Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

Plant-derived Gums and Mucilages: A Food for Thought for Researchers to Develop Pharmaceuticals

Author(s): Venu Raghuvanshi, Keshav Bansal* and Meenakshi Bajpai

Volume 16, Issue 4, 2023

Published on: 09 March, 2023

Page: [400 - 415] Pages: 16

DOI: 10.2174/2666145416666230131121435

Price: $65

Abstract

Humans have been using plant-derived gums for a variety of purposes since the beginning of time. Gums and mucilages are common natural materials utilised in both traditional and innovative dosage forms. Natural polymers are found to be very effective after incorporation in novel dosage forms to fulfill specific roles, resulting in improvements in drug delivery by increasing the drug expulsion rate and absorption. Natural medicines and excipients are becoming increasingly popular worldwide because of their inert nature, less toxicity, cheap and biologically degradable, and ease of availability. Many patents like WO/2018/199924A1 and WO/2004/094443A1 have been published on the uses of gums and mucilages in pharmaceuticals. The plant-derived polymeric compounds (gums and mucilages) are discussed in this study, along with their application and reported research and patents on their utilization in innovative drug delivery methods.

Graphical Abstract

[1]
Jani GK, Shah DP, Jain VC, Patel MJ, Vithalani DA. Evaluating mucilage from Aloe barbadensis miller as a pharmaceutical excipient for sustained-release matrix tablets. Pharm Technol 2007; 31(11): 1-14.
[2]
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007; 32(8-9): 762-98.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017]
[3]
Jani GK, Shah DP, Prajapati VD, Jain VC. Gums and mucilages: Versatile excipients for pharmaceutical formulations. Asian J Pharm Sci 2009; 4(5): 309-23.
[4]
Ghazy E, Kumar A, Barani M, Kaur I, Rahdar A, Behl T. Scrutinizing the therapeutic and diagnostic potential of nanotechnology in thyroid cancer: Edifying drug targeting by nano-oncotherapeutics. J Drug Deliv Sci Technol 2021; 61: 102221.
[http://dx.doi.org/10.1016/j.jddst.2020.102221]
[5]
Taghipour YD, Bahramsoltani R, Marques AM, et al. A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: Drug delivery and pharmacological targets. Daru 2018; 26(2): 229-39.
[http://dx.doi.org/10.1007/s40199-018-0222-4] [PMID: 30382546]
[6]
Shamasi Z, Es-Haghi A, Ehsan M, Yazdi T, Amiri MS, Homayouni-Tabrizi M. Role of Rubia tinctorum in the synthesis of zinc oxide nanoparticles and apoptosis induction in breast cancer cell line. Nanomed J 2021; 8(1): 65-72.
[http://dx.doi.org/10.22038/nmj.2021.08.07]
[7]
Nayak AK, Pal D, Das S. Calcium pectinate-fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohydr Polym 2013; 96(1): 349-57.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.088] [PMID: 23688491]
[8]
Souza G, Siqueira dos Santos S, Bergamasco R, Antigo J, Madrona GS. Antioxidant activity, extraction and application of psyllium mucilage in chocolate drink. Nutr Food Sci 2020; 50(6): 1175-85.
[http://dx.doi.org/10.1108/NFS-07-2019-0211]
[9]
Rashid F, Ahmed Z, Hussain S, Huang JY, Ahmad A. Linum usitatissimum L. seeds: Flax gum extraction, physicochemical and func-tional characterization. Carbohydr Polym 2019; 215: 29-38.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.054] [PMID: 30981357]
[10]
Andrade LA, de Oliveira Silva DA, Nunes CA, Pereira J. Experimental techniques for the extraction of taro mucilage with enhanced emulsifier properties using chemical characterization. Food Chem 2020; 327: 127095.
[http://dx.doi.org/10.1016/j.foodchem.2020.127095] [PMID: 32454283]
[11]
Kamel R, Afifi SM, Kassem IAA, Elkasabgy NA, Farag MA. Arabinoxylan and rhamnogalacturonan mucilage: Outgoing and potential trends of pharmaceutical, environmental, and medicinal merits. Int J Biol Macromol 2020; 165(Pt B): 2550-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.175] [PMID: 33115647]
[12]
Pal D, Pany DR, Mohanty B, Nayak AK. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent. J Adv Pharm Technol Res 2010; 1(3): 338-41.
[http://dx.doi.org/10.4103/0110-5558.72430] [PMID: 22247868]
[13]
Andrade LA, Nunes CA, Pereira J. Relationship between the chemical components of taro rhizome mucilage and its emulsifying prop-erty. Food Chem 2015; 178: 331-8.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.094] [PMID: 25704720]
[14]
Elboutachfaiti R, Delattre C, Quéro A, et al. Fractionation and structural characterization of six purified rhamnogalacturonans type I from flaxseed mucilage. Food Hydrocoll 2017; 62: 273-9.
[http://dx.doi.org/10.1016/j.foodhyd.2016.08.005]
[15]
Alpizar-Reyes E, Carrillo-Navas H, Gallardo-Rivera R, Varela-Guerrero V, Alvarez-Ramirez J, Pérez-Alonso C. Functional properties and physicochemical characteristics of tamarind (Tamarindus indica L.) seed mucilage powder as a novel hydrocolloid. J Food Eng 2017; 209: 68-75.
[http://dx.doi.org/10.1016/j.jfoodeng.2017.04.021]
[16]
Luo M, Cao Y, Wang W, et al. Sustained-release antimicrobial gelatin film: Effect of chia mucilage on physicochemical and antimicro-bial properties. Food Hydrocoll 2019; 87: 783-91.
[http://dx.doi.org/10.1016/j.foodhyd.2018.09.010]
[17]
Alizadeh Behbahani B, Noshad M, Jooyandeh H. Improving oxidative and microbial stability of beef using Shahri balangu seed muci-lage loaded with cumin essential oil as a bioactive edible coating. Biocatal Agric Biotechnol 2020; 24: 101563.
[http://dx.doi.org/10.1016/j.bcab.2020.101563]
[18]
Pereira GA, Silva EK, Peixoto Araujo NM, Arruda HS, Meireles MAA, Pastore GM. Mutamba seed mucilage as a novel emulsifier: Stabilization mechanisms, kinetic stability and volatile compounds retention. Food Hydrocoll 2019; 97: 105190.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105190]
[19]
Viudes S, Burlat V, Dunand C. Seed mucilage evolution: Diverse molecular mechanisms generate versatile ecological functions for particular environments. Plant Cell Environ 2020; 43(12): 2857-70.
[http://dx.doi.org/10.1111/pce.13827] [PMID: 32557703]
[20]
Prajapati VD, Jani GK, Moradiya NG, Randeria NP. Pharmaceutical applications of various natural gums, mucilages and their modi-fied forms. Carbohydr Polym 2013; 92(2): 1685-99.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.021] [PMID: 23399207]
[21]
Gheribi R, Puchot L, Verge P, Jaoued-grayaa N, Mezni M, Habibi Y, et al. Effect of nopal mucilage addition on physical, barrier and mechanical properties of citric pectin-based films. Carbohydr Polym 2018; 55(1): 1-12.
[http://dx.doi.org/10.1007/s13197-018-3304-x] [PMID: 30150834]
[22]
Mir SA, Dar BN, Wani AA, Shah MA. Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends Food Sci Technol 2018; 80: 141-54.
[http://dx.doi.org/10.1016/j.tifs.2018.08.004]
[23]
Espino-Díaz M, De Jesús Ornelas-Paz J, Martínez-Téllez MA, et al. Development and characterization of edible films based on muci-lage of Opuntia ficus-indica (L.). J Food Sci 2010; 75(6): E347-52.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01661.x] [PMID: 20722919]
[24]
Yeşim P, Orcid E. Quince seed mucilage as edible coating for mandarin fruit; determination of the quality characteristics during storage. J Food Process Preserv 2020; 44(11): 1-8.
[http://dx.doi.org/10.1111/jfpp.14854]
[25]
Chrysargyris A, Nikou A, Tzortzakis N. Effectiveness of Aloe vera gel coating for maintaining tomato fruit quality. N Z J Crop Hortic Sci 2016; 44(3): 203-17.
[http://dx.doi.org/10.1080/01140671.2016.1181661]
[26]
Nourozi F, Sayyari M. Enrichment of Aloe vera gel with basil seed mucilage preserve bioactive compounds and postharvest quality of apricot fruits. Sci Hortic 2020; 262: 109041.
[http://dx.doi.org/10.1016/j.scienta.2019.109041]
[27]
Allegra A, Inglese P, Sortino G, Settanni L, Todaro A, Liguori G. The influence of opuntia ficus-indica mucilage edible coating on the quality of ‘hayward’ kiwifruit slices. Postharvest Biol Technol 2016; 120: 45-51.
[http://dx.doi.org/10.1016/j.postharvbio.2016.05.011]
[28]
Barzegar H, Alizadeh Behbahani B, Mehrnia MA. Quality retention and shelf life extension of fresh beef using Lepidium sativum seed mucilage-based edible coating containing Heracleum lasiopetalum essential oil: An experimental and modeling study. Food Sci Biotechnol 2020; 29(5): 717-28.
[http://dx.doi.org/10.1007/s10068-019-00715-4] [PMID: 32419970]
[29]
Vignesh RM, Nair BR. Improvement of shelf life quality of tomatoes using a novel edible coating formulation. Plant Sci Today 2019; 6(2): 84-90.
[http://dx.doi.org/10.14719/pst.2019.6.2.443]
[30]
Soleimani-Rambod A, Zomorodi S, Naghizadeh Raeisi S, Khosrowshahi Asl A, Shahidi SA. The effect of xanthan gum and flaxseed mucilage as edible coatings in cheddar cheese during ripening. Coatings 2018; 8(2): 80.
[http://dx.doi.org/10.3390/coatings8020080]
[31]
Song HY, Jo WS, Song NB, Min SC, Song KB. Quality change of apple slices coated with Aloe vera gel during storage. J Food Sci 2013; 78(6): C817-22.
[http://dx.doi.org/10.1111/1750-3841.12141] [PMID: 23647574]
[32]
Roche A, Ross E, Walsh N, et al. Representative literature on the phytonutrients category: Phenolic acids. Crit Rev Food Sci Nutr 2017; 57(6): 1089-96.
[http://dx.doi.org/10.1080/10408398.2013.865589] [PMID: 25831057]
[33]
Antigo JLD, Stafussa AP, de Cassia Bergamasco R, Madrona GS. Chia seed mucilage as a potential encapsulating agent of a natural food dye. J Food Eng 2020; 285: 110101.
[http://dx.doi.org/10.1016/j.jfoodeng.2020.110101]
[34]
Medina-Torres L, Núñez-Ramírez DM, Calderas F, et al. Curcumin encapsulation by spray drying using Aloe vera mucilage as encap-sulating agent. J Food Process Eng 2019; 42(2): e12972.
[http://dx.doi.org/10.1111/jfpe.12972]
[35]
Otálora MC, Carriazo JG, Iturriaga L, Nazareno MA, Osorio C. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem 2015; 187: 174-81.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.090] [PMID: 25977013]
[36]
Medina-Torres L, García-Cruz EE, Calderas F, et al. Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus indica). Lebensm Wiss Technol 2013; 50(2): 642-50.
[http://dx.doi.org/10.1016/j.lwt.2012.07.038]
[37]
Alpizar-Reyes E, Varela-Guerrero V, Cruz-Olivares J, Carrillo-Navas H, Alvarez-Ramirez J, Pérez-Alonso C. Microencapsulation of sesame seed oil by tamarind seed mucilage. Int J Biol Macromol 2020; 145: 207-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.162] [PMID: 31874264]
[38]
Tamri P, Hemmati A, Boroujerdnia MG. Wound healing properties of quince seed mucilage: In vivo evaluation in rabbit full-thickness wound model. Int J Surg 2014; 12(8): 843-7.
[http://dx.doi.org/10.1016/j.ijsu.2014.06.016] [PMID: 25017948]
[39]
Tantiwatcharothai S, Prachayawarakorn J. Property improvement of antibacterial wound dressing from basil seed (O. basilicum L.) mucilage- ZnO nanocomposite by borax crosslinking. Carbohydr Polym 2020; 227: 115360.
[http://dx.doi.org/10.1016/j.carbpol.2019.115360] [PMID: 31590866]
[40]
George B, Suchithra TV. Plant-derived bioadhesives for wound dressing and drug delivery system. Fitoterapia 2019; 137: 104241.
[http://dx.doi.org/10.1016/j.fitote.2019.104241] [PMID: 31201885]
[41]
Ahmad S, Ahmad M, Manzoor K, Purwar R, Ikram S. A review on latest innovations in natural gums based hydrogels: Preparations & applications. Int J Biol Macromol 2019; 136: 870-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.113] [PMID: 31226381]
[42]
Bouyer E, Mekhloufi G, Rosilio V, Grossiord JL, Agnely F. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm 2012; 436(1-2): 359-78.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.052] [PMID: 22759644]
[43]
Moghbel A, Hemmati AA, Agheli H, Rashidi I, Amraee K. The effect of tragacanth mucilage on the healing of full-thickness wound in rabbit. Arch Iran Med 2005; 8(4): 257-62.
[44]
Valizadeh R, Hemmati AA, Houshmand G, Bayat S, Bahadoram M. Wound healing potential of Althaea officinalis flower mucilage in rabbit full thickness wounds. Asian Pac J Trop Biomed 2015; 5(11): 937-43.
[http://dx.doi.org/10.1016/j.apjtb.2015.07.018]
[45]
Campos BE, Ruivo TD, Mônica R, Scapim S, Madrona S, Bergamasco RDC. Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier. Food Sci Technol 2016; 65: 874-83.
[http://dx.doi.org/10.1016/j.lwt.2015.09.021]
[46]
Ahuja M, Kumar A, Yadav P, Singh K. Mimosa pudica seed mucilage: Isolation; characterization and evaluation as tablet disintegrant and binder. Int J Biol Macromol 2013; 57: 105-10.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.004] [PMID: 23500434]
[47]
Isimi CY, Kunle OO, Bangudu AB. Some emulsifying and suspending properties of the mucilage extracted from kernels of Irvingia gabonensis. Boll Chim Farm 2000; 139(5): 199-204.
[PMID: 11213437]
[48]
Anroop B, Bhatnagar SP, Ghosh B, Parcha V. Studies on Ocimum gratissimum seed mucilage: Evaluation of suspending properties. Indian J Pharm Sci 2006; 325(1-2): 191-3.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.030] [PMID: 16930887]
[49]
Bamiro O, Ajala T, Adenokun E. A new emulsifying agent: Cucumis sativus Linnaeus Mucilage. J Pharm Res Int 2017; 17(3): 1-9.
[http://dx.doi.org/10.9734/JPRI/2017/34465]
[50]
Malviya R, Sharma PK, Dubey SK. Antioxidant potential and emulsifying properties of Kheri (Acacia chundra, Mimosaceae) gum polysaccharide. Marmara Pharm J 2017; 21(3): 701-6.
[http://dx.doi.org/10.12991/marupj.323594]
[51]
Abdulrasool AA, Naseer AA, Rahi FA. Application of seed mucilage extracted from Lallemantia royleana as a suspending agent. Iraqi J Pharm Sci 2011; 20(1): 8-13.
[http://dx.doi.org/10.31351/vol20iss1pp8-13]
[52]
Kaleemullah M, Jiyauddin K, Thiban E, et al. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage. Saudi Pharm J 2017; 25(5): 770-9.
[http://dx.doi.org/10.1016/j.jsps.2016.10.006] [PMID: 28725150]
[53]
Chaudhary A, Kulkarni GT, Awasthi R, Kumar P. Investigation on binding properties of Grewia asiatica mucilage in tablet formula-tions. Marmara Pharm J 2016; 20(3): 353-66.
[http://dx.doi.org/10.12991/mpj.20162032588]
[54]
Raj V, Shim JJ, Lee J. Grafting modification of okra mucilage: Recent findings, applications, and future directions. Carbohydr Polym 2020; 246: 116653.
[http://dx.doi.org/10.1016/j.carbpol.2020.116653] [PMID: 32747285]
[55]
Patel DM, Prajapati DG, Patel NM. Seed mucilage from Ocimum americanum linn. as disintegrant in tablets: Separation and evalua-tion. Indian J Pharm Sci 2007; 69(3): 431.
[http://dx.doi.org/10.4103/0250-474X.34556]
[56]
Kolhe S, Kasar T, Dhole SN, Upadhye M. Extraction of mucilage and its comparative evaluation as a binder. Am J Adv Drug Deliv 2014; 2(3): 330-43.
[57]
Singh S, Bothara DSB, Singh S, Patel RD, Mahobia NK. Pharmaceutical characterization of Cassia tora of seed mucilage in tablet formulations. Sch Res Libr 2010; 2(5): 54-61.
[58]
Braghiroli FL, Bouafif H, Neculita CM, Koubaa A. Activated biochar as an effective sorbent for organic and inorganic contaminants in water. Water Air Soil Pollut 2018; 229(7): 230.
[http://dx.doi.org/10.1007/s11270-018-3889-8]
[59]
Hanjra MA, Blackwell J, Carr G, Zhang F, Jackson TM. Wastewater irrigation and environmental health: Implications for water governance and public policy. Int J Hyg Environ Health 2012; 215(3): 255-69.
[http://dx.doi.org/10.1016/j.ijheh.2011.10.003] [PMID: 22093903]
[60]
Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ Monit Assess 2019; 191(7): 419.
[http://dx.doi.org/10.1007/s10661-019-7528-7] [PMID: 31177337]
[61]
Jones BO, John OO, Luke C, Ochieng A, Bassey BJ. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions. J Environ Manage 2016; 177: 365-72.
[http://dx.doi.org/10.1016/j.jenvman.2016.04.011] [PMID: 27150318]
[62]
Fox DI, Pichler T, Yeh DH, Alcantar NA. Removing heavy metals in water: The interaction of cactus mucilage and arsenate (As (V)). Environ Sci Technol 2012; 46(8): 4553-9.
[http://dx.doi.org/10.1021/es2021999] [PMID: 22401577]
[63]
Anastasakis K, Kalderis D, Diamadopoulos E. Flocculation behavior of mallow and okra mucilage in treating wastewater. Desalination 2009; 249(2): 786-91.
[http://dx.doi.org/10.1016/j.desal.2008.09.013]
[64]
Bouatay F, Eljebsi N, Dridi-Dhaouadi S, Mhenni F. Valorization of the vicia faba mucilage on textile wastewater treatment as a bio-flocculant: Process development and optimization using response surface methodology (RSM). Water Sci Technol 2017; 75(3): 629-42.
[http://dx.doi.org/10.2166/wst.2016.480] [PMID: 28192357]
[65]
Lyons J, Devine D, Kennedy J, Geever L, Osullivan P, Higginbotham C. The use of Agar as a novel filler for monolithic matrices produced using hot melt extrusion. Eur J Pharm Biopharm 2006; 64(1): 75-81.
[http://dx.doi.org/10.1016/j.ejpb.2006.03.008] [PMID: 16697170]
[66]
Patel NM, Chauhan GM. Suspending properties of the mucilages of Lepidium sativum L. (Asario) and Ocimumcanum sims (Bavchi). East Pharm 1987; 30: 137-8.
[67]
Pontes UR. Determination of HLB of Anacardium gum. Rev Farm Bioquim 1971; 2: 83-91.
[68]
Zakaria M, Rahman ZA. Rheological properties of cashew gum. Carbohydr Polym 1996; 29(1): 25-7.
[http://dx.doi.org/10.1016/0144-8617(95)00132-8]
[69]
Pawar H. mello PM. Isolation of seed gum from Cassia tora and preliminary studies of its application as a binder for tablets. Indian Drugs 2004; 41: 465-8.
[70]
Gowthamarajan K, Kulkarni GT, Muthukumar A, Mahadevan N, Samantha MK, Suresh B. Evaluation of fenugreek mucilage as gel-ling agent. Int J Pharma Excip 2002; 3: 16-9.
[71]
Kulkarni GT, Gowthamarajan K, Rao BG, Suresh B. Evaluation of binding properties of plantago ovata and trigonella foenum graecum mucilages. Indian drugs 2002; 39(8): 422-5.
[72]
Jarald E, Sheeja E, Shweta D, Raj A, Smita G. Application of hibiscus leaves mucilage as suspending agent. Indian J Pharm Educ Res 2007; 41(4): 373-5.
[73]
Jani GK, Shah DP. Evaluation of mucilage of Hibiscus rosasinensis Linn as rate controlling matrix for sustained release of diclofenac. Drug Dev Ind Pharm 2008; 34(8): 807-16.
[http://dx.doi.org/10.1080/03639040801925768] [PMID: 18686091]
[74]
Jani GK, Shah DP. Assessing Hibiscus rosa-sinensis L. as an excipient in sustained-release tablets. Pharm Technol 2008; 32(1): 62-70.
[75]
Prajapati ST, Prajapati VD, Acharya SR, Patel CN. Characterization of disintegration properties of Plantago ovata mucilage in the formulation of dispersible tablets. Indian J Pharm Educ Res 2006; 40(3): 208-11.
[76]
Srinivas K, Prakash K, Kiran HR, Prasad PM, Rao MEB. Study of Ocimum basilicum and Plantago ovata as disintegrants in the for-mulation of dispersible tablets. Indian J Pharm Sci 2003; 65(2): 180-3.
[77]
Mithal BM, Kasid JL. Evaluation of the suspending properties of Plantago ovata (Ispaghula) seed husk. Indian J Pharm Sci 1965; 27(1): 331-5.
[78]
Mithal BM, Kasid JL. Evaluation of emulsifying properties of Plantago ovata (Ispaghula) seed husk. Indian J Pharm Sci 1964; 26: 316-9.
[79]
Shidhaye S, Kadam VJ, Desai A. Possible use of psyllium husk as a release retardant. Indian J Pharm Sci 2007; 69(2): 206-10.
[http://dx.doi.org/10.4103/0250-474X.33144]
[80]
Mukherjee B, Dinda SC, Barik BB. Gum cordia: A novel matrix forming material for enteric resistant and sustained drug delivery--a technical note. AAPS PharmSciTech 2008; 9(1): 330-3.
[http://dx.doi.org/10.1208/s12249-008-9051-y] [PMID: 18446499]
[81]
Cardenas A, Higuera-Ciapara I, Goycoolea FM. Rheology and aggregation of (Opuntia ficus-indica) mucilage in solution. J Prof Assoc Cactus Dev 1997; 2: 152-9.
[82]
Alur HH, Pather SI, Mitra AK, Johnston TP. Evaluation of the gum from Hakea gibbosa as a sustained-release and mucoadhesive component in buccal tablets. Pharm Dev Technol 1999; 4(3): 347-58.
[http://dx.doi.org/10.1081/PDT-100101370] [PMID: 10434280]
[83]
Mu X, Tobyn MJ, Staniforth JN. Influence of physiological variables on the in vitro drug-release behavior of a polysaccharide matrix controlled-release system. Drug Dev Ind Pharm 2003; 29(1): 19-29.
[http://dx.doi.org/10.1081/DDC-120016680] [PMID: 12602489]
[84]
Wahi SP, Sharma VD, Jain VK, Sinha P. Studies on suspending property of mucilages of Hygrophila spinosa T anders and Hibiscus esculentus L. Indian Drug 1985; 22(9): 500-2.
[85]
Kalu VD, Odeniyi MA, Jaiyeoba KT. Matrix properties of a new plant gum in controlled drug delivery. Arch Pharm Res 2007; 30(7): 884-9.
[http://dx.doi.org/10.1007/BF02978841] [PMID: 17703742]
[86]
Kulkarni GT, Gowthamarajan K, Dhobe RR, Yohanan F, Suresh B. Development of controlled release spheroids using natural poly-saccharide as release modifier. Drug Deliv 2005; 12(4): 201-6.
[http://dx.doi.org/10.1080/10717540590952537] [PMID: 16036714]
[87]
Datta R, Bandyopadhyaya AK. A new nasal drug delivery system for Diazepam using natural Mucoadhesive polysaccharide obtained from tamarind seeds. Saudi Pharm J 2006; 14(2): 115-9. [Internet].
[88]
Sriamornsak P. Investigation of pectin as a carrier for oral delivery of proteins using calcium pectinate gel beads. Int J Pharm 1998; 169(2): 213-20.
[http://dx.doi.org/10.1016/S0378-5173(98)00129-X]
[89]
Sriamornsak P, Sungthongjeen S, Puttipipatkhachorn S. Use of pectin as a carrier for intragastric floating drug delivery: Carbonate salt contained beads. Carbohydr Polym 2007; 67(3): 436-45.
[http://dx.doi.org/10.1016/j.carbpol.2006.06.013]
[90]
Tho I, Sande SA, Kleinebudde P. Pectinic acid, a novel excipient for production of pellets by extrusion/spheronisation: Preliminary studies. Eur J Pharm Biopharm 2002; 54(1): 95-9.
[http://dx.doi.org/10.1016/S0939-6411(02)00048-6] [PMID: 12084508]
[91]
Giunchedi P, Conte U, Chetoni P, Saettone MF. Pectin microspheres as ophthalmic carriers for piroxicam: Evaluation in vitro and in vivo in albino rabbits. Eur J Pharm Sci 1999; 9(1): 1-7.
[http://dx.doi.org/10.1016/S0928-0987(99)00023-8] [PMID: 10493990]
[92]
Musabayane CT, Munjeri O, Matavire TP. Transdermal delivery of chloroquine by amidated pectin hydrogel matrix patch in the rat. Ren Fail 2003; 25(4): 525-34.
[http://dx.doi.org/10.1081/JDI-120022543] [PMID: 12911156]
[93]
Cheng K, Lim LY. Insulin-loaded calcium pectinate nanoparticles: Effects of pectin molecular weight and formulation pH. Drug Dev Ind Pharm 2004; 30(4): 359-67.
[http://dx.doi.org/10.1081/DDC-120030930] [PMID: 15132178]
[94]
Vandamme T, Lenourry A, Charrueau C, Chaumeil JC. The use of polysaccharides to target drugs to the colon. Carbohydr Polym 2002; 48(3): 219-31.
[http://dx.doi.org/10.1016/S0144-8617(01)00263-6]
[95]
Sungthongjeen S, Pitaksuteepong T, Somsiri A, Sriamornsak P. Studies on pectins as potential hydrogel matrices for controlled-release drug delivery. Drug Dev Ind Pharm 1999; 25(12): 1271-6.
[http://dx.doi.org/10.1081/DDC-100102298] [PMID: 10612023]
[96]
Odeku OA, Itiola OA. Evaluation of the effects of khaya gum on the mechanical and release properties of paracetamol tablets. Drug Dev Ind Pharm 2003; 29(3): 311-20.
[http://dx.doi.org/10.1081/DDC-120018205] [PMID: 12741612]
[97]
Bansal K, Bajpai M. Formulation and evaluation of Phanera variegata L. Mucilage as a pharmaceutical binder in solid dosage form. Indian J Pharm Educ Res 2020; 54(4): 971-82.
[http://dx.doi.org/10.5530/ijper.54.4.191]
[98]
Verma PRP, Razdan B. Evaluation of Leucaena leucocephala seed gum as suspending agent in sulphadimidine suspensions. Indian J Pharm Sci 2003; 65(6): 665.
[99]
Verma PRP, Razdan B. Studies on Leucaena leucocephala seed gum: Emulsifying properties. J Sci Ind Res 2003; 62(3): 198-206.
[100]
Verma PRP, Razdan B. Evaluation of Leucæna leucocephala seed gum in tabletting. II. Binding properties in granules and tablets. STP pharma Sci 2002; 12(2): 113-9.
[101]
Verma PRP, Razdan B. Studies on Leucaena leucocephala seed gum: Evaluation of suspending properties. STP pharma Sci 2001; 11(4): 289-93.
[102]
Verma PRP, Razdan B. Evaluation of Leucaena leucocephala seed gum in tabletting. I. Disintegrant properties. STP pharma Sci 2002; 12(2): 109-2.
[103]
Anroop B, Ghosh B, Parcha V, Vasanti S. Studies on Ocimum gratissimum seed mucilage: Evaluation of binding properties. Int J Pharm 2006; 325(1-2): 191-3.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.030] [PMID: 16930887]
[104]
Antony PJ, Sanghavi NM. A new disintegrant for pharmaceutical dosage forms. Drug Dev Ind Pharm 1997; 23(4): 413-5.
[http://dx.doi.org/10.3109/03639049709146146]
[105]
Agnihotri SA, Jawalkar SS, Aminabhavi TM. Controlled release of cephalexin through gellan gum beads: Effect of formulation param-eters on entrapment efficiency, size, and drug release. Eur J Pharm Biopharm 2006; 63(3): 249-61.
[http://dx.doi.org/10.1016/j.ejpb.2005.12.008] [PMID: 16621483]
[106]
Park CR, Munday DL. Evaluation of selected polysaccharide excipients in buccoadhesive tablets for sustained release of nicotine. Drug Dev Ind Pharm 2004; 30(6): 609-17.
[http://dx.doi.org/10.1081/DDC-120037492] [PMID: 15285334]
[107]
Nayak BS, Nayak UK, Patro KB, et al. Design and evaluation of controlled release Bhara gum microcapsules of famotidine for oral use. Res J Pharm Tech 2008; 1: 433-7.
[108]
Soto-Cerda B, Cloutier S, Quian R, Gajardo H, Olivos M, You F. Genome-wide association analysis of mucilage and hull content in flax (Linum usitatissimum L.) seeds. Int J Mol Sci 2018; 19(10): 2870.
[http://dx.doi.org/10.3390/ijms19102870] [PMID: 30248911]
[109]
Orrego D, Zapata-Zapata A, Kim D. Optimization and scale-up of coffee mucilage fermentation for ethanol production. Energies 2018; 11(4): 786.
[http://dx.doi.org/10.3390/en11040786]
[110]
Añibarro-Ortega M, Pinela J, Barros L, et al. Compositional features and bioactive properties of aloe vera leaf (Fillet, mucilage, and rind) and flower. Antioxidants 2019; 8(10): 444.
[http://dx.doi.org/10.3390/antiox8100444] [PMID: 31581507]
[111]
Allegra A, Sortino G, Inglese P, Settanni L, Todaro A, Gallotta A. The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig (Ficus carica L.) fruit. Food Packag Shelf Life 2017; 12: 135-41.
[http://dx.doi.org/10.1016/j.fpsl.2017.04.010]
[112]
El-Sheikh DM. Rheological characteristics of Arabic Gum suspension and Plantago seeds mucilage. J Am Sci 2014; 10(11): 18-24.
[113]
Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine 2010; 6(2): 257-62.
[http://dx.doi.org/10.1016/j.nano.2009.07.002]
[114]
Fierascu I, Fierascu IC, Brazdis RI, Baroi AM, Fistos T, Fierascu RC. Phytosynthesized metallic nanoparticles—between nanomedi-cine and toxicology. A brief review of 2019′s findings. Materials 2020; 13(3): 574.
[http://dx.doi.org/10.3390/ma13030574] [PMID: 31991830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy