight recent efforts towards the inhibitor design to achieve innovative antituberculosis agents and a brief history of all enzymes present in the folate metabolic cycle. In the final section of this work, we have presented the main synthetic strategies used to obtain the most promising inhibitors.

Graphical Abstract

[1]
Bourne, C.R. Utility of the biosynthetic folate pathway for targets in antimicrobial discovery. Antibiotics, 2014, 3(1), 1-28.
[http://dx.doi.org/10.3390/antibiotics3010001]
[2]
Lan, X.; Field, M.S.; Stover, P.J. Cell cycle regulation of folate‐mediated one‐carbon metabolism. Wiley Interdiscip. Rev. Syst. Biol. Med., 2018, 10(6), e1426.
[http://dx.doi.org/10.1002/wsbm.1426] [PMID: 29889360]
[3]
Zheng, Y.; Cantley, L.C. Toward a better understanding of folate metabolism in health and disease. J. Exp. Med., 2019, 216, 253-66.
[http://dx.doi.org/10.1084/jem.20181965]
[4]
Menezo, Y.; Elder, K.; Clement, A.; Clement, P. Folic acid, folinic acid, 5 methyl tetrahydrofolate supplementation for mutations that affect epigenesis through the folate and one-carbon cycles. Biomol, 2022, 12(2), 197-211.
[5]
Bermingham, A.; Derrick, J.P. The folic acid biosynthesis pathway in bacteria: Evaluation of potential for antibacterial drug discovery. BioEssays, 2002, 24(7), 637-648.
[http://dx.doi.org/10.1002/bies.10114] [PMID: 12111724]
[6]
Liew, S.C. Folic acid and diseases - supplement it or not? Rev. Assoc. Med. Bras., 2016, 62(1), 90-100.
[http://dx.doi.org/10.1590/1806-9282.62.01.90] [PMID: 27008500]
[7]
Revuelta, J.L.; Serrano-Amatriain, C.; Ledesma-Amaro, R.; Jiménez, A. Formation of folates by microorganisms: Towards the biotechnological production of this vitamin. Appl. Microbio. Biotechno., 2018, 102, 8613-20.
[8]
Hoffbrand, A.V.; Weir, D.G. The history of folic acid. Br. J. Haematol., 2001, 113(3), 579-589.
[http://dx.doi.org/10.1046/j.1365-2141.2001.02822.x] [PMID: 11380441]
[9]
Lanska, D.sJ Chapter 30 Historical aspects of the major neurological vitamin deficiency disorders: The water-soluble B vitamins. In: Handbook of Clinical Neurology; Elsevier B.V., Amstadum, 2009; p. 445-76.
[10]
Baggott, J.E.; Tamura, T. Folate-dependent purine nucleotide biosynthesis in humans. Adv. Nutr., 2015, 6(5), 564-571.
[http://dx.doi.org/10.3945/an.115.008300] [PMID: 26374178]
[11]
Bertacine Dias, M.V.; Santos, J.C.; Libreros-Zúñiga, G.A.; Ribeiro, J.A.; Chavez-Pacheco, S.M. Folate biosynthesis pathway: Mechanisms and insights into drug design for infectious diseases. Future Med. Chem., 2018, 10(8), 935-959.
[http://dx.doi.org/10.4155/fmc-2017-0168] [PMID: 29629843]
[12]
Abbasi, I.H.R.; Abbasi, F.; Wang, L.; Abd El Hack, M.E.; Swelum, A.A. Hao, R Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction. AMB Express, 2018, 8(1), 1-10.
[13]
Stover, P.J. One-carbon metabolism-genome interactions in folate-associated pathologies. J. Nutr., 2009, 139(12), 2402-5.
[14]
Stover, P.J.; James, W.P.T.; Krook, A.; Garza, C. Emerging concepts on the role of epigenetics in the relationships between nutrition and health. J. Intern. Med., 2018, 284(1), 37-49.
[http://dx.doi.org/10.1111/joim.12768] [PMID: 29706028]
[15]
Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B 12, folate, and the methionine remethylation cycle—biochemistry, pathways, and regulation. J. Inherit. Metab. Dis., 2019, 42(4), 673-685.
[http://dx.doi.org/10.1002/jimd.12009] [PMID: 30693532]
[16]
Hong, Y.; Ren, J.; Zhang, X.; Wang, W.; Zeng, A.P. Quantitative analysis of glycine related metabolic pathways for one-carbon synthetic biology. Curr. Opin. Biotechnol., 2020, 64, 70-78.
[http://dx.doi.org/10.1016/j.copbio.2019.10.001] [PMID: 31715494]
[17]
Morscher, R.J.; Ducker, G.S.; Li, S.H.J.; Mayer, J.A.; Gitai, Z.; Sperl, W. Mitochondrial translation requires folate-dependent tRNA methylation. Nature, 2018, 554(7690), 128-32.
[http://dx.doi.org/10.1038/nature25460]
[18]
Anand, N. Sulfonamides: Structure-activity relationships and mechanism of action. In: Inhibition of Folate Metabolism in Chemotherapy Handbook of Experimental Pharmacology; Hitchings, G.H., Ed.; Springer: Berlin, Heidelberg: Berlin, 1983; Vol. 64, pp. 25-54.https://link.springer.com/chapter/10.1007/978-3-642-81890-5_3 [Internet]
[http://dx.doi.org/10.1007/978-3-642-81890-5_3]
[19]
Bentley, R. Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence β-lactams). J. Ind. Microbiol. Biotechnol., 2009, 36(6), 775-786.
[http://dx.doi.org/10.1007/s10295-009-0553-8] [PMID: 19283418]
[20]
Rathore, I.; Mishra, V.; Bhaumik, P. Advancements in macromolecular crystallography: From past to present. Emerg. Top. Life Sci., 2021, 5(1), 127-149.
[21]
Raskin, D.M.; Seshadri, R.; Pukatzki, S.U.; Mekalanos, J.J. Bacterial genomics and pathogen evolution. In: Cell; Elsevier B.V., Amstadum, 2006; 124, p. 703-714.
[22]
Collins, F.S.; Doudna, J.A.; Lander, E.S.; Rotimi, C.N. Human molecular genetics and genomics — important advances and exciting possibilities. N. Engl. J. Med., 2021, 384(1), 1-4.
[http://dx.doi.org/10.1056/NEJMp2030694] [PMID: 33393745]
[23]
Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and their applications. J. Chromatogr. Sci., 2017, 55, 182-196.
[24]
Gauthier, J.; Vincent, A.T.; Charette, S.J.; Derome, N. A brief history of bioinformatics. Brief. Bioinform., 2019, 20(6), 1981-1996.
[http://dx.doi.org/10.1093/bib/bby063] [PMID: 30084940]
[25]
Borsari, C.; Ferrari, S.; Venturelli, A.; Costi, M.P. Target-based approaches for the discovery of new antimycobacterial drugs. In: Drug Discovery Today; Elsevier Ltd, Amstadum, 2017; 22, p. 576-84.
[http://dx.doi.org/10.1016/j.drudis.2016.11.014]
[26]
Fernández-Villa, D.; Aguilar, M.R.; Rojo, L. Folic acid antagonists: Antimicrobial and immunomodulating mechanisms and applications. Int. J. Mol. Sci., 2019, 20(20), 4996-5026.
[http://dx.doi.org/10.3390/ijms20204996] [PMID: 31601031]
[27]
Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B vitamins and one-carbon metabolism: Implications in human health and disease. Nutrients, 2020, 12(9), 2867.
[http://dx.doi.org/10.3390/nu12092867] [PMID: 32961717]
[28]
Kiriiri, G.K.; Njogu, P.M.; Mwangi, A.N. Exploring different approaches to improve the success of drug discovery and development projects: A review. Futur. J. Pharm. Sci., 2020, 6(1), 1-12.
[http://dx.doi.org/10.1186/s43094-020-00047-9]
[29]
Cook, M.A.; Wright, G.D. The past, present, and future of antibiotics. Sci. Transl. Med., 2022, 14(657), eabo7793.
[http://dx.doi.org/10.1126/scitranslmed.abo7793] [PMID: 35947678]
[30]
Dartois, V.A.; Rubin, E.J. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat. Rev. Microbiol., 2022, 1-17.
[http://dx.doi.org/10.1038/s41579-022-00731-y]
[31]
Colangeli, R.; Gupta, A.; Vinhas, S.A.; Chippada Venkata, U.D.; Kim, S.; Grady, C.; Jones-López, E.C.; Soteropoulos, P.; Palaci, M. Marques-Rodrigues, P.; Salgame, P.; Ellner, J.J.; Dietze, R.; Alland, D. Mycobacterium tuberculosis progresses through two phases of latent infection in humans. Nat. Commun., 2020, 11(1), 4870.
[http://dx.doi.org/10.1038/s41467-020-18699-9] [PMID: 32978384]
[32]
Garrido-Cardenas, J.A.; de Lamo-Sevilla, C.; Cabezas-Fernández, M.T.; Manzano-Agugliaro, F.; Martínez-Lirola, M. Global tuberculosis research and its future prospects. Tuberculosis (Edinb.), 2020, 121, 101917-101923.
[http://dx.doi.org/10.1016/j.tube.2020.101917] [PMID: 32279873]
[33]
World Health Organization. Global Tuberculosis Report 2021. 2021. Available from: https://www.who.int/publications/i/item/9789240037021 (Accessed on: 2021 Dec 30).
[34]
Singh, R.; Dwivedi, S.P.; Gaharwar, U.S.; Meena, R.; Rajamani, P.; Prasad, T. Recent updates on drug resistance in Mycobacterium tuberculosis. J. Appl. Microbiol., 2020, 128, 1547-1567.
[35]
Minias, A.; Żukowska, L.; Lechowicz, E.; Gąsior, F.; Knast, A.; Podlewska, S.; Zygała, D.; Dziadek, J. Early drug development and evaluation of putative antitubercular compounds in the -omics era. Front. Microbiol., 2021, 11, 618168.
[http://dx.doi.org/10.3389/fmicb.2020.618168] [PMID: 33603720]
[36]
Mourenza, Á.; Gil, J.A.; Mateos, L.M.; Letek, M. Novel treatments against mycobacterium tuberculosis based on drug repurposing. Antibiot, 2020, 9(9), 550.
[http://dx.doi.org/10.3390/antibiotics9090550]
[37]
Belete, T.M. Recent progress in the development of novel mycobacterium cell wall inhibitor to combat drug-resistant tuberculosis. Microbiol. Insights, 2022, 15.
[http://dx.doi.org/10.1177/11786361221099878] [PMID: 35645569]
[38]
Shetye, G.S.; Franzblau, S.G.; Cho, S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl. Res., 2020, 220, 68-97.
[http://dx.doi.org/10.1016/j.trsl.2020.03.007]
[39]
Kuang, W.; Zhang, H.; Wang, X.; Yang, P. Overcoming Mycobacterium tuberculosis through small molecule inhibitors to break down cell wall synthesis. Acta Pharm. Sin. B, 2022, 12(8), 3201-3214.
[http://dx.doi.org/10.1016/j.apsb.2022.04.014] [PMID: 35967276]
[40]
Vassiliades, S.V.; Navarausckas, V.B.; Vinícius, M.; Dias, B.; Parise-Filho, R. Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors: State of Art Past 20 Years. Biointerface Res. Appl. Chem., 2023, 13(1), 1-20.
[41]
Nopponpunth, V.; Sirawaraporn, W.; Greene, P.J.; Santi, D.V. Cloning and expression of Mycobacterium tuberculosis and Mycobacterium leprae dihydropteroate synthase in Escherichia coli. J. Bacteriol., 1999, 181(21), 6814-6821.
[http://dx.doi.org/10.1128/JB.181.21.6814-6821.1999] [PMID: 10542185]
[42]
Liu, T.; Wang, B.; Guo, J.; Zhou, Y.; Julius, M.; Njire, M.; Cao, Y.; Wu, T.; Liu, Z.; Wang, C.; Xu, Y.; Zhang, T. Role of folP1 and folP2 genes in the action of sulfamethoxazole and trimethoprim against mycobacteria. J. Microbiol. Biotechnol., 2015, 25(9), 1559-1567.
[http://dx.doi.org/10.4014/jmb.1503.03053] [PMID: 25907064]
[43]
Baca, A.M.; Sirawaraporn, R.; Turley, S.; Sirawaraporn, W.; Hol, W.G.J. Crystal structure of Mycobacterium tuberculosis 7,8-dihydropteroate synthase in complex with pterin monophosphate: New insight into the enzymatic mechanism and sulfa-drug action. J. Mol. Biol., 2000, 302(5), 1193-1212.
[http://dx.doi.org/10.1006/jmbi.2000.4094] [PMID: 11007651]
[44]
Abdel-Aziz, H.A.K.; Eldehna, W.M.; Fares, M.; Elsaman, T.; Abdel-Aziz, M.M.; Soliman, D.H. Synthesis, in vitro and in silico studies of some novel 5-nitrofuran-2-yl hydrazones as antimicrobial and antitubercular agents. Biol. Pharm. Bull., 2015, 38(10), 1617-1630.
[http://dx.doi.org/10.1248/bpb.b15-00439] [PMID: 26155871]
[45]
Swain, S.S.; Paidesetty, S.K.; Padhy, R.N. Development of antibacterial conjugates using sulfamethoxazole with monocyclic terpenes: A systematic medicinal chemistry based computational approach. Comput. Methods Programs Biomed., 2017, 140, 185-194.
[http://dx.doi.org/10.1016/j.cmpb.2016.12.013] [PMID: 28254074]
[46]
Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Compd., 2014, 50(3), 444-457.
[http://dx.doi.org/10.1007/s10593-014-1496-1]
[47]
Jayaraman, P.; Sakharkar, K.R.; Lim, C.; Siddiqi, M.I.; Dhillon, S.K.; Sakharkar, M.K. Novel phytochemical-antibiotic conjugates as multi-target inhibitors of Pseudomononas aeruginosa GyrB/ParE and DHFR. Drug Des. Devel. Ther., 2013, 7, 449-475.
[PMID: 23818757]
[48]
Pradhan, S.; Sinha, C. Sulfonamide derivatives as Mycobacterium tuberculosis inhibitors: In silico approach. Silico Pharmacol., 2018, 6(1)
[http://dx.doi.org/10.1007/s40203-018-0041-9]
[49]
Bouz, G.; Juhás, M.; Pausas Otero, L.; Paredes de la Red, C.; Janďourek, O.; Konečná, K.; Paterová, P.; Kubíček, V.; Janoušek, J.; Doležal, M.; Zitko, J. Substituted N-(pyrazin-2-yl)benzenesulfonamides; synthesis, anti-infective evaluation, cytotoxicity, and in silico studies. Molecules, 2019, 25(1), 138-158.
[http://dx.doi.org/10.3390/molecules25010138] [PMID: 31905775]
[50]
Yun, MK; Wu, Y; Li, Z; Zhao, Y; Waddell, MB; Ferreira, AM Catalysis and sulfa drug resistance in dihydropteroate synthase. Science (80- ), 2012, 335(6072), 1110-4.
[http://dx.doi.org/10.1126/science.1214641]
[51]
Hammoudeh, D.I.; Zhao, Y.; White, S.W.; Lee, R.E. Replacing sulfa drugs with novel DHPS inhibitors. Future Med. Chem., 2013, 5(11), 1331-1340.
[http://dx.doi.org/10.4155/fmc.13.97] [PMID: 23859210]
[52]
Sánchez-Osuna, M.; Cortés, P.; Barbé, J.; Erill, I. Origin of the mobile di-hydro-pteroate synthase gene determining sulfonamide resistance in clinical isolates. Front. Microbiol., 2019, 9(JAN), 3332.
[http://dx.doi.org/10.3389/fmicb.2018.03332] [PMID: 30687297]
[53]
Rao, G.S.; Kumar, M. Structure-based design of a potent and selective small peptide inhibitor of Mycobacterium tuberculosis 6-hydroxymethyl-7, 8-dihydropteroate synthase: A computer modelling approach. Chem. Biol. Drug Des., 2008, 71(6), 540-545.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00662.x] [PMID: 18482337]
[54]
Osborne, M.J.; Schnell, J.; Benkovic, S.J.; Dyson, H.J.; Wright, P.E. Backbone dynamics in dihydrofolate reductase complexes: Role of loop flexibility in the catalytic mechanism. Biochemistry, 2001, 40(33), 9846-9859.
[http://dx.doi.org/10.1021/bi010621k] [PMID: 11502178]
[55]
Li, R.; Sirawaraporn, R.; Chitnumsub, P.; Sirawaraporn, W.; Wooden, J.; Athappilly, F.; Turley, S.; Hol, W.G.J. Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs. J. Mol. Biol., 2000, 295(2), 307-323.
[http://dx.doi.org/10.1006/jmbi.1999.3328] [PMID: 10623528]
[56]
Ribeiro, J.A.; Chavez-Pacheco, S.M.; de Oliveira, G.S.; Silva, C.S.; Giudice, J.H.P.; Libreros-Zúñiga, G.A.; Dias, M.V.B. Crystal structures of the closed form of Mycobacterium tuberculosis dihydrofolate reductase in complex with dihydrofolate and antifolates. Acta Crystallogr. D Struct. Biol., 2019, 75(7), 682-693.
[http://dx.doi.org/10.1107/S205979831900901X] [PMID: 31282477]
[57]
Mugumbate, G.; Abrahams, K.A.; Cox, J.A.G.; Papadatos, G.; van Westen, G.; Lelièvre, J. Mycobacterial dihydrofolate reductase inhibitors identified using chemogenomic methods and in vitro validation. PLoS One, 2015, 10(3), e0121492.
[http://dx.doi.org/10.1371/journal.pone.0121492]
[58]
Hong, W.; Wang, Y.; Chang, Z.; Yang, Y.; Pu, J.; Sun, T.; Kaur, S.; Sacchettini, J.C.; Jung, H.; Lin Wong, W.; Fah Yap, L.; Fong Ngeow, Y.; Paterson, I.C.; Wang, H. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling. Sci. Rep., 2015, 5(1), 15328.
[http://dx.doi.org/10.1038/srep15328] [PMID: 26471125]
[59]
da Cunha, E.F.F.; Ramalho, T.C.; Reynolds, R.C. Binding Mode Analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted Pteridines with Mycobacterium tuberculosis and Human Dihydrofolate Reductases. J. Biomol. Struct. Dyn., 2008, 25(4), 377-385.
[http://dx.doi.org/10.1080/07391102.2008.10507186] [PMID: 18092832]
[60]
Sharma, K.; Tanwar, O.; Deora, G.S.; Ali, S.; Alam, M.M.; Zaman, M.S.; Krishna, V.S.; Sriram, D.; Akhter, M. Expansion of a novel lead targeting M. tuberculosis DHFR as antitubercular agents. Bioorg. Med. Chem., 2019, 27(7), 1421-1429.
[http://dx.doi.org/10.1016/j.bmc.2019.02.053] [PMID: 30827867]
[61]
Kronenberger, T.; Ferreira, G.M.; de Souza, A.D.F.; da Silva Santos, S.; Poso, A.; Ribeiro, J.A.; Tavares, M.T.; Pavan, F.R.; Trossini, G.H.G.; Dias, M.V.B.; Parise-Filho, R. Design, synthesis and biological activity of novel substituted 3-benzoic acid derivatives as MtDHFR inhibitors. Bioorg. Med. Chem., 2020, 28(15), 115600-115610.
[http://dx.doi.org/10.1016/j.bmc.2020.115600] [PMID: 32631571]
[62]
Koehn, E.M.; Fleischmann, T.; Conrad, J.A.; Palfey, B.A.; Lesley, S.A.; Mathews, I.I.; Kohen, A. An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature, 2009, 458(7240), 919-923.
[http://dx.doi.org/10.1038/nature07973] [PMID: 19370033]
[63]
Koehn, E.M.; Kohen, A. Flavin-dependent thymidylate synthase: A novel pathway towards thymine. Arch. Biochem. Biophys., 2010, 493(1), 96-102.
[http://dx.doi.org/10.1016/j.abb.2009.07.016] [PMID: 19643076]
[64]
Sampathkumar, P.; Turley, S.; Sibley, C.H.; Hol, W.G.J. NADP+ expels both the co-factor and a substrate analog from the Mycobacterium tuberculosis ThyX active site: opportunities for anti-bacterial drug design. J. Mol. Biol., 2006, 360(1), 1-6.
[http://dx.doi.org/10.1016/j.jmb.2006.04.061] [PMID: 16730023]
[65]
Sampathkumar, P.; Turley, S.; Ulmer, J.E.; Rhie, H.G.; Sibley, C.H.; Hol, W.G.J. Structure of the Mycobacterium tuberculosis flavin dependent thymidylate synthase (MtbThyX) at 2.0A resolution. J. Mol. Biol., 2005, 352(5), 1091-1104.
[http://dx.doi.org/10.1016/j.jmb.2005.07.071] [PMID: 16139296]
[66]
Basta, T.; Boum, Y.; Briffotaux, J.; Becker, H.F.; Lamarre-Jouenne, I.; Lambry, J.C.; Skouloubris, S.; Liebl, U.; Graille, M.; van Tilbeurgh, H.; Myllykallio, H. Mechanistic and structural basis for inhibition of thymidylate synthase ThyX. Open Biol., 2012, 2(10), 120120.
[http://dx.doi.org/10.1098/rsob.120120] [PMID: 23155486]
[67]
Myllykallio, H.; Becker, H.F.; Aleksandrov, A. Mechanism of naphthoquinone selectivity of thymidylate synthase ThyX. Biophys. J., 2020, 119(12), 2508-2516.
[http://dx.doi.org/10.1016/j.bpj.2020.10.042] [PMID: 33217379]
[68]
Djaout, K.; Singh, V.; Boum, Y.; Katawera, V.; Becker, H.F.; Bush, N.G.; Hearnshaw, S.J.; Pritchard, J.E.; Bourbon, P.; Madrid, P.B.; Maxwell, A.; Mizrahi, V.; Myllykallio, H.; Ekins, S. Predictive modeling targets thymidylate synthase ThyX in Mycobacterium tuberculosis. Sci. Rep., 2016, 6(1), 27792.
[http://dx.doi.org/10.1038/srep27792] [PMID: 27283217]
[69]
Dey, D.; Ray, R.; Hazra, B. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phyther. Res., 2014, 28(7), 1014-21.
[http://dx.doi.org/10.1002/ptr.5090]
[70]
Sarkar, A.; Ghosh, S.; Shaw, R.; Patra, M.M.; Calcuttawala, F.; Mukherjee, N. Mycobacterium tuberculosis thymidylate synthase (ThyX) is a target for plumbagin, a natural product with antimycobacterial activity. PLoS One, 2020, 15(2), e0228657.
[71]
Kögler, M.; Vanderhoydonck, B.; De Jonghe, S.; Rozenski, J.; Van Belle, K.; Herman, J.; Louat, T.; Parchina, A.; Sibley, C.; Lescrinier, E.; Herdewijn, P. Synthesis and evaluation of 5-substituted 2′-deoxyuridine monophosphate analogues as inhibitors of flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. J. Med. Chem., 2011, 54(13), 4847-4862.
[http://dx.doi.org/10.1021/jm2004688] [PMID: 21657202]
[72]
Kögler, M.; Busson, R.; De Jonghe, S.; Rozenski, J.; Van Belle, K.; Louat, T.; Munier-Lehmann, H.; Herdewijn, P. Synthesis and evaluation of 6-aza-2′-deoxyuridine monophosphate analogs as inhibitors of thymidylate synthases, and as substrates or inhibitors of thymidine monophosphate kinase in Mycobacterium tuberculosis. Chem. Biodivers., 2012, 9(3), 536-556.
[http://dx.doi.org/10.1002/cbdv.201100285] [PMID: 22422522]
[73]
Parchina, A.; Froeyen, M.; Margamuljana, L.; Rozenski, J.; De Jonghe, S.; Briers, Y.; Lavigne, R.; Herdewijn, P.; Lescrinier, E. Discovery of an acyclic nucleoside phosphonate that inhibits Mycobacterium tuberculosis ThyX based on the binding mode of a 5-alkynyl substrate analogue. ChemMedChem, 2013, 8(8), 1373-1383.
[http://dx.doi.org/10.1002/cmdc.201300146] [PMID: 23836539]
[74]
Alexandrova, L.A.; Chekhov, V.O.; Shmalenyuk, E.R.; Kochetkov, S.N.; El-Asrar, R.A.; Herdewijn, P. Synthesis and evaluation of C-5 modified 2′-deoxyuridine monophosphates as inhibitors of M. tuberculosis thymidylate synthase. Bioorg. Med. Chem., 2015, 23(22), 7131-7137.
[http://dx.doi.org/10.1016/j.bmc.2015.09.053] [PMID: 26482569]
[75]
McGuigan, C.; Derudas, M.; Gonczy, B.; Hinsinger, K.; Kandil, S.; Pertusati, F.; Serpi, M.; Snoeck, R.; Andrei, G.; Balzarini, J.; McHugh, T.D.; Maitra, A.; Akorli, E.; Evangelopoulos, D.; Bhakta, S. ProTides of N-(3-(5-(2′-deoxyuridine))prop-2-ynyl)octanamide as potential anti-tubercular and anti-viral agents. Bioorg. Med. Chem., 2014, 22(9), 2816-2824.
[http://dx.doi.org/10.1016/j.bmc.2014.02.056] [PMID: 24690527]
[76]
Negrya, S.D.; Efremenkova, O.V.; Solyev, P.N.; Chekhov, V.O.; Ivanov, M.A.; Sumarukova, I.G.; Karpenko, I.L.; Kochetkov, S.N.; Alexandrova, L.A. Novel 5-substituted derivatives of 2′-deoxy-6-azauridine with antibacterial activity. J. Antibiot. (Tokyo), 2019, 72(7), 535-544.
[http://dx.doi.org/10.1038/s41429-019-0158-z] [PMID: 30792519]
[77]
Kozlovskaya, L.I.; Golinets, A.D.; Eletskaya, A.A.; Orlov, A.A.; Palyulin, V.A.; Kochetkov, S.N.; Alexandrova, L.A.; Osolodkin, D.I. Selective inhibition of enterovirus a species members’ reproduction by furano[2, 3- d]pyrimidine nucleosides revealed by antiviral activity profiling against (+)ssRNA viruses. ChemistrySelect, 2018, 3(8), 2321-2325.
[http://dx.doi.org/10.1002/slct.201703052] [PMID: 32328513]
[78]
Biteau, N.G.; Roy, V.; Lambry, J.C.; Becker, H.F.; Myllykallio, H.; Agrofoglio, L.A. Synthesis of acyclic nucleoside phosphonates targeting flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. Bioorg. Med. Chem., 2021, 46, 116351.
[http://dx.doi.org/10.1016/j.bmc.2021.116351] [PMID: 34391120]
[79]
Thakuria, R.; Nath, N.K.; Saha, B.K. The nature and applications of π–π interactions: A perspective. Cryst. Growth Des., 2019, 19(2), 523-528.
[http://dx.doi.org/10.1021/acs.cgd.8b01630]
[80]
Fokoue, H.; Pinheiro, P.; Fraga, C.; Sant’Anna, C. Is there anything new in molecular recognition applied to medicinal chemistry? Quim. Nova, 2020, 43(1), 78-89.
[http://dx.doi.org/10.21577/0100-4042.20170474]
[81]
Luciani, R.; Saxena, P.; Surade, S.; Santucci, M.; Venturelli, A.; Borsari, C.; Marverti, G.; Ponterini, G.; Ferrari, S.; Blundell, T.L.; Costi, M.P. Virtual screening and X-ray crystallography identify non-substrate analog inhibitors of flavin-dependent thymidylate synthase. J. Med. Chem., 2016, 59(19), 9269-9275.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00977] [PMID: 27589670]
[82]
Sterling, T.; Irwin, J.J. ZINC 15 – Ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[83]
Modranka, J.; Li, J.; Parchina, A.; Vanmeert, M.; Dumbre, S.; Salman, M.; Myllykallio, H.; Becker, H.F.; Vanhoutte, R.; Margamuljana, L.; Nguyen, H.; Abu El-Asrar, R.; Rozenski, J.; Herdewijn, P.; De Jonghe, S.; Lescrinier, E. Synthesis and structure–activity relationship studies of benzo[ b][1,4]oxazin‐3(4 H)‐one Analogues as Inhibitors of Mycobacterial Thymidylate Synthase X. ChemMedChem, 2019, 14(6), 645-662.
[http://dx.doi.org/10.1002/cmdc.201800739] [PMID: 30702807]
[84]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Lett. Nat., 1998, 393(6685), 537-44.
[85]
Zheng, J.; Rubin, E.J.; Bifani, P.; Mathys, V.; Lim, V.; Au, M.; Jang, J.; Nam, J.; Dick, T.; Walker, J.R.; Pethe, K.; Camacho, L.R. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J. Biol. Chem., 2013, 288(32), 23447-23456.
[http://dx.doi.org/10.1074/jbc.M113.475798] [PMID: 23779105]
[86]
Cheng, Y.S.; Sacchettini, J.C. Structural Insights into Mycobacterium tuberculosis Rv2671 protein as a dihydrofolate reductase functional analogue contributing to para -aminosalicylic acid resistance. Biochemistry, 2016, 55(7), 1107-1119.
[http://dx.doi.org/10.1021/acs.biochem.5b00993] [PMID: 26848874]
[87]
Medvedev, K.E.; Kinch, L.N.; Schaeffer, R.D.; Grishin, N.V. Functional analysis of Rossmann-like domains reveals convergent evolution of topology and reaction pathways. PLOS Comput. Biol., 2019, 15(12), e1007569.
[http://dx.doi.org/10.1371/journal.pcbi.1007569] [PMID: 31869345]
[88]
Hajian, B.; Scocchera, E.; Shoen, C.; Krucinska, J.; Viswanathan, K. G-Dayanandan, N.; Erlandsen, H.; Estrada, A.; Mikušová, K.; Korduláková, J.; Cynamon, M.; Wright, D. Drugging the folate pathway in mycobacterium tuberculosis: The role of multi-targeting agents. Cell Chem. Biol., 2019, 26(6), 781-791.e6.
[http://dx.doi.org/10.1016/j.chembiol.2019.02.013] [PMID: 30930162]
[89]
Nonaka, H.; Nakanishi, Y.; Kuno, S.; Ota, T.; Mochidome, K.; Saito, Y. Design strategy for serine hydroxymethyltransferase probes based on retro-aldol-type reaction. Nat. Commun., 2019, 10(1), 1-10.
[http://dx.doi.org/10.1038/s41467-019-08833-7]
[90]
Locasale, JW Serine, glycine and the one-carbon cycle: cancer metabolism in full circle. Nat Rev Cancer, 2013, 13(8), 572.s.
[91]
Ducker, G.S.; Chen, L.; Morscher, R.J.; Ghergurovich, J.M.; Esposito, M.; Teng, X.; Kang, Y.; Rabinowitz, J.D. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab., 2016, 23(6), 1140-1153.
[http://dx.doi.org/10.1016/j.cmet.2016.04.016] [PMID: 27211901]
[92]
Chaturvedi, S.; Bhakuni, V. Unusual structural, functional, and stability properties of serine hydroxymethyltransferase from Mycobacterium tuberculosis. J. Biol. Chem., 2003, 278(42), 40793-40805.
[http://dx.doi.org/10.1074/jbc.M306192200] [PMID: 12913008]
[93]
Baugh, L.; Phan, I.; Begley, D.W.; Clifton, M.C.; Armour, B.; Dranow, D.M.; Taylor, B.M.; Muruthi, M.M.; Abendroth, J.; Fairman, J.W.; Fox, D., III; Dieterich, S.H.; Staker, B.L.; Gardberg, A.S.; Choi, R.; Hewitt, S.N.; Napuli, A.J.; Myers, J.; Barrett, L.K.; Zhang, Y.; Ferrell, M.; Mundt, E.; Thompkins, K.; Tran, N.; Lyons-Abbott, S.; Abramov, A.; Sekar, A.; Serbzhinskiy, D.; Lorimer, D.; Buchko, G.W.; Stacy, R.; Stewart, L.J.; Edwards, T.E.; Van Voorhis, W.C.; Myler, P.J. Increasing the structural coverage of tuberculosis drug targets. Tuberculosis (Edinb.), 2015, 95(2), 142-148.
[http://dx.doi.org/10.1016/j.tube.2014.12.003] [PMID: 25613812]
[94]
Dranow, D.M.; Abendroth, J.; Lorimer, D.D.; Horanyi, P.S.; Edwards, T.E. RCSB PDB - 6ULD: Crystal structure of serine hydroxymethyltransferase from Mycobacterium tuberculosis with bound PLP forming a Schiff base with substrate Serine in one monomer and PLP forming a Schiff base with product Glycine in the other monomer 2019. Available from: https://www.rcsb.org/structure/6ULD (Accessed on: 2022 Jul 2).
[95]
Shah, H.U.R.; Ahmad, K.; Naseem, H.A.; Parveen, S.; Ashfaq, M.; Aziz, T.; Shaheen, S.; Babras, A.; Shahzad, A. Synthetic routes of azo derivatives: A brief overview. J. Mol. Struct., 2021, 1244, 131181.
[http://dx.doi.org/10.1016/j.molstruc.2021.131181]
[96]
Mohajer, F.; Heravi, M.M.; Zadsirjan, V.; Poormohammad, N. Copper-free Sonogashira cross-coupling reactions: An overview. RSC Advances, 2021, 11(12), 6885-6925.
[http://dx.doi.org/10.1039/D0RA10575A] [PMID: 35423221]
[97]
Romanenko, V.D.; Kukhar, V.P. Phosphonate analogues of nucleoside polyphosphates. ARKIVOC, 2017, 2018(1), 1-49.
[http://dx.doi.org/10.24820/ark.5550190.p010.183]
[98]
Liang, C.; Ju, W.; Ding, S.; Sun, H.; Mao, G. Effective synthesis of nucleosides utilizing O-Acetyl-Glycosyl chlorides as glycosyl donors in the absence of catalyst: Mechanism Revision and Application to Silyl-Hilbert-Johnson Reaction. Molecules, 2017, 22(1), 84-92.
[http://dx.doi.org/10.3390/molecules22010084] [PMID: 28067759]
[99]
Kostoudi, S.; Pampalakis, G. Improvements, variations and biomedical applications of the michaelis–arbuzov reaction. Int. J. Mol. Sci., 2022, 23(6), 3395-3.432.
[100]
van der Vorm, S.; Hansen, T.; van Hengst, J.M.A.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D.C. Acceptor reactivity in glycosylation reactions. Chem. Soc. Rev., 2019, 48(17), 4688-4706.
[http://dx.doi.org/10.1039/C8CS00369F] [PMID: 31287452]
[101]
Ni, G.; Du, Y.; Tang, F.; Liu, J.; Zhao, H.; Chen, Q. Review of α-nucleosides: From discovery, synthesis to properties and potential applications. RSC Advances, 2019, 9(25), 14302-14320.
[http://dx.doi.org/10.1039/C9RA01399G] [PMID: 35519323]
[102]
Freskos, J.N. Synthesis of 2′-deoxypyrimidine nucleosides via copper (I) iodide catalysis. Nucleosides Nucleotides, 1989, 8(4), 549-555.
[http://dx.doi.org/10.1080/07328318908054197]
[103]
Cheng, H.G.; Chen, H.; Liu, Y.; Zhou, Q. The liebeskind-srogl cross-coupling reaction and its synthetic applications. Asian J. Org. Chem., 2018, 7(3), 490-508.
[http://dx.doi.org/10.1002/ajoc.201700651]
[104]
Buchspies, J.; Szostak, M. Recent advances in acyl suzuki cross-coupling. Catalysts, 2019, 9(1), 53-76.
[http://dx.doi.org/10.3390/catal9010053]
[105]
Jérôme, F.; Marinkovic, S.; Estrine, B. Transglycosylation: A key reaction to access alkylpolyglycosides from lignocellulosic biomass. ChemSusChem, 2018, 11(9), 1395-1409.
[http://dx.doi.org/10.1002/cssc.201800265] [PMID: 29488350]
[106]
Wang, H.J.; Zhong, Y.Y.; Xiao, Y.C.; Chen, F.E. Chemical and chemoenzymatic stereoselective synthesis of β-nucleosides and their analogues. Org. Chem. Front., 2022, 9(6), 1719-1741.
[http://dx.doi.org/10.1039/D1QO01936H]
[107]
Imazawa, M.; Eckstein, F. Facile synthesis of 2′-amino-2′-deoxyribofuranosylpurines. J. Org. Chem., 1979, 44(12), 2039-2041.
[http://dx.doi.org/10.1021/jo01326a037]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy