Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress in the Clinical Treatment of Familial Hypercholesterolemia

Author(s): Jing-Yan Ai, Peng-Cheng Zhao, Wen Zhang and Guo-Wu Rao*

Volume 31, Issue 9, 2024

Published on: 31 March, 2023

Page: [1082 - 1106] Pages: 25

DOI: 10.2174/0929867330666230202111849

Price: $65

Abstract

Familial hypercholesterolemia (FH) is an autosomal dominant inheritable disease with severe disorders of lipid metabolism. It is mainly marked by increasing levels of plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), xanthoma, corneal arch, and early-onset coronary heart disease (CHD). The prevalence of FH is high, and it is dangerous and clinically underdiagnosed. The clinical treatment for FH includes both pharmacological and non-pharmacological treatment, of which non-pharmacological treatment mainly includes therapeutic lifestyle change and dietary therapy, LDL apheresis, liver transplantation and gene therapy. In recent years, many novel drugs have been developed to treat FH more effectively. In addition, the continuous maturity of non-pharmacological treatment techniques has also brought more hope for the treatment of FH. This paper analyzes the pathogenic mechanism and the progress in clinical treatment of FH. Furthermore, it also summarizes the mechanism and structure-activity relationship of FH therapeutic drugs that have been marketed. In a word, this article provides a reference value for the research and development of FH therapeutic drugs.

[1]
Ose, L. Diagnostic, clinical, and therapeutic aspects of familial hypercholesterolemia in children. Semin. Vasc. Med., 2004, 4(1), 51-57.
[http://dx.doi.org/10.1055/s-2004-822986] [PMID: 15199433]
[2]
Nohara, A.; Tada, H.; Ogura, M.; Okazaki, S.; Ono, K.; Shimano, H.; Daida, H.; Dobashi, K.; Hayashi, T.; Hori, M.; Matsuki, K.; Minamino, T.; Yokoyama, S.; Harada-Shiba, M. Homozygous familial hypercholesterolemia. J. Atheroscler. Thromb., 2021, 28(7), 665-678.
[http://dx.doi.org/10.5551/jat.RV17050] [PMID: 33867421]
[3]
Benn, M.; Watts, G.F.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Mutations causative of familial hypercholesterolaemia: Screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217. Eur. Heart J., 2016, 37(17), 1384-1394.
[http://dx.doi.org/10.1093/eurheartj/ehw028] [PMID: 26908947]
[4]
Ma, Y.; Gong, Y.; Garg, A.; Zhou, H. Compound heterozygous familial hypercholesterolemia in a Chinese boy with a de novo and transmitted low-density lipoprotein receptor mutation. J. Clin. Lipidol., 2018, 12(1), 230-235.e6.
[http://dx.doi.org/10.1016/j.jacl.2017.10.005] [PMID: 29233637]
[5]
Tan, K.; Cheung, C.L.; Yeung, C.Y.; Siu, D.; Leung, J.; Pang, H.K. Genetic screening for familial hypercholesterolaemia in Hong Kong. Hong Kong Med. J., 2018, 24(Suppl 3), 7-10.
[6]
Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; McBride, P.; Schwartz, J.S.; Shero, S.T.; Smith, S.C.; Watson, K.; Wilson, P.W. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 2014, 63(25 Pt B), 2889-2934.
[http://dx.doi.org/10.1016/j.jacc.2013.11.002] [PMID: 24239923]
[7]
Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiklund, O.; Hegele, R.A.; Raal, F.J.; Defesche, J.C.; Wiegman, A.; Santos, R.D.; Watts, G.F.; Parhofer, K.G.; Hovingh, G.K.; Kovanen, P.T.; Boileau, C.; Averna, M.; Borén, J.; Bruckert, E.; Catapano, A.L.; Kuivenhoven, J.A.; Pajukanta, P.; Ray, K.; Stalenhoef, A.F.H.; Stroes, E.; Taskinen, M.R.; Tybjaerg-Hansen, A. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society. Eur. Heart J., 2013, 34(45), 3478-3490.
[http://dx.doi.org/10.1093/eurheartj/eht273] [PMID: 23956253]
[8]
van der Graaf, A.; Avis, H.J.; Kusters, D.M.; Vissers, M.N.; Hutten, B.A.; Defesche, J.C.; Huijgen, R.; Fouchier, S.W.; Wijburg, F.A.; Kastelein, J.J.P.; Wiegman, A. Molecular basis of autosomal dominant hypercholesterolemia: Assessment in a large cohort of hypercholesterolemic children. Circulation, 2011, 123(11), 1167-1173.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.979450] [PMID: 21382890]
[9]
Bouhairie, V.E.; Goldberg, A.C. Familial Hypercholesterolemia. Cardiol. Clin., 2015, 33(2), 169-179.
[http://dx.doi.org/10.1016/j.ccl.2015.01.001] [PMID: 25939291]
[10]
Peng, J.; Wu, X.; Wang, S.; Zhang, S.; Wang, X.; Liu, Z.; Hong, J.; Ye, P.; Lin, J. Familial hypercholesterolemia in China half a century: A review of published literature. Atheroscler. Suppl., 2019, 36, 12-18.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2019.01.003] [PMID: 30876527]
[11]
Gidding, S.S.; Ann Champagne, M.; de Ferranti, S.D.; Defesche, J.; Ito, M.K.; Knowles, J.W.; McCrindle, B.; Raal, F.; Rader, D.; Santos, R.D.; Lopes-Virella, M.; Watts, G.F.; Wierzbicki, A.S. The agenda for familial hypercholesterolemia. Circulation, 2015, 132(22), 2167-2192.
[http://dx.doi.org/10.1161/CIR.0000000000000297] [PMID: 26510694]
[12]
Abifadel, M.; Varret, M.; Rabès, J.P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; Derré, A.; Villéger, L.; Farnier, M.; Beucler, I.; Bruckert, E.; Chambaz, J.; Chanu, B.; Lecerf, J.M.; Luc, G.; Moulin, P.; Weissenbach, J.; Prat, A.; Krempf, M.; Junien, C.; Seidah, N.G.; Boileau, C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet., 2003, 34(2), 154-156.
[http://dx.doi.org/10.1038/ng1161] [PMID: 12730697]
[13]
Stoekenbroek, R.M.; Kastelein, J.J.P. Proprotein convertase subtilisin/kexin type 9. Curr. Opin. Cardiol., 2018, 33(3), 269-275.
[http://dx.doi.org/10.1097/HCO.0000000000000517] [PMID: 29561319]
[14]
Guo, Q.; Feng, X.; Zhou, Y. PCSK9 variants in familial hypercholesterolemia: A comprehensive synopsis. Front. Genet., 2020, 11, 1020.
[http://dx.doi.org/10.3389/fgene.2020.01020] [PMID: 33173529]
[15]
Shaik, N.A.; Al-Qahtani, F.; Nasser, K.; Jamil, K.; Alrayes, N.M.; Elango, R.; Awan, Z.A.; Banaganapalli, B. Molecular insights into the coding region mutations of low density lipoprotein receptor adaptor protein 1 (LDLRAP1) linked to familial hypercholesterolemia. J. Gene Med., 2020, 22(6), e3176.
[http://dx.doi.org/10.1002/jgm.3176] [PMID: 32073192]
[16]
Khalil, Y.A.; Rabès, J.P.; Boileau, C.; Varret, M. APOE gene variants in primary dyslipidemia. Atherosclerosis, 2021, 328, 11-22.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.05.007] [PMID: 34058468]
[17]
Yang, S.; Ke, X.; Liang, H.; Li, R.; Zhu, H. Case report: A clinical and genetic analysis of childhood growth hormone deficiency with familial hypercholesterolemia. Front. Endocrinol., 2021, 12, 691490.
[http://dx.doi.org/10.3389/fendo.2021.691490] [PMID: 34220717]
[18]
Parini, P.; Angelin, B.; Lobie, P.E.; Norstedt, G.; Rudling, M. Growth hormone specifically stimulates the expression of low density lipoprotein receptors in human hepatoma cells. Endocrinology, 1995, 136(9), 3767-3773.
[http://dx.doi.org/10.1210/endo.136.9.7649083] [PMID: 7649083]
[19]
Harris, T.R.; Hammock, B.D. Soluble epoxide hydrolase: Gene structure, expression and deletion. Gene, 2013, 526(2), 61-74.
[http://dx.doi.org/10.1016/j.gene.2013.05.008] [PMID: 23701967]
[20]
El-Sherbeni, A.A.; El-Kadi, A.O.S. The role of epoxide hydrolases in health and disease. Arch. Toxicol., 2014, 88(11), 2013-2032.
[http://dx.doi.org/10.1007/s00204-014-1371-y] [PMID: 25248500]
[21]
Wang, X.; Luo, D.; Wu, S. Molecular dysfunctions of mitochondria-associated endoplasmic reticulum contacts in atherosclerosis. Oxid. Med. Cell. Longev., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/2424509] [PMID: 34336087]
[22]
Yassin, L.M.; Londoño, J.; Montoya, G.; De Sanctis, J.B.; Rojas, M.; Ramírez, L.A.; García, L.F.; Vásquez, G. Atherosclerosis development in SLE patients is not determined by monocytes ability to bind/endocytose Ox-LDL. Autoimmunity, 2011, 44(3), 201-210.
[http://dx.doi.org/10.3109/08916934.2010.530626] [PMID: 21231894]
[23]
Moore, K.J.; Koplev, S.; Fisher, E.A.; Tabas, I.; Björkegren, J.L.M.; Doran, A.C.; Kovacic, J.C. Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis. J. Am. Coll. Cardiol., 2018, 72(18), 2181-2197.
[http://dx.doi.org/10.1016/j.jacc.2018.08.2147] [PMID: 30360827]
[24]
Raines, E.W.; Ross, R. Multiple growth factors are associated with lesions of atherosclerosis: Specificity or redundancy? BioEssays, 1996, 18(4), 271-282.
[http://dx.doi.org/10.1002/bies.950180405] [PMID: 8967895]
[25]
Holvoet, P.; Collen, D. Thrombosis and atherosclerosis. Curr. Opin. Lipidol., 1997, 8(5), 320-328.
[http://dx.doi.org/10.1097/00041433-199710000-00012] [PMID: 9335957]
[26]
Negre-Salvayre, A.; Guerby, P.; Gayral, S.; Laffargue, M.; Salvayre, R. Role of reactive oxygen species in atherosclerosis: Lessons from murine genetic models. Free Radic. Biol. Med., 2020, 149, 8-22.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.10.011] [PMID: 31669759]
[27]
Prasad, K.; Mishra, M. Mechanism of hypercholesterolemia-induced atherosclerosis. Rev. Cardiovasc. Med., 2022, 23(6), 212.
[http://dx.doi.org/10.31083/j.rcm2306212]
[28]
Schwartz, C.J.; Valente, A.J.; Sprague, E.A.; Kelley, J.L.; Nerem, R.M. The pathogenesis of atherosclerosis: An overview. Clin. Cardiol., 1991, 14(S1), 1-16.
[http://dx.doi.org/10.1002/clc.4960141302] [PMID: 2044253]
[29]
Mohana, T.; Navin, A.V.; Jamuna, S.; Sakeena Sadullah, M.S.; Niranjali Devaraj, S. Inhibition of differentiation of monocyte to macrophages in atherosclerosis by oligomeric proanthocyanidins –In vivo and in vitro study. Food Chem. Toxicol., 2015, 82, 96-105.
[http://dx.doi.org/10.1016/j.fct.2015.04.028] [PMID: 25981678]
[30]
Black, D.M. A general assessment of the safety of HMG CoA reductase inhibitors (statins). Curr. Atheroscler. Rep., 2002, 4(1), 34-41.
[http://dx.doi.org/10.1007/s11883-002-0060-0] [PMID: 11772420]
[31]
Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med., 2001, 5(4), 378-387.
[http://dx.doi.org/10.1111/j.1582-4934.2001.tb00172.x] [PMID: 12067471]
[32]
Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; Goldberg, R.; Heidenreich, P.A.; Hlatky, M.A.; Jones, D.W.; Lloyd-Jones, D.; Lopez-Pajares, N.; Ndumele, C.E.; Orringer, C.E.; Peralta, C.A.; Saseen, J.J.; Smith, S.C., Jr; Sperling, L.; Virani, S.S.; Yeboah, J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol. J. Am. Coll. Cardiol., 2019, 73(24), e285-e350.
[http://dx.doi.org/10.1016/j.jacc.2018.11.003] [PMID: 30423393]
[33]
Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M.R.; Tokgozoglu, L.; Wiklund, O.; Mueller, C.; Drexel, H.; Aboyans, V.; Corsini, A.; Doehner, W.; Farnier, M.; Gigante, B.; Kayikcioglu, M.; Krstacic, G.; Lambrinou, E.; Lewis, B.S.; Masip, J.; Moulin, P.; Petersen, S.; Petronio, A.S.; Piepoli, M.F.; Pintó, X.; Räber, L.; Ray, K.K.; Reiner, Ž.; Riesen, W.F.; Roffi, M.; Schmid, J-P.; Shlyakhto, E.; Simpson, I.A.; Stroes, E.; Sudano, I.; Tselepis, A.D.; Viigimaa, M.; Vindis, C.; Vonbank, A.; Vrablik, M.; Vrsalovic, M.; Zamorano, J.L.; Collet, J-P.; Koskinas, K.C.; Casula, M.; Badimon, L.; John Chapman, M.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Nibouche, D.; Zelveian, P.H.; Siostrzonek, P.; Najafov, R.; van de Borne, P.; Pojskic, B.; Postadzhiyan, A.; Kypris, L.; Špinar, J.; Larsen, M.L.; Eldin, H.S.; Viigimaa, M.; Strandberg, T.E.; Ferrières, J.; Agladze, R.; Laufs, U.; Rallidis, L.; Bajnok, L.; Gudjónsson, T.; Maher, V.; Henkin, Y.; Gulizia, M.M.; Mussagaliyeva, A.; Bajraktari, G.; Kerimkulova, A.; Latkovskis, G.; Hamoui, O.; Slapikas, R.; Visser, L.; Dingli, P.; Ivanov, V.; Boskovic, A.; Nazzi, M.; Visseren, F.; Mitevska, I.; Retterstøl, K.; Jankowski, P.; Fontes-Carvalho, R.; Gaita, D.; Ezhov, M.; Foscoli, M.; Giga, V.; Pella, D.; Fras, Z.; de Isla, L.P.; Hagström, E.; Lehmann, R.; Abid, L.; Ozdogan, O.; Mitchenko, O.; Patel, R.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[34]
Rosenson, R.S. Existing and emerging therapies for the treatment of familial hypercholesterolemia. J. Lipid Res., 2021, 62, 100060.
[http://dx.doi.org/10.1016/j.jlr.2021.100060] [PMID: 33716107]
[35]
Endo, A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res., 1992, 33(11), 1569-1582.
[http://dx.doi.org/10.1016/S0022-2275(20)41379-3] [PMID: 1464741]
[36]
Reiner, Ž. Management of patients with familial hypercholesterolaemia. Nat. Rev. Cardiol., 2015, 12(10), 565-575.
[http://dx.doi.org/10.1038/nrcardio.2015.92] [PMID: 26076948]
[37]
Goldberg, A.C.; Robinson, J.G.; Cromwell, W.C.; Ross, J.L.; Ziajka, P.E. Future issues, public policy, and public awareness of familial hypercholesterolemias: Recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol., 2011, 5(3), S46-S51.
[http://dx.doi.org/10.1016/j.jacl.2011.04.002] [PMID: 21600529]
[38]
Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; Simes, J.; Collins, R. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet, 2010, 376(9753), 1670-1681.
[http://dx.doi.org/10.1016/S0140-6736(10)61350-5] [PMID: 21067804]
[39]
Sjouke, B.; Kusters, D.M.; Kastelein, J.J.P.; Hovingh, G.K. Familial hypercholesterolemia: Present and future management. Curr. Cardiol. Rep., 2011, 13(6), 527-536.
[http://dx.doi.org/10.1007/s11886-011-0219-9] [PMID: 21938413]
[40]
Avis, H.J.; Hutten, B.A.; Gagné, C.; Langslet, G.; McCrindle, B.W.; Wiegman, A.; Hsia, J.; Kastelein, J.J.P.; Stein, E.A. Efficacy and safety of rosuvastatin therapy for children with familial hypercholesterolemia. J. Am. Coll. Cardiol., 2010, 55(11), 1121-1126.
[http://dx.doi.org/10.1016/j.jacc.2009.10.042] [PMID: 20223367]
[41]
Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; Reiner, Ž.; Riccardi, G.; Taskinen, M-R.; Tokgozoglu, L.; Verschuren, W.M.M.; Vlachopoulos, C.; Wood, D.A.; Zamorano, J.L. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Atherosclerosis, 2016, 253, 281-344.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.08.018]
[42]
Raal, F.J.; Hovingh, G.K.; Catapano, A.L. Familial hypercholesterolemia treatments: Guidelines and new therapies. Atherosclerosis, 2018, 277, 483-492.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.06.859] [PMID: 30270089]
[43]
Hou, R.; Goldberg, A.C. Lowering low-density lipoprotein cholesterol: Statins, ezetimibe, bile acid sequestrants, and combinations: Comparative efficacy and safety. Endocrinol. Metab. Clin. North Am., 2009, 38(1), 79-97.
[http://dx.doi.org/10.1016/j.ecl.2008.11.007] [PMID: 19217513]
[44]
Kayikcioglu, M.; Tokgozoglu, L.; Tuncel, O.K.; Pirildar, S.; Can, L. Negative impact of COVID-19 pandemic on the lifestyle and management of patients with homozygous familial hypercholesterolemia. J. Clin. Lipidol., 2020, 14(6), 751-755.
[http://dx.doi.org/10.1016/j.jacl.2020.09.002] [PMID: 32988799]
[45]
Scicali, R.; Di Pino, A.; Piro, S.; Rabuazzo, A.M.; Purrello, F. May statins and PCSK9 inhibitors be protective from COVID-19 in familial hypercholesterolemia subjects? Nutr. Metab. Cardiovasc. Dis., 2020, 30(7), 1068-1069.
[http://dx.doi.org/10.1016/j.numecd.2020.05.003] [PMID: 32405159]
[46]
Frías Vargas, M.; Díaz Rodríguez, A.; Díaz Fernández, B. Lipid treatment in the period COVID-19. Semergen, 2020, 46(7), 497-502.
[http://dx.doi.org/10.1016/j.semerg.2020.06.014]
[47]
Tobert, J.A. Lovastatin and beyond: The history of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov., 2003, 2(7), 517-526.
[http://dx.doi.org/10.1038/nrd1112] [PMID: 12815379]
[48]
Suzuki, M.; Iwasaki, H.; Fujikawa, Y.; Kitahara, M.; Sakashita, M.; Sakoda, R. Synthesis and biological evaluations of quinoline-based HMG-CoA reductase inhibitors. Bioorg. Med. Chem., 2001, 9(10), 2727-2743.
[http://dx.doi.org/10.1016/S0968-0896(01)00198-5] [PMID: 11557359]
[49]
Bratton, L.D.; Auerbach, B.; Choi, C.; Dillon, L.; Hanselman, J.C.; Larsen, S.D.; Lu, G.; Olsen, K.; Pfefferkorn, J.A.; Robertson, A.; Sekerke, C.; Trivedi, B.K.; Unangst, P.C. Discovery of pyrrole-based hepatoselective ligands as potent inhibitors of HMG-CoA reductase. Bioorg. Med. Chem., 2007, 15(16), 5576-5589.
[http://dx.doi.org/10.1016/j.bmc.2007.05.031] [PMID: 17560788]
[50]
Larsen, S.D.; Poel, T.J.; Filipski, K.J.; Kohrt, J.T.; Pfefferkorn, J.A.; Sorenson, R.J.; Tait, B.D.; Askew, V.; Dillon, L.; Hanselman, J.C.; Lu, G.H.; Robertson, A.; Sekerke, C.; Kowala, M.C.; Auerbach, B.J. Pyrazole inhibitors of HMG-CoA reductase: An attempt to dramatically reduce synthetic complexity through minimal analog re-design. Bioorg. Med. Chem. Lett., 2007, 17(20), 5567-5572.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.004] [PMID: 17764936]
[51]
Suzuki, M.; Iwasaki, H.; Fujikawa, Y.; Sakashita, M.; Kitahara, M.; Sakoda, R. Synthesis and biological evaluations of condensed pyridine and condensed pyrimidine-based HMG-CoA reductase inhibitors. Bioorg. Med. Chem. Lett., 2001, 11(10), 1285-1288.
[http://dx.doi.org/10.1016/S0960-894X(01)00203-7] [PMID: 11392538]
[52]
Jahng, Y. Design of a new class of HMG-CoA reductase inhibitor. Drugs Future, 1995, 20(4), 387-404.
[53]
Suchy, D.; Łabuzek, K.; Stadnicki, A.; Okopień, B. Ezetimibe – a new approach in hypercholesterolemia management. Pharmacol. Rep., 2011, 63(6), 1335-1348.
[http://dx.doi.org/10.1016/S1734-1140(11)70698-3] [PMID: 22358082]
[54]
Hamilton-Craig, I.; Kostner, K.; Colquhoun, D.; Woodhouse, S. Combination therapy of statin and ezetimibe for the treatment of familial hypercholesterolemia. Vasc. Health Risk Manag., 2010, 6, 1023-1037.
[http://dx.doi.org/10.2147/VHRM.S13496] [PMID: 21127699]
[55]
Sweeney, M.E.; Johnson, R.R. Ezetimibe: An update on the mechanism of action, pharmacokinetics and recent clinical trials. Expert Opin. Drug Metab. Toxicol., 2007, 3(3), 441-450.
[http://dx.doi.org/10.1517/17425255.3.3.441] [PMID: 17539750]
[56]
Nutescu, E.A.; Shapiro, N.L. Ezetimibe: A selective cholesterol absorption inhibitor. Pharmacotherapy, 2003, 23(11), 1463-1474.
[http://dx.doi.org/10.1592/phco.23.14.1463.31942] [PMID: 14620392]
[57]
Foody, J.M.; Toth, P.P.; Tershakovec, A.M.; Musliner, T.; Tomassini, J.E.; Lowe, R.S.; Neff, D.R.; Davis, H.R. Efficacy and safety of ezetimibe plus atorvastatin therapy. Clin. Lipidol., 2014, 9(4), 441-470.
[http://dx.doi.org/10.2217/clp.14.36]
[58]
Clauss, S.; Wai, K.M.; Kavey, R.E.W.; Kuehl, K. Ezetimibe treatment of pediatric patients with hypercholesterolemia. J. Pediatr., 2009, 154(6), 869-872.
[http://dx.doi.org/10.1016/j.jpeds.2008.12.044] [PMID: 19230898]
[59]
Robinson, J.G. Management of familial hypercholesterolemia: A review of the recommendations from the national lipid association expert panel on familial hypercholesterolemia. J. Manag. Care Pharm., 2013, 19(2), 139-149.
[http://dx.doi.org/10.18553/jmcp.2013.19.2.139] [PMID: 23461430]
[60]
Liao, J.; Wang, X.; Li, Z.; Ouyang, D. Pharmacokinetic study of oral 14C-radiolabeled hyzetimibe, a new cholesterol absorption inhibitor. Front. Pharmacol., 2021, 12, 665372.
[http://dx.doi.org/10.3389/fphar.2021.665372] [PMID: 34122085]
[61]
Ruan, Z.; jiang, B.; Chen, J.; Zhang, X.; Lou, H.; Xiang, M.; Shao, Q.; Wang, J. Pharmacokinetics, pharmacodynamics, safety, and tolerability of hyzetimibe (HS-25) in healthy Chinese subjects. J. Clin. Pharmacol., 2014, 54(10), 1144-1152.
[http://dx.doi.org/10.1002/jcph.310] [PMID: 24752831]
[62]
Wang, Y.; Zhang, H.; Huang, W.; Kong, J.; Zhou, J.; Zhang, B. 2-Azetidinone derivatives: Design, synthesis and evaluation of cholesterol absorption inhibitors. Eur. J. Med. Chem., 2009, 44(4), 1638-1643.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.033] [PMID: 18990470]
[63]
Insull, W., Jr; Toth, P.; Mullican, W.; Hunninghake, D.; Burke, S.; Donovan, J.M.; Davidson, M.H. Effectiveness of colesevelam hydrochloride in decreasing LDL cholesterol in patients with primary hypercholesterolemia: A 24-week randomized controlled trial. Mayo Clin. Proc., 2001, 76(10), 971-982.
[http://dx.doi.org/10.4065/76.10.971] [PMID: 11605698]
[64]
Shepherd, J.; Packard, C.J.; Bicker, S.; Lawrie, T.D.V.; Morgan, H.G. Cholestyramine promotes receptor-mediated low-density-lipoprotein catabolism. N. Engl. J. Med., 1980, 302(22), 1219-1222.
[http://dx.doi.org/10.1056/NEJM198005293022202] [PMID: 7366673]
[65]
Stein, E.A.; Marais, A.D.; Szamosi, T.; Raal, F.J.; Schurr, D.; Urbina, E.M.; Hopkins, P.N.; Karki, S.; Xu, J.; Misir, S.; Melino, M. Colesevelam hydrochloride: Efficacy and safety in pediatric subjects with heterozygous familial hypercholesterolemia. J. Pediatr., 2010, 156(2), 231-236.
[http://dx.doi.org/10.1016/j.jpeds.2009.08.037]
[66]
Robinson, D.M.; Keating, G.M. Colesevelam. Am. J. Cardiovasc. Drugs, 2007, 7(6), 453-465.
[http://dx.doi.org/10.2165/00129784-200707060-00009] [PMID: 18076213]
[67]
Tawara, K.; Tomikawa, M.; Abiko, Y. Mode of action of probucol in reducing serum cholesterol in mice. Jpn. J. Pharmacol., 1986, 40(1), 123-133.
[http://dx.doi.org/10.1254/jjp.40.123] [PMID: 3959347]
[68]
Lau, A.K.; Leichtweis, S.B.; Hume, P.; Mashima, R.; Hou, J.Y.; Chaufour, X.; Wilkinson, B.; Hunt, N.H.; Celermajer, D.S.; Stocker, R. Probucol promotes functional reendothelialization in balloon-injured rabbit aortas. Circulation, 2003, 107(15), 2031-2036.
[http://dx.doi.org/10.1161/01.CIR.0000062682.40051.43] [PMID: 12681995]
[69]
Buckley, M.M.T.; Goa, K.L.; Price, A.H.; Brogden, R.N. Probucol. Drugs, 1989, 37(6), 761-800.
[http://dx.doi.org/10.2165/00003495-198937060-00002] [PMID: 2667936]
[70]
Yamashita, S.; Masuda, D.; Matsuzawa, Y. Did we abandon probucol too soon? Curr. Opin. Lipidol., 2015, 26(4), 304-316.
[http://dx.doi.org/10.1097/MOL.0000000000000199] [PMID: 26125504]
[71]
Yamashita, S.; Bujo, H.; Arai, H.; Harada-Shiba, M.; Matsui, S.; Fukushima, M.; Saito, Y.; Kita, T.; Matsuzawa, Y. Long-term probucol treatment prevents secondary cardiovascular events: A cohort study of patients with heterozygous familial hypercholesterolemia in Japan. J. Atheroscler. Thromb., 2008, 15(6), 292-303.
[http://dx.doi.org/10.5551/jat.E610] [PMID: 19060422]
[72]
Ogura, M. PCSK9 inhibition in the management of familial hypercholesterolemia. J. Cardiol., 2018, 71(1), 1-7.
[http://dx.doi.org/10.1016/j.jjcc.2017.07.002] [PMID: 28784313]
[73]
Seidah, N.G. Proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors in the treatment of hypercholesterolemia and other pathologies. Curr. Pharm. Des., 2013, 19(17), 3161-3172.
[http://dx.doi.org/10.2174/13816128113199990313] [PMID: 23317404]
[74]
Stein, E.A.; Honarpour, N.; Wasserman, S.M.; Xu, F.; Scott, R.; Raal, F.J. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation, 2013, 128(19), 2113-2120.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.004678] [PMID: 24014831]
[75]
Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; Goldberg, R.; Heidenreich, P.A.; Hlatky, M.A.; Jones, D.W.; Lloyd-Jones, D.; Lopez-Pajares, N.; Ndumele, C.E.; Orringer, C.E.; Peralta, C.A.; Saseen, J.J.; Smith, S.C., Jr; Sperling, L.; Virani, S.S.; Yeboah, J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 2019, 139(25), e1082-e1143.
[http://dx.doi.org/10.1161/CIR.0000000000000625] [PMID: 30586774]
[76]
Wang, Y.; Liu, Z.P. PCSK9 inhibitors: Novel therapeutic strategies for lowering LDL cholesterol. Mini Rev. Med. Chem., 2018, 19(2), 165-176.
[http://dx.doi.org/10.2174/1389557518666180423111442] [PMID: 29692249]
[77]
Robinson, J.G.; Farnier, M.; Krempf, M.; Bergeron, J.; Luc, G.; Averna, M.; Stroes, E.S.; Langslet, G.; Raal, F.J.; El Shahawy, M.; Koren, M.J.; Lepor, N.E.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Kastelein, J.J.P. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med., 2015, 372(16), 1489-1499.
[http://dx.doi.org/10.1056/NEJMoa1501031] [PMID: 25773378]
[78]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[79]
McKenney, J.M. Understanding PCSK9 and anti-PCSK9 therapies. J. Clin. Lipidol., 2015, 9(2), 170-186.
[http://dx.doi.org/10.1016/j.jacl.2015.01.001] [PMID: 25911073]
[80]
Wilkinson, M.J.; Davidson, M.H. Recent developments in the treatment of familial hypercholesterolemia: A review of several new drug classes. Curr. Treat. Options Cardiovasc. Med., 2013, 15(6), 696-705.
[http://dx.doi.org/10.1007/s11936-013-0272-3] [PMID: 24222265]
[81]
Ling, H.; Burns, T.L.; Hilleman, D.E. An update on the clinical development of proprotein convertase subtilisin kexin 9 inhibitors, novel therapeutic agents for lowering low-density lipoprotein cholesterol. Cardiovasc. Ther., 2014, 32(2), 82-88.
[http://dx.doi.org/10.1111/1755-5922.12056] [PMID: 24354905]
[82]
Torres, E.; Goicoechea, M.; Hernández, A.; Rodríguez Ferrero, M.L.; García, A.; Macías, N.; Anaya, F. Efficacy of Evolocumab vs. low density lipoprotein cholesterol apheresis in patients with familial hypercholesterolemia and high cardiovascular risk (EVOLAFER01). J. Clin. Apher., 2020, 35(1), 9-17.
[http://dx.doi.org/10.1002/jca.21752] [PMID: 31663632]
[83]
Di Minno, M.N.D.; Gentile, M.; Di Minno, A.; Iannuzzo, G.; Calcaterra, I.; Buonaiuto, A.; Di Taranto, M.D.; Giacobbe, C.; Fortunato, G.; Rubba, P.O.F. Changes in carotid stiffness in patients with familial hypercholesterolemia treated with Evolocumab®: A prospective cohort study. Nutr. Metab. Cardiovasc. Dis., 2020, 30(6), 996-1004.
[http://dx.doi.org/10.1016/j.numecd.2020.02.018] [PMID: 32402582]
[84]
Mahmood, T.; Minnier, J.; Ito, M.K.; Li, Q.H.; Koren, A.; Kam, I.W.; Fazio, S.; Shapiro, M.D. Discordant responses of plasma low-density lipoprotein cholesterol and lipoprotein(a) to alirocumab: A pooled analysis from 10 ODYSSEY Phase 3 studies. Eur. J. Prev. Cardiol., 2021, 28(8), 816-822.
[http://dx.doi.org/10.1177/2047487320915803] [PMID: 34298554]
[85]
Yadav, K.; Sharma, M.; Ferdinand, K.C. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Present perspectives and future horizons. Nutr. Metab. Cardiovasc. Dis., 2016, 26(10), 853-862.
[http://dx.doi.org/10.1016/j.numecd.2016.05.006] [PMID: 27352986]
[86]
Rosenson, R.S.; Hegele, R.A.; Fazio, S.; Cannon, C.P. The evolving future of PCSK9 inhibitors. J. Am. Coll. Cardiol., 2018, 72(3), 314-329.
[http://dx.doi.org/10.1016/j.jacc.2018.04.054] [PMID: 30012326]
[87]
Fitzgerald, K.; White, S.; Borodovsky, A.; Bettencourt, B.R.; Strahs, A.; Clausen, V.; Wijngaard, P.; Horton, J.D.; Taubel, J.; Brooks, A.; Fernando, C.; Kauffman, R.S.; Kallend, D.; Vaishnaw, A.; Simon, A. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med., 2017, 376(1), 41-51.
[http://dx.doi.org/10.1056/NEJMoa1609243] [PMID: 27959715]
[88]
Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.T.; Turner, T.; Visseren, F.L.J.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J.P. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440.
[http://dx.doi.org/10.1056/NEJMoa1615758] [PMID: 28306389]
[89]
Gennemark, P.; Walter, K.; Clemmensen, N.; Rekić, D.; Nilsson, C.A.M.; Knöchel, J.; Hölttä, M.; Wernevik, L.; Rosengren, B.; Kakol-Palm, D.; Wang, Y.; Yu, R.Z.; Geary, R.S.; Riney, S.J.; Monia, B.P.; Isaksson, R.; Jansson-Löfmark, R.; Rocha, C.S.J.; Lindén, D.; Hurt-Camejo, E.; Crooke, R.; Tillman, L.; Rydén-Bergsten, T.; Carlsson, B.; Andersson, U.; Elebring, M.; Tivesten, A.; Davies, N. An oral antisense oligonucleotide for PCSK9 inhibition. Sci. Transl. Med., 2021, 13(593), eabe9117.
[http://dx.doi.org/10.1126/scitranslmed.abe9117] [PMID: 33980578]
[90]
Zhang, Y.; Eigenbrot, C.; Zhou, L.; Shia, S.; Li, W.; Quan, C.; Tom, J.; Moran, P.; Di Lello, P.; Skelton, N.J.; Kong- Beltran, M.; Peterson, A.; Kirchhofer, D. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J. Biol. Chem., 2014, 289(2), 942-955.
[http://dx.doi.org/10.1074/jbc.M113.514067] [PMID: 24225950]
[91]
Zhang, Y.; Ultsch, M.; Skelton, N.J.; Burdick, D.J.; Beresini, M.H.; Li, W.; Kong-Beltran, M.; Peterson, A.; Quinn, J.; Chiu, C.; Wu, Y.; Shia, S.; Moran, P.; Di Lello, P.; Eigenbrot, C.; Kirchhofer, D. Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists. Nat. Struct. Mol. Biol., 2017, 24(10), 848-856.
[http://dx.doi.org/10.1038/nsmb.3453] [PMID: 28825733]
[92]
Lintner, N.G.; McClure, K.F.; Petersen, D.; Londregan, A.T.; Piotrowski, D.W.; Wei, L.; Xiao, J.; Bolt, M.; Loria, P.M.; Maguire, B.; Geoghegan, K.F.; Huang, A.; Rolph, T.; Liras, S.; Doudna, J.A.; Dullea, R.G.; Cate, J.H.D. Selective stalling of human translation through small- molecule engagement of the ribosome nascent chain. PLoS Biol., 2017, 15(3), e2001882.
[http://dx.doi.org/10.1371/journal.pbio.2001882] [PMID: 28323820]
[93]
Liu, J.W.; Jiang, B.; Zhao, S.P.; Cai, S.Y.; Huang, M.H.; Fang, P.F.; Ruan, Z.R.; Chen, M.L.; Shou, Q.Y.; Briand, F.; Wang, J.A. CVI-LM001, a first-in-class novel oral PCSK9 modulator for hypercholesterolemia and NASH: Preclinical and first-in-human studies. Hepatology, 2020, 72(1)(Suppl.), 1014.
[94]
Cao, S.; Xu, P.; Yan, J.; Liu, H.; Liu, L.; Cheng, L.; Qiu, F.; Kang, N. Berberrubine and its analog, hydroxypropyl berberrubine, regulate LDL-R and PCSK9 expression via the ERK signal pathway to exert cholesterol lowering effects in human hepatoma HepG2 cells. J. Cell. Biochem., 2019, 120(2), 1340-1349.
[http://dx.doi.org/10.1002/jcb.27102] [PMID: 30335889]
[95]
Jia, Y.J.; Xu, R.X.; Sun, J.; Tang, Y.; Li, J.J. Enhanced circulating PCSK9 concentration by berberine through SREBP-2 pathway in high fat diet-fed rats. J. Transl. Med., 2014, 12(1), 103.
[http://dx.doi.org/10.1186/1479-5876-12-103] [PMID: 24755036]
[96]
Tai, M.H.; Chen, P.K.; Chen, P.Y.; Wu, M.J.; Ho, C.T.; Yen, J.H. Curcumin enhances cell-surface LDL-R level and promotes LDL uptake through downregulation of PCSK9 gene expression in HepG2 cells. Mol. Nutr. Food Res., 2014, 58(11), 2133-2145.
[http://dx.doi.org/10.1002/mnfr.201400366] [PMID: 25164566]
[97]
Rader, D.J.; Kastelein, J.J.P. Lomitapide and mipomersen. Circulation, 2014, 129(9), 1022-1032.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001292] [PMID: 24589695]
[98]
Davis, K.A.; Miyares, M.A. Lomitapide: A novel agent for the treatment of homozygous familial hypercholesterolemia. Am. J. Health Syst. Pharm., 2014, 71(12), 1001-1008.
[http://dx.doi.org/10.2146/ajhp130592] [PMID: 24865757]
[99]
Cuchel, M.; Meagher, E.A.; du Toit Theron, H.; Blom, D.J.; Marais, A.D.; Hegele, R.A.; Averna, M.R.; Sirtori, C.R.; Shah, P.K.; Gaudet, D.; Stefanutti, C.; Vigna, G.B.; Du Plessis, A.M.E.; Propert, K.J.; Sasiela, W.J.; Bloedon, L.T.; Rader, D.J. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: A single-arm, open-label, phase 3 study. Lancet, 2013, 381(9860), 40-46.
[http://dx.doi.org/10.1016/S0140-6736(12)61731-0] [PMID: 23122768]
[100]
Berberich, A.J.; Hegele, R.A. Lomitapide for the treatment of hypercholesterolemia. Expert Opin. Pharmacother., 2017, 18(12), 1261-1268.
[http://dx.doi.org/10.1080/14656566.2017.1340941] [PMID: 28598687]
[101]
Cuchel, M.; Bloedon, L.T.; Szapary, P.O.; Kolansky, D.M.; Wolfe, M.L.; Sarkis, A.; Millar, J.S.; Ikewaki, K.; Siegelman, E.S.; Gregg, R.E.; Rader, D.J. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N. Engl. J. Med., 2007, 356(2), 148-156.
[http://dx.doi.org/10.1056/NEJMoa061189] [PMID: 17215532]
[102]
Averna, M.; Cefalù, A.B.; Stefanutti, C.; Di Giacomo, S.; Sirtori, C.R.; Vigna, G. Individual analysis of patients with HoFH participating in a phase 3 trial with lomitapide: The Italian cohort. Nutr. Metab. Cardiovasc. Dis., 2016, 26(1), 36-44.
[http://dx.doi.org/10.1016/j.numecd.2015.11.001] [PMID: 26723464]
[103]
Tuteja, S.; Duffy, D.; Dunbar, R.L.; Movva, R.; Gadi, R.; Bloedon, L.T.; Cuchel, M. Pharmacokinetic interactions of the microsomal triglyceride transfer protein inhibitor, lomitapide, with drugs commonly used in the management of hypercholesterolemia. Pharmacotherapy, 2014, 34(3), 227-239.
[http://dx.doi.org/10.1002/phar.1351] [PMID: 24734312]
[104]
Markham, A. Evinacumab: First approval. Drugs, 2021, 81(9), 1101-1105.
[http://dx.doi.org/10.1007/s40265-021-01516-y] [PMID: 34003472]
[105]
Ling, P.; Zheng, X.; Luo, S.; Ge, J.; Xu, S.; Weng, J. Targeting angiopoietin like 3 in atherosclerosis: From bench to bedside. Diabetes Obes. Metab., 2021, 23(9), 2020-2034.
[http://dx.doi.org/10.1111/dom.14450] [PMID: 34047441]
[106]
Christopoulou, E.; Elisaf, M.; Filippatos, T. Effects of angiopoietin-like 3 on triglyceride regulation, glucose homeostasis, and diabetes. Dis. Markers, 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/6578327] [PMID: 30944669]
[107]
Lu, X. Structure and function of angiopoietin-like protein 3 (ANGPTL3) in atherosclerosis. Curr. Med. Chem., 2020, 27(31), 5159-5174.
[http://dx.doi.org/10.2174/0929867326666190621120523] [PMID: 31223079]
[108]
Lang, W.; Frishman, W.H. Angiopoietin-like 3 protein inhibition: A new frontier in lipid-lowering treatment. Cardiol. Rev., 2019, 27(4), 211-217.
[http://dx.doi.org/10.1097/CRD.0000000000000258] [PMID: 31008773]
[109]
Mohamed, F.; Botha, T.C.; Raal, F.J. Inhibition of angiopoietin-like 3 for the management of severe hypercholesterolemia. Curr. Opin. Lipidol., 2021, 32(4), 213-218.
[http://dx.doi.org/10.1097/MOL.0000000000000755] [PMID: 33883446]
[110]
Wang, Y.; Gusarova, V.; Banfi, S.; Gromada, J.; Cohen, J.C.; Hobbs, H.H. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J. Lipid Res., 2015, 56(7), 1296-1307.
[http://dx.doi.org/10.1194/jlr.M054882] [PMID: 25954050]
[111]
Dewey, F.E.; Gusarova, V.; Dunbar, R.L.; O’Dushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; Leader, J.B.; Murray, M.F.; Ritchie, M.D.; Kirchner, H.L.; Habegger, L.; Lopez, A.; Penn, J.; Zhao, A.; Shao, W.; Stahl, N.; Murphy, A.J.; Hamon, S.; Bouzelmat, A.; Zhang, R.; Shumel, B.; Pordy, R.; Gipe, D.; Herman, G.A.; Sheu, W.H.H.; Lee, I.T.; Liang, K.W.; Guo, X.; Rotter, J.I.; Chen, Y.D.I.; Kraus, W.E.; Shah, S.H.; Damrauer, S.; Small, A.; Rader, D.J.; Wulff, A.B.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; van den Hoek, A.M.; Princen, H.M.G.; Ledbetter, D.H.; Carey, D.J.; Overton, J.D.; Reid, J.G.; Sasiela, W.J.; Banerjee, P.; Shuldiner, A.R.; Borecki, I.B.; Teslovich, T.M.; Yancopoulos, G.D.; Mellis, S.J.; Gromada, J.; Baras, A. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med., 2017, 377(3), 211-221.
[http://dx.doi.org/10.1056/NEJMoa1612790] [PMID: 28538136]
[112]
Mohamed, F.; Seedat, F.; Raal, F.J. Novel therapies for familial hypercholesterolemia. Curr. Opin. Endocrinol. Diabetes Obes., 2021, 28(2), 188-195.
[http://dx.doi.org/10.1097/MED.0000000000000590] [PMID: 33278127]
[113]
Warden, B.A.; Duell, P.B. Evinacumab for treatment of familial hypercholesterolemia. Expert Rev. Cardiovasc. Ther., 2021, 19(8), 739-751.
[http://dx.doi.org/10.1080/14779072.2021.1955349] [PMID: 34253139]
[114]
Brandts, J.; Ray, K.K. Bempedoic acid, an inhibitor of ATP citrate lyase for the treatment of hypercholesterolemia: Early indications and potential. Expert Opin. Investig. Drugs, 2020, 29(8), 763-770.
[http://dx.doi.org/10.1080/13543784.2020.1778668] [PMID: 32564642]
[115]
Ballantyne, C.M.; Bays, H.; Catapano, A.L.; Goldberg, A.; Ray, K.K.; Saseen, J.J. Role of bempedoic acid in clinical practice. Cardiovasc. Drugs Ther., 2021, 35(4), 853-864.
[http://dx.doi.org/10.1007/s10557-021-07147-5] [PMID: 33818688]
[116]
Kelly, M.S.; Sulaica, E.M.; Beavers, C.J. Role of bempedoic acid in dyslipidemia management. J. Cardiovasc. Pharmacol., 2020, 76(4), 376-388.
[http://dx.doi.org/10.1097/FJC.0000000000000887] [PMID: 32732494]
[117]
Susekov, A.V.; Korol, L.A.; Watts, G.F. Bempedoic acid in the treatment of patients with dyslipidemias and statin intolerance. Cardiovasc. Drugs Ther., 2021, 35(4), 841-852.
[http://dx.doi.org/10.1007/s10557-020-07139-x] [PMID: 33502687]
[118]
Marrs, J.C.; Anderson, S.L. Bempedoic acid for the treatment of dyslipidemia. Drugs Context, 2020, 9(9), 1-9.
[http://dx.doi.org/10.7573/dic.2020-6-5] [PMID: 32922503]
[119]
Broekhuizen, K.; Jelsma GM, J.; van PoppelNM, M.; Koppes LJ, L.; Brug, J.; van Mechelen, W. Is the process of delivery of an individually tailored lifestyle intervention associated with improvements in LDL cholesterol and multiple lifestyle behaviours in people with Familial Hypercholesterolemia? BMC Public Health, 2012, 12(1), 348.
[http://dx.doi.org/10.1186/1471-2458-12-348] [PMID: 22583789]
[120]
McGuire, S. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Washington, DC: US Departments of Agriculture and Health and Human Services, 2015. Adv. Nutr., 2016, 7(1), 202-204.
[http://dx.doi.org/10.3945/an.115.011684] [PMID: 26773024]
[121]
Smith, S.C., Jr; Allen, J.; Blair, S.N.; Bonow, R.O.; Brass, L.M.; Fonarow, G.C.; Grundy, S.M.; Hiratzka, L.; Jones, D.; Krumholz, H.M.; Mosca, L.; Pasternak, R.C.; Pearson, T.; Pfeffer, M.A.; Taubert, K.A. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: Endorsed by the National Heart, Lung, and Blood Institute. Circulation, 2006, 113(19), 2363-2372.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.174516] [PMID: 16702489]
[122]
Moruisi, K.G.; Oosthuizen, W.; Opperman, A.M. Phytosterols/stanols lower cholesterol concentrations in familial hypercholesterolemic subjects: A systematic review with meta-analysis. J. Am. Coll. Nutr., 2006, 25(1), 41-48.
[http://dx.doi.org/10.1080/07315724.2006.10719513] [PMID: 16522931]
[123]
Jansen, A.C.M.; Aalst-Cohen, E.S.; Tanck, M.W.; Trip, M.D.; Lansberg, P.J.; Liem, A.H.; Roeters van Lennep, H.W.O.; Sijbrands, E.J.G.; Kastelein, J.J.P. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: Data in 2400 patients. J. Intern. Med., 2004, 256(6), 482-490.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01405.x] [PMID: 15554949]
[124]
Alonso, R.; Mata, N.; Castillo, S.; Fuentes, F.; Saenz, P.; Muñiz, O.; Galiana, J.; Figueras, R.; Diaz, J.L.; Gomez-Enterría, P.; Mauri, M.; Piedecausa, M.; Irigoyen, L.; Aguado, R.; Mata, P. Cardiovascular disease in familial hypercholesterolaemia: Influence of low-density lipoprotein receptor mutation type and classic risk factors. Atherosclerosis, 2008, 200(2), 315-321.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.12.024] [PMID: 18243212]
[125]
Page, M.M.; Bell, D.A.; Hooper, A.J.; Watts, G.F.; Burnett, J.R. Lipoprotein apheresis and new therapies for severe familial hypercholesterolemia in adults and children. Best Pract. Res. Clin. Endocrinol. Metab., 2014, 28(3), 387-403.
[http://dx.doi.org/10.1016/j.beem.2013.10.004] [PMID: 24840266]
[126]
Thompson, G.R. Recommendations for the use of LDL apheresis. Atherosclerosis, 2008, 198(2), 247-255.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.02.009] [PMID: 18371971]
[127]
Moriarty, P.M.; Hemphill, L. Lipoprotein apheresis. Cardiol. Clin., 2015, 33(2), 197-208.
[http://dx.doi.org/10.1016/j.ccl.2015.02.002] [PMID: 25939293]
[128]
Stefanutti, C.; Thompson, G.R. Lipoprotein apheresis in the management of familial hypercholesterolaemia: Historical perspective and recent advances. Curr. Atheroscler. Rep., 2015, 17(1), 465.
[http://dx.doi.org/10.1007/s11883-014-0465-6] [PMID: 25410046]
[129]
Makino, H.; Koezuka, R.; Tamanaha, T.; Ogura, M.; Matsuki, K.; Hosoda, K.; Harada-Shiba, M. Familial hypercholesterolemia and lipoprotein apheresis. J. Atheroscler. Thromb., 2019, 26(8), 679-687.
[http://dx.doi.org/10.5551/jat.RV17033] [PMID: 31231083]
[130]
Stefanutti, C.; Julius, U.; Watts, G.F.; Harada-Shiba, M.; Cossu, M.; Schettler, V.J.; De Silvestro, G.; Soran, H.; Van Lennep, J.R.; Pisciotta, L.; Klör, H.U.; Widhalm, K.; Moriarty, P.M.; D’Alessandri, G.; Bianciardi, G.; Bosco, G.; De Fusco, G.; Di Giacomo, S.; Morozzi, C.; Mesce, D.; Vitale, M.; Sovrano, B.; Drogari, E.; Ewald, N.; Gualdi, G.; Jaeger, B.R.; Lanti, A.; Marson, P.; Martino, F.; Migliori, G.; Parasassi, T.; Pavan, A.; Perla, F.M.; Brunelli, R.; Perrone, G.; Renga, S.; Ries, W.; Romano, N.; Romeo, S.; Pergolini, M.; Labbadia, G.; Di Iorio, B.; De Palo, T.; Abbate, R.; Marcucci, R.; Poli, L.; Ardissino, G.; Ottone, P.; Tison, T.; Favari, E.; Borgese, L.; Shafii, M.; Gozzer, M.; Pacella, E.; Torromeo, C.; Parassassi, T.; Berni, A.; Guardamagna, O.; Zenti, M.G.; Guitarrini, M.R.; Berretti, D.; Hohenstein, B.; Saheb, S.; Bjelakovic, B.; Williams, H. Toward an international consensus-Integrating lipoprotein apheresis and new lipid-lowering drugs. J. Clin. Lipidol., 2017, 11(4), 858-871.
[http://dx.doi.org/10.1016/j.jacl.2017.04.114] [PMID: 28572002]
[131]
Wang, A.; Richhariya, A.; Gandra, S.R.; Calimlim, B.; Kim, L.; Quek, R.G.W.; Nordyke, R.J.; Toth, P.P. Systematic review of low density lipoprotein cholesterol apheresis for the treatment of familial hypercholesterolemia. J. Am. Heart Assoc., 2016, 5(7), e003294.
[http://dx.doi.org/10.1161/JAHA.116.003294] [PMID: 27385428]
[132]
Thompson, G.; Parhofer, K.G. Current role of lipoprotein apheresis. Curr. Atheroscler. Rep., 2019, 21(7), 26.
[http://dx.doi.org/10.1007/s11883-019-0787-5] [PMID: 31041550]
[133]
Koziolek, M.J.; Mueller, G.A. Impact of LDL-Apheresis on inflammation and microcirculation. Atheroscler. Suppl., 2009, 10(5), 56-58.
[http://dx.doi.org/10.1016/S1567-5688(09)71812-4] [PMID: 20129376]
[134]
Stefanutti, C.; Morozzi, C.; Petta, A. Lipid and low-density-lipoprotein apheresis. Effects on plasma inflammatory profile and on cytokine pattern in patients with severe dyslipidemia. Cytokine, 2011, 56(3), 842-849.
[http://dx.doi.org/10.1016/j.cyto.2011.08.027] [PMID: 21920771]
[135]
France, M.; Rees, A.; Datta, D.; Thompson, G.; Capps, N.; Ferns, G.; Ramaswami, U.; Seed, M.; Neely, D.; Cramb, R.; Shoulders, C.; Barbir, M.; Pottle, A.; Eatough, R.; Martin, S.; Bayly, G.; Simpson, B.; Halcox, J.; Edwards, R.; Main, L.; Payne, J.; Soran, H. HEART UK statement on the management of homozygous familial hypercholesterolaemia in the United Kingdom. Atherosclerosis, 2016, 255, 128-139.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.10.017] [PMID: 27839699]
[136]
Kayikcioglu, M.; Tokgozoglu, L.; Yilmaz, M.; Kaynar, L.; Aktan, M.; Durmuş, R.B.; Gokce, C.; Temizhan, A.; Ozcebe, O.I.; Akyol, T.K.; Okutan, H.; Sag, S.; Gul, O.O.; Salcioglu, Z.; Yenercag, M.; Altunkeser, B.B.; Kuku, I.; Yasar, H.Y.; Kurtoglu, E.; Kose, M.D.; Demircioglu, S.; Pekkolay, Z.; Ilhan, O. A nation-wide survey of patients with homozygous familial hypercholesterolemia phenotype undergoing LDL-apheresis in Turkey (A-HIT 1 registry). Atherosclerosis, 2018, 270, 42-48.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.034] [PMID: 29407887]
[137]
Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; Tybjaerg-Hansen, A.; Watts, G.F.; Averna, M.; Boileau, C.; Borén, J.; Catapano, A.L.; Defesche, J.C.; Hovingh, G.K.; Humphries, S.E.; Kovanen, P.T.; Masana, L.; Pajukanta, P.; Parhofer, K.G.; Ray, K.K.; Stalenhoef, A.F.H.; Stroes, E.; Taskinen, M.R.; Wiegman, A.; Wiklund, O.; Chapman, M.J.; Cuchel, M.; Bruckert, E.; Chapman, M.J.; Descamps, O.S.; Ginsberg, H.N.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Raal, F.J.; Santos, R.D.; Steinhagen-Thiessen, E.; Tybjaerg-Hansen, A.; Watts, G.F.; Chapman, M.J.; Ginsberg, H.N.; Averna, M.; Boileau, C.; Boren, J.; Catapano, A.L.; Defesche, J.C.; Hovingh, G.K.; Humphries, S.E.; Kovanen, P.T.; Masana, L.; Pajukanta, P.; Parhofer, K.G.; Ray, K.K.; Stalenhoef, A.F.H.; Stroes, E.; Taskinen, M-R.; Wiegman, A.; Wiklund, O. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J., 2014, 35(32), 2146-2157.
[http://dx.doi.org/10.1093/eurheartj/ehu274] [PMID: 25053660]
[138]
Kayıkçıoğlu, M.; Kısmalı, E.; Can, L.; Payzin, S. Long-term follow-up in patients with homozygous familial hypercholesterolemia; 13-year experience of a university hospital lipid clinic. Turk Kardiyol Dern Ars, 2014, 42(7), 599-611.
[http://dx.doi.org/10.5543/tkda.2014.09633]
[139]
Padmanabhan, A.; Connelly-Smith, L.; Aqui, N.; Balogun, R.A.; Klingel, R.; Meyer, E.; Pham, H.P.; Schneiderman, J.; Witt, V.; Wu, Y.; Zantek, N.D.; Dunbar, N.M.; Schwartz, G.E.J. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice – Evidence Based Approach from the Writing Committee of the American Society for Apheresis: The eighth special issue. J. Clin. Apher., 2019, 34(3), 171-354.
[http://dx.doi.org/10.1002/jca.21705] [PMID: 31180581]
[140]
Thompson, G.R. Managing homozygous familial hypercholesterolaemia from cradle to grave. Atheroscler. Suppl., 2015, 18, 16-20.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2015.02.002] [PMID: 25936299]
[141]
Harada-Shiba, M.; Arai, H.; Oikawa, S.; Ohta, T.; Okada, T.; Okamura, T.; Nohara, A.; Bujo, H.; Yokote, K.; Wakatsuki, A.; Ishibashi, S.; Yamashita, S. Guidelines for the management of familial hypercholesterolemia. J. Atheroscler. Thromb., 2012, 19(12), 1043-1060.
[http://dx.doi.org/10.5551/jat.14621] [PMID: 23095242]
[142]
Goldberg, A.C.; Hopkins, P.N.; Toth, P.P.; Ballantyne, C.M.; Rader, D.J.; Robinson, J.G.; Daniels, S.R.; Gidding, S.S.; de Ferranti, S.D.; Ito, M.K.; McGowan, M.P.; Moriarty, P.M.; Cromwell, W.C.; Ross, J.L.; Ziajka, P.E. Familial Hypercholesterolemia: Screening, diagnosis and management of pediatric and adult patients. J. Clin. Lipidol., 2011, 5(3), S1-S8.
[http://dx.doi.org/10.1016/j.jacl.2011.04.003] [PMID: 21600525]
[143]
Stefanutti, C.; Julius, U. Lipoprotein apheresis: State of the art and novelties. Atheroscler. Suppl., 2013, 14(1), 19-27.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2012.10.021] [PMID: 23357136]
[144]
Kayikcioglu, M.; Kuman-Tunçel, O.; Pirildar, S.; Yílmaz, M.; Kaynar, L.; Aktan, M.; Durmuş, R.B.; Gökçe, C.; Temizhan, A.; Özcebe, O.I.; Akyol, T.K.; Okutan, H.; Sağ, S.; Oz Gul, O.; Salcioglu, Z.; Yenercag, M.; Altunkeser, B.B.; Kuku, I.; Yasar, H.Y.; Kurtoğlu, E.; Demir, M.; Demircioğlu, S.; Pekkolay, Z.; Ílhan, O.; Tokgozoglu, L. Clinical management, psychosocial characteristics, and quality of life in patients with homozygous familial hypercholesterolemia undergoing LDL-apheresis in Turkey: Results of a nationwide survey (A-HIT1 registry). J. Clin. Lipidol., 2019, 13(3), 455-467.
[http://dx.doi.org/10.1016/j.jacl.2019.02.001] [PMID: 30928440]
[145]
Bilheimer, D.W.; Goldstein, J.L.; Grundy, S.M.; Starzl, T.E.; Brown, M.S. Liver transplantation to provide low-density-lipoprotein receptors and lower plasma cholesterol in a child with homozygous familial hypercholesterolemia. N. Engl. J. Med., 1984, 311(26), 1658-1664.
[http://dx.doi.org/10.1056/NEJM198412273112603] [PMID: 6390206]
[146]
Alim, A.; Tokat, Y.; Erdogan, Y.; Gokkaya, Z.; Dayangac, M.; Yuzer, Y.; Oezcelik, A. Liver transplantation for homozygote familial hypercholesterolemia: The only curative treatment. Pediatr. Transplant., 2016, 20(8), 1060-1064.
[http://dx.doi.org/10.1111/petr.12763] [PMID: 27435024]
[147]
Page, M.M.; Ekinci, E.I.; Jones, R.M.; Angus, P.W.; Gow, P.J.; O’Brien, R.C. Liver transplantation for the treatment of homozygous familial hypercholesterolaemia in an era of emerging lipid-lowering therapies. Intern. Med. J., 2014, 44(6), 601-604.
[http://dx.doi.org/10.1111/imj.12444] [PMID: 24946816]
[148]
Kolovou, G.; Vasiliadis, I.; Gontoras, N.; Kolovou, V.; Hatzigeorgiou, G. Microsomal transfer protein inhibitors, new approach for treatment of familial hypercholesterolemia, review of the literature, original findings, and clinical significance. Cardiovasc. Ther., 2015, 33(2), 71-78.
[http://dx.doi.org/10.1111/1755-5922.12105] [PMID: 25604780]
[149]
Lyseng-Willliamson, K.A.; Perry, C.M. Lomitapide: A guide to its use in adults with homozygous familial hypercholesterolaemia in the EU. Drugs Ther. Perspect., 2013, 29(12), 373-378.
[http://dx.doi.org/10.1007/s40267-013-0087-z]
[150]
Moini, M.; Mistry, P.; Schilsky, M.L. Liver transplantation for inherited metabolic disorders of the liver. Curr. Opin. Organ Transplant., 2010, 15(3), 269-276.
[http://dx.doi.org/10.1097/MOT.0b013e3283399dbd] [PMID: 20489626]
[151]
Ibrahim, M.; El-Hamamsy, I.; Barbir, M.; Yacoub, M.H. Translational lessons from a case of combined heart and liver transplantation for familial hypercholesterolemia 20 years post-operatively. J. Cardiovasc. Transl. Res., 2012, 5(3), 351-358.
[http://dx.doi.org/10.1007/s12265-011-9311-1] [PMID: 21882079]
[152]
Ishigaki, Y.; Kawagishi, N.; Hasegawa, Y.; Sawada, S.; Katagiri, H.; Satomi, S.; Oikawa, S. Liver transplantation for homozygous familial hypercholesterolemia. J. Atheroscler. Thromb., 2019, 26(2), 121-127.
[http://dx.doi.org/10.5551/jat.RV17029] [PMID: 30555131]
[153]
Malatack MD, J.J. Liver transplantation as treatment for familial homozygous hypercholesterolemia: Too early or too late. Pediatr. Transplant., 2011, 15(2), 123-125.
[http://dx.doi.org/10.1111/j.1399-3046.2010.01458.x] [PMID: 21219559]
[154]
Hackl, C.; Schlitt, H.J.; Melter, M.; Knoppke, B.; Loss, M. Current developments in pediatric liver transplantation. World J. Hepatol., 2015, 7(11), 1509-1520.
[http://dx.doi.org/10.4254/wjh.v7.i11.1509] [PMID: 26085910]
[155]
Goldmann, R.; Tichý, L.; Freiberger, T.; Zapletalová, P.; Letocha, O.; Soška, V.; Fajkus, J.; Fajkusová, L. Genomic characterization of large rearrangements of the LDL-R gene in Czech patients with familial hypercholesterolemia. BMC Med. Genet., 2010, 11(1), 115.
[http://dx.doi.org/10.1186/1471-2350-11-115] [PMID: 20663204]
[156]
Van Craeyveld, E.; Jacobs, F.; Gordts, S.C.; De Geest, B. Gene therapy for familial hypercholesterolemia. Curr. Pharm. Des., 2011, 17(24), 2575-2591.
[http://dx.doi.org/10.2174/138161211797247550] [PMID: 21774774]
[157]
Soria, L.F.; Ludwig, E.H.; Clarke, H.R.; Vega, G.L.; Grundy, S.M.; McCarthy, B.J. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Natl. Acad. Sci. USA, 1989, 86(2), 587-591.
[http://dx.doi.org/10.1073/pnas.86.2.587] [PMID: 2563166]
[158]
Palacios, L.; Grandoso, L.; Cuevas, N.; Olano-Martín, E.; Martinez, A.; Tejedor, D.; Stef, M. Molecular characterization of familial hypercholesterolemia in Spain. Atherosclerosis, 2012, 221(1), 137-142.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.12.021] [PMID: 22244043]
[159]
Varret, M.; Abifadel, M.; Rabès, J-P.; Boileau, C. Genetic heterogeneity of autosomal dominant hypercholesterolemia. Clin. Genet., 2008, 73(1), 1-13.
[http://dx.doi.org/10.1111/j.1399-0004.2007.00915.x] [PMID: 18028451]
[160]
Iacocca, M.A.; Chora, J.R.; Carrié, A.; Freiberger, T.; Leigh, S.E.; Defesche, J.C.; Kurtz, C.L.; DiStefano, M.T.; Santos, R.D.; Humphries, S.E.; Mata, P.; Jannes, C.E.; Hooper, A.J.; Wilemon, K.A.; Benlian, P.; O’Connor, R.; Garcia, J.; Wand, H.; Tichy, L.; Sijbrands, E.J.; Hegele, R.A.; Bourbon, M.; Knowles, J.W. ClinVar database of global familial hypercholesterolemia associated DNA variants. Hum. Mutat., 2018, 39(11), 1631-1640.
[http://dx.doi.org/10.1002/humu.23634] [PMID: 30311388]
[161]
Berberich, A.J.; Hegele, R.A. The complex molecular genetics of familial hypercholesterolaemia. Nat. Rev. Cardiol., 2019, 16(1), 9-20.
[http://dx.doi.org/10.1038/s41569-018-0052-6] [PMID: 29973710]
[162]
Al-Allaf, F.A.; Coutelle, C.; Waddington, S.N.; David, A.L.; Harbottle, R.; Themis, M. LDLR-Gene therapy for familial hypercholesterolaemia: Problems, progress, and perspectives. Int. Arch. Med., 2010, 3(1), 36.
[http://dx.doi.org/10.1186/1755-7682-3-36] [PMID: 21144047]
[163]
Van Craeyveld, E.; Gordts, S.C.; Nefyodova, E.; Jacobs, F.; De Geest, B. Regression and stabilization of advanced murine atherosclerotic lesions: A comparison of LDL lowering and HDL raising gene transfer strategies. J. Mol. Med. (Berl.), 2011, 89(6), 555-567.
[http://dx.doi.org/10.1007/s00109-011-0722-x] [PMID: 21249329]
[164]
Kassim, S.H.; Li, H.; Vandenberghe, L.H.; Hinderer, C.; Bell, P.; Marchadier, D.; Wilson, A.; Cromley, D.; Redon, V.; Yu, H.; Wilson, J.M.; Rader, D.J. Gene therapy in a humanized mouse model of familial hypercholesterolemia leads to marked regression of atherosclerosis. PLoS One, 2010, 5(10), e13424.
[http://dx.doi.org/10.1371/journal.pone.0013424] [PMID: 20976059]
[165]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy