Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Advances in Chitosan-based Drug Delivery Systems for Colorectal Cancer: A Narrative Review

Author(s): Diyar Salahuddin Ali, Hazha Omar Othman* and Esra Tariq Anwer

Volume 24, Issue 12, 2023

Published on: 22 February, 2023

Page: [1554 - 1559] Pages: 6

DOI: 10.2174/1389201024666230202160504

Price: $65

Abstract

Colorectal cancer (CRC) is considered a lethal cancer all around the world, and its incidence has been reported to be increasing. Chemotherapeutic drugs commonly used for treating this cancer have shown some drawbacks, including toxicity to healthy cells and non-precise delivery. Thus, there is a necessity for discovering novel diagnostic and therapeutic options to increase the survival rate of CRC patients. Chitosan, as a natural polymer, has attracted a lot attention during the past years in different fields, including cancer. Studies have indicated that chitosan-based materials play various roles in prevention, diagnosis, and treatment of cancers. Chitosan nanoparticles (NPs) have been shown to serve as anti-cancer agents, which provide sustained drug release and targeted delivery of drugs to the tumor site. In this paper, we review available literature on the roles of chitosan in CRC. We discuss the applications of chitosan in designing drug delivery systems as well as anti-cancer activities of chitosan and involved signaling pathways.

Graphical Abstract

[1]
Venkatesan, P.; Puvvada, N.; Dash, R.; Prashanth Kumar, B.N.; Sarkar, D.; Azab, B.; Pathak, A.; Kundu, S.C.; Fisher, P.B.; Mandal, M. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials, 2011, 32(15), 3794-3806.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.027] [PMID: 21392822]
[2]
Hosseinzadeh, H.; Atyabi, F.; Dinarvand, R.; Ostad, S.N. Chitosan-Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int. J. Nanomedicine, 2012, 7, 1851-1863.
[PMID: 22605934]
[3]
Jones, P.; Cade, J.E.; Evans, C.E.L.; Hancock, N.; Greenwood, D.C. Does adherence to the world cancer research fund/american institute of cancer research cancer prevention guidelines reduce risk of colorectal cancer in the UK Women’s Cohort Study? Br. J. Nutr., 2018, 119(3), 340-348.
[http://dx.doi.org/10.1017/S0007114517003622] [PMID: 29352814]
[4]
Evrard, S.; Torzilli, G.; Caballero, C.; Bonhomme, B. Parenchymal sparing surgery brings treatment of colorectal liver metastases into the precision medicine era. Eur. J. Cancer, 2018, 104, 195-200.
[http://dx.doi.org/10.1016/j.ejca.2018.09.030] [PMID: 30380461]
[5]
Serrano, D.; Lazzeroni, M.; Bonanni, B.J.M. Cancer chemoprevention: Much has been done, but there is still much to do. State of the art and possible new approaches. Mole. Oncol., 2015, 9(5), 1008-1017.
[http://dx.doi.org/10.1016/j.molonc.2014.12.006]
[6]
Sasaki, T.; Kitadai, Y.; Nakamura, T.; Kim, J.S.; Tsan, R.Z.; Kuwai, T.; Langley, R.R.; Fan, D.; Kim, S.J.; Fidler, I.J. Inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation on tumor-associated endothelial cells leads to treatment of orthotopic human colon cancer in nude mice. Neoplasia, 2007, 9(12), 1066-1077.
[http://dx.doi.org/10.1593/neo.07667] [PMID: 18084614]
[7]
Murphy, G.; Devesa, S.S.; Cross, A.J.; Inskip, P.D.; McGlynn, K.A.; Cook, M.B. Sex disparities in colorectal cancer incidence by anatomic subsite, race and age. Int. J. Cancer, 2011, 128(7), 1668-1675.
[http://dx.doi.org/10.1002/ijc.25481] [PMID: 20503269]
[8]
Meissner, H.I.; Breen, N.; Klabunde, C.N.; Vernon, S.W. Patterns of colorectal cancer screening uptake among men and women in the United States. Cancer Epidemiol. Biomarkers Prev., 2006, 15(2), 389-394.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0678] [PMID: 16492934]
[9]
Yokoi, K.; Thaker, P.H.; Yazici, S.; Rebhun, R.R.; Nam, D.H.; He, J.; Kim, S.J.; Abbruzzese, J.L.; Hamilton, S.R.; Fidler, I.J. Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model. Cancer Res., 2005, 65(9), 3716-3725.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3700] [PMID: 15867367]
[10]
Chuah, L.H.; Roberts, C.J.; Billa, N.; Abdullah, S.; Rosli, R. Cellular uptake and anticancer effects of mucoadhesive curcumin-containing chitosan nanoparticles. Colloids Surf. B Biointerfaces, 2014, 116, 228-236.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.007] [PMID: 24486834]
[11]
Coco, R.; Plapied, L.; Pourcelle, V.; Jérôme, C.; Brayden, D.J.; Schneider, Y.J.; Préat, V. Drug delivery to inflamed colon by nanoparticles: Comparison of different strategies. Int. J. Pharm., 2013, 440(1), 3-12.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.017] [PMID: 22820482]
[12]
Hiremath, P.S.; Soppimath, K.S.; Betageri, G.V. Proliposomes of exemestane for improved oral delivery: Formulation and in vitro evaluation using PAMPA, Caco-2 and rat intestine. Int. J. Pharm., 2009, 380(1-2), 96-104.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.008] [PMID: 19616608]
[13]
Lu, Y.; Li, J.; Wang, G.J.I.j.o.p In vitro and in vivo evaluation of mPEG-PLA modified liposomes loaded glycyrrhetinic acid. Int. J. Pharm., 2008, 356(1-2), 274-281.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.047]
[14]
Periayah, M.H.; Halim, A.S.; Saad, A.Z.M.J.P. Chitosan: A promising marine polysaccharide for biomedical research. Pharmacogn. Rev., 2016, 10(19), 39-42.
[15]
Langer, R. Drug delivery and targeting. Nature, 1998, 392(6679), 5-10.
[16]
Langer, R.J.S. New methods of drug delivery. Science, 1990, 249(4976), 1527-1533.
[http://dx.doi.org/10.1126/science.2218494]
[17]
Cramer, M.P.; Saks, S.R.J.P. Translating safety, efficacy and compliance into economic value for controlled release dosage forms. PharmacoEconomics, 1994, 5(6), 482-504.
[http://dx.doi.org/10.2165/00019053-199405060-00005]
[18]
Mourya, V.; Inamdar, N.N.; Tiwari, A.J.A.M.L. Carboxymethyl chitosan and its applications. Adv. Mater. Lett., 2010, 1(1), 11-33.
[http://dx.doi.org/10.5185/amlett.2010.3108]
[19]
Alizadeh, L. Chitosan-based nanotherapeutics for ovarian cancer treatment. 2019, 27(8), 839-852.
[http://dx.doi.org/10.1080/1061186X.2018.1564923]
[20]
Krisanapiboon, A.; Buranapanitkit, B.; Oungbho, K. Biocompatability of hydroxyapatite composite as a local drug delivery system. J. Orthop. Surg., 2006, 14(3), 315-318.
[http://dx.doi.org/10.1177/230949900601400315] [PMID: 17200535]
[21]
Komenek, S. Nanogold-gallate chitosan-targeted pulmonary delivery for treatment of lung cancer. Pharm. Sci. Tech., 2017, 18(4), 1104-1115.
[http://dx.doi.org/10.1208/s12249-016-0644-6]
[22]
Lv, P.P. Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules, 2011, 12(12), 4230-4239.
[http://dx.doi.org/10.1021/bm2010774]
[23]
Hwang, H-Y. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J. Control. Release, 2008, 128(1), 23-31.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.003]
[24]
Mehrotra, A. Lomustine loaded chitosan nanoparticles: Characterization and in-vitro cytotoxicity on human lung cancer cell line L132. Chem. Pharm. Bull., 2011, 59(3), 315-320.
[http://dx.doi.org/10.1248/cpb.59.315]
[25]
Kim, J.H. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J. Controll. Releas., 2008, 127(1), 41-49.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.014]
[26]
Siahmansouri, H. Effects of HMGA 2 si RNA and doxorubicin dual delivery by chitosan nanoparticles on cytotoxicity and gene expression of HT-29 colorectal cancer cell line. J. Pharm. Pharmacol., 2016, 68(9), 1119-1130.
[27]
Jain, A. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine, 2010, 6(1), 179-190.
[http://dx.doi.org/10.1016/j.nano.2009.03.002]
[28]
Ji, A. Functional gene silencing mediated by chitosan/siRNA nanocomplexes. Nanotechnology, 2009, 20(40)405103
[29]
Sadreddini, S. Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer. Immunol. Lett., 2017, 181, 79-86.
[30]
Cheng, M. Anti-cancer efficacy of biotinylated chitosan nanoparticles in liver cancer. Oncotarget, 2017, 8(35), 59068-59085.
[http://dx.doi.org/10.18632/oncotarget.19146]
[31]
Anitha, A. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim. Biophys. Acta, 2014, 1840(9), 2730-2743.
[32]
Yang, Y. Ligand-directed stearic acid grafted chitosan micelles to increase therapeutic efficacy in hepatic cancer. Mol. Pharm., 2015, 12(2), 644-652.
[http://dx.doi.org/10.1021/mp500723k]
[33]
Yang, S.J.; Lin, F.H.; Tsai, K.C.; Wei, M.F.; Tsai, H.M.; Wong, J.M.; Shieh, M.J. Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjug. Chem., 2010, 21(4), 679-689.
[http://dx.doi.org/10.1021/bc9004798] [PMID: 20222677]
[34]
Feng, C.; Li, J.; Kong, M.; Liu, Y.; Cheng, X.J.; Li, Y.; Park, H.J.; Chen, X.G. Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids Surf. B Biointerfaces, 2015, 128, 439-447.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.042] [PMID: 25769283]
[35]
Kapral, M.; Wawszczyk, J.; Sośnicki, S.; Jesse, K.; Węglarz, L. Modulating effect of inositol hexaphosphate on arachidonic acid-dependent pathways in colon cancer cells. Prostaglandins Other Lipid Mediat., 2017, 131, 41-48.
[http://dx.doi.org/10.1016/j.prostaglandins.2017.08.002] [PMID: 28797636]
[36]
Bhowmik, A.; Ojha, D.; Goswami, D.; Das, R.; Chandra, N.S.; Chatterjee, T.K.; Chakravarty, A.; Chakravarty, S.; Chattopadhyay, D. Inositol hexa phosphoric acid (phytic acid), a nutraceuticals, attenuates iron-induced oxidative stress and alleviates liver injury in iron overloaded mice. Biomed. Pharmacother., 2017, 87, 443-450.
[http://dx.doi.org/10.1016/j.biopha.2016.12.125] [PMID: 28068635]
[37]
Yu, W.; Liu, C.; Li, X.; Yang, F.; Cheng, L.; Liu, C.; Song, Y. Inositol hexaphosphate suppresses colorectal cancer cell proliferation via the Akt/GSK-3β/β-catenin signaling cascade in a 1,2-dimethylhydrazine-induced rat model. Eur. J. Pharmacol., 2017, 805, 67-74.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.011] [PMID: 28315345]
[38]
Wakaskar, R.R. Promising effects of nanomedicine in cancer drug delivery. J. Drug Target., 2018, 26(4), 319-324.
[http://dx.doi.org/10.1080/1061186X.2017.1377207] [PMID: 28875739]
[39]
Dehghanizade, S.; Arasteh, J.; Mirzaie, A. Green synthesis of silver nanoparticles using Anthemis atropatana extract: Characterization and in vitro biological activities. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 160-168.
[http://dx.doi.org/10.1080/21691401.2017.1304402] [PMID: 28368661]
[40]
García Calavia, P.; Chambrier, I.; Cook, M.J.; Haines, A.H.; Field, R.A.; Russell, D.A. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J. Colloid Interface Sci., 2018, 512, 249-259.
[http://dx.doi.org/10.1016/j.jcis.2017.10.030] [PMID: 29073466]
[41]
Hu, B.; Liu, X.; Zhang, C.; Zeng, X. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. Yao Wu Shi Pin Fen Xi, 2017, 25(1), 3-15.
[PMID: 28911541]
[42]
Qu, J.B.; Shao, H.H.; Jing, G.L.; Huang, F. PEG-chitosan-coated iron oxide nanoparticles with high saturated magnetization as carriers of 10-hydroxycamptothecin: Preparation, characterization and cytotoxicity studies. Colloids Surf. B Biointerfaces, 2013, 102, 37-44.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.004] [PMID: 23000675]
[43]
Liu, W.; Nie, L.; Li, F.; Aguilar, Z.P.; Xu, H.; Xiong, Y.; Fu, F.; Xu, H. Folic acid conjugated magnetic iron oxide nanoparticles for nondestructive separation and detection of ovarian cancer cells from whole blood. Biomater. Sci., 2016, 4(1), 159-166.
[http://dx.doi.org/10.1039/C5BM00207A] [PMID: 26478922]
[44]
Poller, W.C.; Löwa, N.; Wiekhorst, F.; Taupitz, M.; Wagner, S.; Möller, K.; Baumann, G.; Stangl, V.; Trahms, L.; Ludwig, A. Magnetic particle spectroscopy reveals dynamic changes in the magnetic behavior of very small superparamagnetic iron oxide nanoparticles during cellular uptake and enables determination of cell-labeling efficacy. J. Biomed. Nanotechnol., 2016, 12(2), 337-346.
[http://dx.doi.org/10.1166/jbn.2016.2204] [PMID: 27305767]
[45]
Ding, N.; Sano, K.; Kanazaki, K.; Ohashi, M.; Deguchi, J.; Kanada, Y.; Ono, M.; Saji, H. In vivo HER2-targeted magnetic resonance tumor imaging using iron oxide nanoparticles conjugated with anti-HER2 fragment antibody. Mol. Imaging Biol., 2016, 18(6), 870-876.
[http://dx.doi.org/10.1007/s11307-016-0977-2] [PMID: 27351762]
[46]
Haldorai, Y.; Shim, J-J.J.C.I. Chitosan-zinc oxide hybrid composite for enhanced dye degradation and antibacterial activity. Composite Interface, 2013, 20(5), 365-377.
[http://dx.doi.org/10.1080/15685543.2013.806124]
[47]
Luo, Y. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym., 2015, 122, 221-229.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.084]
[48]
Barahuie, F. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int. J. Nanomedicine, 2017, 12, 2361-2372.
[http://dx.doi.org/10.2147/IJN.S126245]
[49]
Tan, B.L.; Norhaizan, M.E.; Chan, L.C.J.P. An intrinsic mitochondrial pathway is required for phytic acid-chitosan-iron oxide nanocomposite (Phy-CS-MNP) to induce G0/G1 cell cycle arrest and apoptosis in the human colorectal cancer (HT-29) cell line. Pharmaceutics, 2018, 10(4), 198.
[http://dx.doi.org/10.3390/pharmaceutics10040198]
[50]
Raskov, H. Colorectal carcinogenesis-update and perspectives. World J. Gastroenterol., 2014, 20(48), 18151-18164.
[http://dx.doi.org/10.3748/wjg.v20.i48.18151]
[51]
Rao, C.V.J.M.R.F.; Mutagenesis, M.M.o. Nitric oxide signaling in colon cancer chemoprevention. Mutation Res/Fund Molecul Mech Mutagenesis, 2004, 555(1-2), 107-119.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.05.022]
[52]
Takahashi, M.; Wakabayashi, K.J.C.s. Gene mutations and altered gene expression in azoxymethane-induced colon carcinogenesis in rodents. Cancer Sci., 2004, 95(6), 475-480.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03235.x]
[53]
Fajardo, A.M.; Piazza, G.A.J.A.J.o.P.-G.; Physiology, L. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention. Am. J. Physiol. Gastroenterol., 2015, 309(2), G59-G70.
[http://dx.doi.org/10.1152/ajpgi.00101.2014]
[54]
Din, F.V. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology, 2012, 142(7), 1504-1515.
[http://dx.doi.org/10.1053/j.gastro.2012.02.050]
[55]
Hawley, S.A. The ancient drug salicylate directly activates AMP-activated protein kinase. Science, 2012, 336(6083), 918-922.
[http://dx.doi.org/10.1126/science.1215327]
[56]
Ranger, G.S.J.A.r. Current concepts in colorectal cancer prevention with cyclooxygenase inhibitors. Anticancer Res., 2014, 34(11), 6277-6282.
[57]
Mattaveewong, T.; Wongkrasant, P.; Chanchai, S.; Pichyangkura, R.; Chatsudthipong, V.; Muanprasat, C. Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydr. Polym., 2016, 145, 30-36.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.077] [PMID: 27106148]
[58]
Bahrami, A.; Amerizadeh, F. ShahidSales, S.; Khazaei, M.; Ghayour-Mobarhan, M.; Sadeghnia, H.R.; Maftouh, M.; Hassanian, S.M.; Avan, A. Therapeutic potential of targeting Wnt/β-catenin pathway in treatment of colorectal cancer: rational and progress. J. Cell. Biochem., 2017, 118(8), 1979-1983.
[http://dx.doi.org/10.1002/jcb.25903] [PMID: 28109136]
[59]
Ishizawa, K.; Rasheed, Z.A.; Karisch, R.; Wang, Q.; Kowalski, J.; Susky, E.; Pereira, K.; Karamboulas, C.; Moghal, N.; Rajeshkumar, N.V.; Hidalgo, M.; Tsao, M.; Ailles, L.; Waddell, T.K.; Maitra, A.; Neel, B.G.; Matsui, W. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell, 2010, 7(3), 279-282.
[http://dx.doi.org/10.1016/j.stem.2010.08.009] [PMID: 20804964]
[60]
Clevers, H. The cancer stem cell: Premises, promises and challenges. Nat. Med., 2011, 17(3), 313-319.
[http://dx.doi.org/10.1038/nm.2304] [PMID: 21386835]
[61]
Medema, J.P. Cancer stem cells: The challenges ahead. Nat. Cell Biol., 2013, 15(4), 338-344.
[http://dx.doi.org/10.1038/ncb2717] [PMID: 23548926]
[62]
Takebe, N.; Miele, L.; Harris, P.J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S.X.; Ivy, S.P. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat. Rev. Clin. Oncol., 2015, 12(8), 445-464.
[http://dx.doi.org/10.1038/nrclinonc.2015.61] [PMID: 25850553]
[63]
Vermeulen, L.; De Sousa, E.; Melo, F.; van der Heijden, M.; Cameron, K.; de Jong, J.H.; Borovski, T.; Tuynman, J.B.; Todaro, M.; Merz, C.; Rodermond, H.; Sprick, M.R.; Kemper, K.; Richel, D.J.; Stassi, G.; Medema, J.P. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol., 2010, 12(5), 468-476.
[http://dx.doi.org/10.1038/ncb2048] [PMID: 20418870]
[64]
Gujral, T.S.; Chan, M.; Peshkin, L.; Sorger, P.K.; Kirschner, M.W.; MacBeath, G. A noncanonical frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell, 2014, 159(4), 844-856.
[http://dx.doi.org/10.1016/j.cell.2014.10.032] [PMID: 25417160]
[65]
Chang, P.H.; Sekine, K.; Chao, H.M.; Hsu, S.; Chern, E. Chitosan promotes cancer progression and stem cell properties in association with Wnt signaling in colon and hepatocellular carcinoma cells. Sci. Rep., 2017, 7(1), 45751.
[http://dx.doi.org/10.1038/srep45751] [PMID: 28367998]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy