Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Repurposing some of the Well-known Non-steroid Anti-inflammatory Drugs (NSAIDs) for Cancer Treatment

Author(s): Sofia Martins Sousa, Cristina Pinto Ribeiro Xavier, Maria Helena Vasconcelos* and Andreia Palmeira*

Volume 23, Issue 13, 2023

Published on: 20 March, 2023

Page: [1171 - 1195] Pages: 25

DOI: 10.2174/1568026623666230130150029

Price: $65

Abstract

Drug repurposing is a strategy used to develop new treatments based on approved or investigational drugs outside the scope of their original clinical indication. Since this approach benefits from the original toxicity data of the repurposed drugs, the drug-repurposing strategy is timesaving, and inexpensive. It has a higher success rate compared to traditional drug discovery. Several repurposing candidates have been identified in silico screening and in vitro methodologies. One of the best examples is non-steroidal anti-inflammatory drugs (NSAIDs). Tumor-promoting inflammation is one of the hallmarks of cancer, revealing a connection between inflammatory processes and tumor progression and development. This explains why using NSAIDs in the context of neoplasia has become a topic of interest. Indeed, identifying NSAIDs with antitumor activity has become a promising strategy for finding novel cancer treatment opportunities. Indeed, several commercial anti-inflammatory drugs, including aspirin, ibuprofen, diclofenac, celecoxib, tepoxalin and cyclovalone, naproxen, and indomethacin have presented antitumor activity, and some of them are already in clinical trials for cancer treatment. However, the benefits and complications of using NSAIDs for cancer treatment must be carefully evaluated, particularly for cancer patients with no further therapeutic options available. This review article provides insight into the drug repurposing strategy and describes some of the well-known NSAIDs that have been investigated as repurposed drugs with potential anticancer activity.

Graphical Abstract

[1]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[2]
Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol., 2014, 32(1), 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[3]
Gil, C.; Martinez, A. Is drug repurposing really the future of drug discovery or is new innovation truly the way forward? Expert Opin. Drug Discov., 2021, 16(8), 829-831.
[http://dx.doi.org/10.1080/17460441.2021.1912733] [PMID: 33834929]
[4]
Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Phar. Pharmacol., 2020, 72(9), 1145-1151.
[http://dx.doi.org/10.1111/jphp.13273] [PMID: 32301512]
[5]
Langedijk, J.; Mantel-Teeuwisse, A.K.; Slijkerman, D.S.; Schutjens, M.H.D.B. Drug repositioning and repurposing: Terminology and definitions in literature. Drug Discov. Today, 2015, 20(8), 1027-1034.
[http://dx.doi.org/10.1016/j.drudis.2015.05.001] [PMID: 25975957]
[6]
Allarakhia, M. Open-source approaches for the repurposing of existing or failed candidate drugs: Learning from and applying the lessons across diseases. Drug Des. Devel. Ther., 2013, 7, 753-766.
[http://dx.doi.org/10.2147/DDDT.S46289] [PMID: 23966771]
[7]
Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol., 2019, 4(4), 565-577.
[http://dx.doi.org/10.1038/s41564-019-0357-1] [PMID: 30833727]
[8]
Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; Asiedu, J.; Narayan, R.; Mader, C.C.; Subramanian, A.; Golub, T.R. The drug repurposing hub: A next-generation drug library and information resource. Nat. Med., 2017, 23(4), 405-408.
[http://dx.doi.org/10.1038/nm.4306] [PMID: 28388612]
[9]
Palmeira, A.; Sousa, E.; Köseler, A.; Sabirli, R.; Gören, T.; Türkçüer, İ.; Kurt, Ö.; Pinto, M.M.; Vasconcelos, M.H. Preliminary virtual screening studies to identify GRP78 inhibitors which may interfere with SARS-CoV-2 Infection. Pharmaceuticals (Basel), 2020, 13(6), 132.
[http://dx.doi.org/10.3390/ph13060132] [PMID: 32630514]
[10]
Rebelo, R.; Polónia, B.; Santos, L.L.; Vasconcelos, M.H.; Xavier, C.P.R. Drug repurposing opportunities in pancreatic ductal adenocarcinoma. Pharmaceuticals (Basel), 2021, 14(3), 280.
[http://dx.doi.org/10.3390/ph14030280] [PMID: 33804613]
[11]
Branco, H.; Oliveira, J.; Antunes, C.; Santos, L.L.; Vasconcelos, M.H.; Xavier, C.P.R. Pirfenidone sensitizes NCI-H460 non-small cell lung cancer cells to paclitaxel and to a combination of paclitaxel with carboplatin. Int. J. Mol. Sci., 2022, 23(7), 3631.
[http://dx.doi.org/10.3390/ijms23073631] [PMID: 35408988]
[12]
Palmeira, A.; Rodrigues, F.; Sousa, E.; Pinto, M.; Vasconcelos, M.H.; Fernandes, M.X. New uses for old drugs: Pharmacophore-based screening for the discovery of P-glycoprotein inhibitors. Chem. Biol. Drug Des., 2011, 78(1), 57-72.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01089.x] [PMID: 21235729]
[13]
Moreira-Silva, F.; Camilo, V.; Gaspar, V.; Mano, J.F.; Henrique, R.; Jerónimo, C. Repurposing old drugs into new epigenetic inhibitors: Promising candidates for cancer treatment? Pharmaceutics, 2020, 12(5), 410.
[http://dx.doi.org/10.3390/pharmaceutics12050410] [PMID: 32365701]
[14]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[15]
Gns, HS; Gr, S; Murahari, M; Krishnamurthy, M An update on drug repurposing: Re-written saga of the drug's fate. Biomed. Pharmacother., 2019, 110, 700-716.
[http://dx.doi.org/10.1016/j.biopha.2018.11.127] [PMID: 30553197]
[16]
Newman, S.P. Delivering drugs to the lungs: The history of repurposing in the treatment of respiratory diseases. Adv. Drug Deliv. Rev., 2018, 133, 5-18.
[http://dx.doi.org/10.1016/j.addr.2018.04.010] [PMID: 29653129]
[17]
Dinić, J.; Efferth, T.; García-Sosa, A.T.; Grahovac, J.; Padrón, J.M.; Pajeva, I.; Rizzolio, F.; Saponara, S.; Spengler, G.; Tsakovska, I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist. Updat., 2020, 52, 100713.
[http://dx.doi.org/10.1016/j.drup.2020.100713] [PMID: 32615525]
[18]
Asker-Hagelberg, C.; Boran, T.; Bouygues, C.; Eskola, S.M.; Helmle, L.; Hernández, C.; Houýez, F.; Lee, H.; Lingri, D.D.; Louette, L.; Meheus, L.; Penninckx, W.; Stepniewska, B. Repurposing of medicines in the eu: Launch of a pilot framework. Front. Med., 2022, 8, 817663.
[http://dx.doi.org/10.3389/fmed.2021.817663] [PMID: 35083258]
[19]
Masuda, T.; Tsuruda, Y.; Matsumoto, Y.; Uchida, H.; Nakayama, K.I.; Mimori, K. Drug repositioning in cancer: The current situation in Japan. Cancer Sci., 2020, 111(4), 1039-1046.
[http://dx.doi.org/10.1111/cas.14318] [PMID: 31957175]
[20]
Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci., 2018, 14(10), 1232-1244.
[http://dx.doi.org/10.7150/ijbs.24612] [PMID: 30123072]
[21]
Pantziarka, P.; Vandeborne, L.; Bouche, G. A database of drug repurposing clinical trials in oncology. Front. Pharmacol., 2021, 12, 790952.
[http://dx.doi.org/10.3389/fphar.2021.790952] [PMID: 34867425]
[22]
Kato, S.; Moulder, S.L.; Ueno, N.T.; Wheler, J.J.; Meric-Bernstam, F.; Kurzrock, R.; Janku, F. Challenges and perspective of drug repurposing strategies in early phase clinical trials. Oncoscience, 2015, 2(6), 576-580.
[http://dx.doi.org/10.18632/oncoscience.173] [PMID: 26244164]
[23]
Naveja, J.J.; Dueñas-González, A.; Medina-Franco, J.L. Drug repurposing for epigenetic targets guided by computational methods. In: Epi-Informatics; Medina-Franco, J.L., Ed.; Academic Press: Boston, 2016; pp. 327-357.
[http://dx.doi.org/10.1016/B978-0-12-802808-7.00012-5]
[24]
Ayyar, P.; Subramanian, U. Repurposing - second life for drugs. Pharmacia, 2022, 69(1), 51-59.
[http://dx.doi.org/10.3897/pharmacia.69.e72548]
[25]
Witkowski, T.X. Intellectual property and other legal aspects of drug repurposing. Drug Discov. Today Ther. Strateg., 2011, 8(3-4), 139-143.
[http://dx.doi.org/10.1016/j.ddstr.2011.06.007]
[26]
Cavalla, D. Scientific and commercial value of drug repurposing. In: Drug Repositioning, 1st ed; CRC Press: Florida, USA, 2017; pp. 3-22.
[http://dx.doi.org/10.4324/9781315373669-1]
[27]
Breckenridge, A.; Jacob, R. Overcoming the legal and regulatory barriers to drug repurposing. Nat. Rev. Drug Discov., 2019, 18(1), 1-2.
[http://dx.doi.org/10.1038/nrd.2018.92] [PMID: 29880920]
[28]
Boyer, A; Pasquier, E; Tomasini, P; Ciccolini, J; Greillier, L; Andre, N Drug repurposing in malignant pleural mesothelioma: A breath of fresh air? Eur. Respir. Rev., 2018, 27(147), 170098.
[http://dx.doi.org/10.1183/16000617.0098-2017]
[29]
Ahmed, K.; Shaw, H.; Koval, A.; Katanaev, V. A second wnt for old drugs: Drug repositioning against wnt-dependent cancers. Cancers, 2016, 8(7), 66.
[http://dx.doi.org/10.3390/cancers8070066] [PMID: 27429001]
[30]
Plenge, R.M.; Scolnick, E.M.; Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov., 2013, 12(8), 581-594.
[http://dx.doi.org/10.1038/nrd4051] [PMID: 23868113]
[31]
Liu, Z.; Fang, H.; Reagan, K.; Xu, X.; Mendrick, D.L.; Slikker, W., Jr; Tong, W. In Silico Drug Repositioning – What We Need To Know. Drug Discov. Today, 2013, 18(3-4), 110-115.
[http://dx.doi.org/10.1016/j.drudis.2012.08.005] [PMID: 22935104]
[32]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[33]
Dhir, N.; Jain, A.; Mahendru, D.; Prakash, A.; Medhi, B. Drug repurposing and orphan disease therapeutics. Intechopen, 2020.
[http://dx.doi.org/10.5772/intechopen.91941]
[34]
Pantziarka, P.; Sukhatme, V.; Meheus, L.; Sukhatme, V.; Bouche, G. Repurposing non-cancer drugs in oncology - how many drugs are out there? bioRxiv, 2017.
[http://dx.doi.org/10.1101/197434]
[35]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[36]
Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 113.
[http://dx.doi.org/10.1038/s41392-020-00213-8] [PMID: 32616710]
[37]
Yang, H.T.; Ju, J.H.; Wong, Y.T.; Shmulevich, I.; Chiang, J.H. Literature-based discovery of new candidates for drug repurposing. Brief. Bioinform., 2017, 18(3), 488-497.
[PMID: 27113728]
[38]
Bellera, C.L.; Di Ianni, M.E.; Sbaraglini, M.L.; Castro, E.A.; Bruno-Blanch, L.E.; Talevi, A. Knowledge-based drug repurposing: A rational approach towards the identification of novel medical applications of known drugs. In: Frontiers in Computational Chemistry; Ul-Haq, Z.; Madura, J.D., Eds.; Bentham Science Publishers: Sharja, UAE, 2015; pp. 44-81.
[http://dx.doi.org/10.2174/9781608058648115010004]
[39]
Nowak-Sliwinska, P.; Scapozza, L.; Ruiz i Altaba, A. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 434-454.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.005] [PMID: 31034926]
[40]
Orecchioni, S.; Roma, S.; Raimondi, S.; Gandini, S.; Bertolini, F. Identifying drug repurposing opportunities in oncology. Cancer J., 2019, 25(2), 82-87.
[http://dx.doi.org/10.1097/PPO.0000000000000360] [PMID: 30896529]
[41]
Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology—patient and health systems opportunities. Nat. Rev. Clin. Oncol., 2015, 12(12), 732-742.
[http://dx.doi.org/10.1038/nrclinonc.2015.169] [PMID: 26483297]
[42]
Hodos, R.A.; Kidd, B.A.; Shameer, K.; Readhead, B.P.; Dudley, J.T. in silico methods for drug repurposing and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 186-210.
[http://dx.doi.org/10.1002/wsbm.1337] [PMID: 27080087]
[43]
March-Vila, E; Pinzi, L; Sturm, N; Tinivella, A; Engkvist, O; Chen, H On the integration of in silico drug design methods for drug repurposing. Front. Pharmacol., 2017, 8(298), 1-7.
[http://dx.doi.org/10.3389/fphar.2017.00298]
[44]
Adasme, M.F.; Parisi, D.; Sveshnikova, A.; Schroeder, M. Structure-based drug repositioning: Potential and limits. Semin. Cancer Biol., 2020, 68, 192-198.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.010] [PMID: 32032699]
[45]
Vidal, D.; Garcia-Serna, R.; Mestres, J. Ligand-based approaches to in silico pharmacology. Methods Mol. Biol., 2011, 672, 489-502.
[http://dx.doi.org/10.1007/978-1-60761-839-3_19] [PMID: 20838981]
[46]
Pinto, MMM. Manual de trabalhos laboratoriais de química orgânica e farmacêutica. Portugal, LIDEL, 2011. ISBN: 978-972-757-750-7.
[47]
Wilkinson, G.F.; Pritchard, K. In vitro screening for drug repositioning. SLAS Discov., 2015, 20(2), 167-179.
[http://dx.doi.org/10.1177/1087057114563024] [PMID: 25527136]
[48]
Deshpande, A.; Reddy, M.M.; Schade, G.O.M.; Ray, A.; Chowdary, T.K.; Griffin, J.D.; Sattler, M. Kinase domain mutations confer resistance to novel inhibitors targeting JAK2V617F in myeloproliferative neoplasms. Leukemia, 2012, 26(4), 708-715.
[http://dx.doi.org/10.1038/leu.2011.255] [PMID: 21926964]
[49]
Corsello, S.M.; Nagari, R.T.; Spangler, R.D.; Rossen, J.; Kocak, M.; Bryan, J.G.; Humeidi, R.; Peck, D.; Wu, X.; Tang, A.A.; Wang, V.M.; Bender, S.A.; Lemire, E.; Narayan, R.; Montgomery, P.; Ben-David, U.; Garvie, C.W.; Chen, Y.; Rees, M.G.; Lyons, N.J.; McFarland, J.M.; Wong, B.T.; Wang, L.; Dumont, N.; O’Hearn, P.J.; Stefan, E.; Doench, J.G.; Harrington, C.N.; Greulich, H.; Meyerson, M.; Vazquez, F.; Subramanian, A.; Roth, J.A.; Bittker, J.A.; Boehm, J.S.; Mader, C.C.; Tsherniak, A.; Golub, T.R. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer, 2020, 1(2), 235-248.
[http://dx.doi.org/10.1038/s43018-019-0018-6] [PMID: 32613204]
[50]
Sleire, L.; Førde, H.E.; Netland, I.A.; Leiss, L.; Skeie, B.S.; Enger, P.Ø. Drug repurposing in cancer. Pharmacol. Res., 2017, 124, 74-91.
[http://dx.doi.org/10.1016/j.phrs.2017.07.013] [PMID: 28712971]
[51]
Pantziarka, P.; Verbaanderd, C.; Sukhatme, V.; Capistrano, R.; Crispino, S.; Gyawali, B.; Rooman, I.; Van Nuffel, A.M.T.; Meheus, L.; Sukhatme, V.P.; Bouche, G. ReDO_DB: The repurposing drugs in oncology database. Ecancermedicalscience, 2018, 12, 886.
[http://dx.doi.org/10.3332/ecancer.2018.886] [PMID: 30679953]
[52]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P.; Vikas, P. The repurposing drugs in oncology (ReDO) project. Ecancermedicalscience, 2014, 8, 442.
[http://dx.doi.org/10.3332/ecancer.2014.485] [PMID: 25075216]
[53]
Oprea, T.I.; Bauman, J.E.; Bologa, C.G.; Buranda, T.; Chigaev, A.; Edwards, B.S.; Jarvik, J.W.; Gresham, H.D.; Haynes, M.K.; Hjelle, B.; Hromas, R.; Hudson, L.; Mackenzie, D.A.; Muller, C.Y.; Reed, J.C.; Simons, P.C.; Smagley, Y.; Strouse, J.; Surviladze, Z.; Thompson, T.; Ursu, O.; Waller, A.; Wandinger-Ness, A.; Winter, S.S.; Wu, Y.; Young, S.M.; Larson, R.S.; Willman, C.; Sklar, L.A. Drug repurposing from an academic perspective. Drug Discov. Today Ther. Strateg., 2011, 8(3-4), 61-69.
[http://dx.doi.org/10.1016/j.ddstr.2011.10.002] [PMID: 22368688]
[54]
Würth, R.; Thellung, S.; Bajetto, A.; Mazzanti, M.; Florio, T.; Barbieri, F. Drug-repositioning opportunities for cancer therapy: Novel molecular targets for known compounds. Drug Discov. Today, 2016, 21(1), 190-199.
[http://dx.doi.org/10.1016/j.drudis.2015.09.017] [PMID: 26456577]
[55]
Pantziarka, P.; Verbaanderd, C.; Huys, I.; Bouche, G.; Meheus, L. Repurposing drugs in oncology: From candidate selection to clini-cal adoption. Semin. Cancer Biol., 2020, 68, 186-191.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.008] [PMID: 31982510]
[56]
Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov., 2022, 12(1), 31-46.
[http://dx.doi.org/10.1158/2159-8290.CD-21-1059] [PMID: 35022204]
[57]
Piotrowski, I.; Kulcenty, K.; Suchorska, W. Interplay between inflammation and cancer. Rep. Pract. Oncol. Radiother., 2020, 25(3), 422-427.
[http://dx.doi.org/10.1016/j.rpor.2020.04.004] [PMID: 32372882]
[58]
Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol., 2020, 180, 114147.
[http://dx.doi.org/10.1016/j.bcp.2020.114147] [PMID: 32653589]
[59]
Vane, J.R.; Botting, R.M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med., 1998, 104(3), 2S-8S.
[http://dx.doi.org/10.1016/S0002-9343(97)00203-9] [PMID: 9572314]
[60]
Vane, J.R.; Botting, R.M. Anti-inflammatory drugs and their mechanism of action. Inflamm. Res., 1998, 47(S2), 78-87.
[http://dx.doi.org/10.1007/s000110050284] [PMID: 9831328]
[61]
Rao, P.; Knaus, E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (cox) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11, 81s-110s.
[http://dx.doi.org/10.18433/j3t886] [PMID: 19203472]
[62]
Kaduševičius, E. Novel applications of NSAIDs: Insight and future perspectives in cardiovascular, neurodegenerative, diabetes and cancer disease therapy. Int. J. Mol. Sci., 2021, 22(12), 6637.
[http://dx.doi.org/10.3390/ijms22126637] [PMID: 34205719]
[63]
Day, R.O.; Graham, G.G.; Williams, K.M. Pharmacokinetics of non-steroidal anti-inflammatory drugs. Baillieres Clin. Rheumatol., 1988, 2(2), 363-393.
[http://dx.doi.org/10.1016/S0950-3579(88)80019-0] [PMID: 3066499]
[64]
Bacchi, S.; Palumbo, P.; Sponta, A.; Coppolino, M.F. Clinical pharmacology of non-steroidal anti-inflammatory drugs: A review. Antiinflamm. Antiallergy Agents Med. Chem., 2012, 11(1), 52-64.
[http://dx.doi.org/10.2174/187152312803476255] [PMID: 22934743]
[65]
Cha, Y.I.; DuBois, R.N. NSAIDs and cancer prevention: Targets downstream of COX-2. Annu. Rev. Med., 2007, 58(1), 239-252.
[http://dx.doi.org/10.1146/annurev.med.57.121304.131253] [PMID: 17100552]
[66]
Kolawole, O.R.; Kashfi, K. NSAIDs and cancer resolution: New paradigms beyond cyclooxygenase. Int. J. Mol. Sci., 2022, 23(3), 1432.
[http://dx.doi.org/10.3390/ijms23031432] [PMID: 35163356]
[67]
Kashfi, K.; Rigas, B. Non-COX-2 targets and cancer: Expanding the molecular target repertoire of chemoprevention. Biochem. Pharmacol., 2005, 70(7), 969-986.
[http://dx.doi.org/10.1016/j.bcp.2005.05.004] [PMID: 15949789]
[68]
Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci., 2020, 21(7), 2605.
[http://dx.doi.org/10.3390/ijms21072605] [PMID: 32283655]
[69]
Ramos-Inza, S.; Ruberte, A.C.; Sanmartín, C.; Sharma, A.K.; Plano, D. NSAIDs: Old acquaintance in the pipeline for cancer treatment and prevention-structural modulation, mechanisms of action, and bright future. J. Med. Chem., 2021, 64(22), 16380-16421.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01460] [PMID: 34784195]
[70]
Okamoto, K.; Saito, Y.; Narumi, K.; Furugen, A.; Iseki, K.; Kobayashi, M. Anticancer effects of non-steroidal anti-inflammatory drugs against cancer cells and cancer stem cells. Toxicol. In Vitro, 2021, 74, 105155.
[http://dx.doi.org/10.1016/j.tiv.2021.105155] [PMID: 33785417]
[71]
Fu, X.; Tan, T.; Liu, P. Regulation of autophagy by non-steroidal anti-inflammatory drugs in cancer. Cancer Manag. Res., 2020, 12, 4595-4604.
[http://dx.doi.org/10.2147/CMAR.S253345] [PMID: 32606952]
[72]
Sankaranarayanan, R.; Valiveti, C.K.; Dachineni, R.; Kumar, D.R.; Lick, T.; Bhat, G.J. Aspirin metabolites 2,3-DHBA and 2,5-DHBA inhibit cancer cell growth: Implications in colorectal cancer prevention. Mol. Med. Rep., 2020, 21(1), 20-34.
[PMID: 31746356]
[73]
Dachineni, R.; Kumar, D.R.; Callegari, E.; Kesharwani, S.S.; Sankaranarayanan, R.; Seefeldt, T.; Tummala, H.; Bhat, G.J. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin’s chemopreventive effects against colorectal cancer. Int. J. Oncol., 2017, 51(6), 1661-1673.
[http://dx.doi.org/10.3892/ijo.2017.4167] [PMID: 29075787]
[74]
Dachineni, R.; Ai, G.; Kumar, D.R.; Sadhu, S.S.; Tummala, H.; Bhat, G.J. Cyclin A2 and CDK2 as novel targets of aspirin and salicylic acid: A potential role in cancer prevention. Mol. Cancer Res., 2016, 14(3), 241-252.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0360] [PMID: 26685215]
[75]
Dai, X.; Yan, J.; Fu, X.; Pan, Q.; Sun, D.; Xu, Y.; Wang, J.; Nie, L.; Tong, L.; Shen, A.; Zheng, M.; Huang, M.; Tan, M.; Liu, H.; Huang, X.; Ding, J.; Geng, M. Aspirin inhibits cancer metastasis and angiogenesis via targeting heparanase. Clin. Cancer Res., 2017, 23(20), 6267-6278.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0242] [PMID: 28710312]
[76]
Dai, S.X.; Li, W.X.; Li, G.H.; Huang, J.F. Proteome-wide prediction of targets for aspirin: New insight into the molecular mechanism of aspirin. PeerJ, 2016, 4, e1791.
[http://dx.doi.org/10.7717/peerj.1791] [PMID: 26989626]
[77]
Amaral, M.E.A.; Nery, L.R.; Leite, C.E.; de Azevedo, Junior, W.F.; Campos, M.M. Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Invest. New Drugs, 2018, 36(5), 782-796.
[http://dx.doi.org/10.1007/s10637-018-0568-y] [PMID: 29392539]
[78]
Istyastono, E.P.; Riswanto, F.D.O.; Yuliani, S.H. Computer-aided drug repurposing: A cyclooxygenase-2 inhibitor celecoxib as a ligand for estrogen receptor alpha. Indonesian J. Chem., 2015, 15(3), 7, 274-280.
[http://dx.doi.org/10.22146/ijc.21196]
[79]
Pandey, S.K.; Yadav, S.; Goel, Y.; Temre, M.K.; Singh, V.K.; Singh, S.M. Molecular docking of anti-inflammatory drug diclofenac with metabolic targets: Potential applications in cancer therapeutics. J. Theor. Biol., 2019, 465, 117-125.
[http://dx.doi.org/10.1016/j.jtbi.2019.01.020] [PMID: 30653975]
[80]
Nagaraj, A.B.; Wang, Q.Q.; Joseph, P.; Zheng, C.; Chen, Y.; Kovalenko, O.; Singh, S.; Armstrong, A.; Resnick, K.; Zanotti, K.; Waggoner, S.; Xu, R.; DiFeo, A. Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Oncogene, 2018, 37(3), 403-414.
[http://dx.doi.org/10.1038/onc.2017.328] [PMID: 28967908]
[81]
Lin, C.C.; Suen, K.M.; Stainthorp, A.; Wieteska, L.; Biggs, G.S.; Leitão, A.; Montanari, C.A.; Ladbury, J.E. Targeting the Shc-EGFR interaction with indomethacin inhibits MAP kinase pathway signalling. Cancer Lett., 2019, 457, 86-97.
[http://dx.doi.org/10.1016/j.canlet.2019.05.008] [PMID: 31100409]
[82]
Kim, M.S.; Kim, J.E.; Lim, D.Y.; Huang, Z.; Chen, H.; Langfald, A.; Lubet, R.A.; Grubbs, C.J.; Dong, Z.; Bode, A.M. Naproxen induces cell-cycle arrest and apoptosis in human urinary bladder cancer cell lines and chemically induced cancers by targeting PI3K. Cancer Prev. Res., 2014, 7(2), 236-245.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0288] [PMID: 24327721]
[83]
Dilwali, S.; Kao, S.Y.; Fujita, T.; Landegger, L.D.; Stankovic, K.M. Nonsteroidal anti-inflammatory medications are cytostatic against human vestibular schwannomas. Transl. Res., 2015, 166(1), 1-11.
[http://dx.doi.org/10.1016/j.trsl.2014.12.007] [PMID: 25616959]
[84]
Bhardwaj, A.; Singh, H.; Trinidad, C.M.; Albarracin, C.T.; Hunt, K.K.; Bedrosian, I. The isomiR-140-3p-regulated mevalonic acid pathway as a potential target for prevention of triple negative breast cancer. Breast Cancer Res., 2018, 20(1), 150.
[http://dx.doi.org/10.1186/s13058-018-1074-z] [PMID: 30537987]
[85]
Montinari, M.R.; Minelli, S.; De Caterina, R. The first 3500 years of aspirin history from its roots – A concise summary. Vascul. Pharmacol., 2019, 113, 1-8.
[http://dx.doi.org/10.1016/j.vph.2018.10.008] [PMID: 30391545]
[86]
Vane, J.R.; Botting, R.M. The mechanism of action of aspirin. Thromb. Res., 2003, 110(5-6), 255-258.
[http://dx.doi.org/10.1016/S0049-3848(03)00379-7] [PMID: 14592543]
[87]
Awtry, E.H.; Loscalzo, J. Aspirin. Circulation, 2000, 101(10), 1206-1218.
[http://dx.doi.org/10.1161/01.CIR.101.10.1206] [PMID: 10715270]
[88]
Zheng, L.; Lv, W.; Zhou, Y.; Lin, X.; Yao, J. Progress on the mechanism for aspirin’s anti-tumor effects. Curr. Drug Targets, 2020, 22(1), 105-111.
[http://dx.doi.org/10.2174/1389450121999201013152931] [PMID: 33050859]
[89]
Xiao, X.; Zeng, S.; Li, Y.; Li, L.; Zhang, J. Aspirin suppressed pdl1 expression through suppressing kat5 and subsequently inhibited pd-1 and pd-l1 signaling to attenuate oc development. J. Oncol., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/4664651] [PMID: 35392432]
[90]
Rodriguez Lanzi, C.; Wei, R.; Luo, D.; Mackenzie, G.G. Phosphoaspirin (mdc-22) inhibits pancreatic cancer growth in patient-derived tumor xenografts and kpc mice by targeting EGFR: Enhanced efficacy in combination with irinotecan. Neoplasia, 2022, 24(2), 133-144.
[http://dx.doi.org/10.1016/j.neo.2021.12.004] [PMID: 34968866]
[91]
Liang, S.; Zhou, X.; Cai, D.; Rodrigues-Lima, F.; Chi, J.; Wang, L. Network pharmacology and experimental validation reveal the effects of chidamide combined with aspirin on acute myeloid leukemia-myelodysplastic syndrome cells through pi3k/akt pathway. Front. Cell Dev. Biol., 2021, 9, 685954.
[http://dx.doi.org/10.3389/fcell.2021.685954] [PMID: 34568314]
[92]
Clinicaltrials.gov. A trial of aspirin on recurrence and survival in colon cancer patients (ASPIRIN). Patent NCT02301286, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02301286
[93]
Clinicaltrials.gov. Using aspirin to improve immunological features of ovarian tumors. Patent NCT05080946, Available from: https://www.clinicaltrials.gov/ct2/show/NCT05080946
[94]
Clinicaltrials.gov. Study of aspirin in patients with vestibular schwannoma. Patent NCT03079999, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03079999
[95]
Clinicaltrials.gov. Adjuvant low dose aspirin in colorectal cancer (ALASCCA). Patent NCT02647099, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02647099
[96]
Clinicaltrials.gov. Regorafenib in combination with metronomic chemotherapies, and low-dose aspirin in metastatic colorectal cancer (REPROGRAM-01). Patent NCT04534218, Available from: https://www.clinicaltrials.gov/ct2/show/NCT04534218
[97]
Clinicaltrials.gov. A Phase III double-blind placebo-controlled randomised trial of aspirin on recurrence and survival in colon cancer patients. Patent NCT03464305, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03464305
[98]
Clinicaltrials.gov. Trial of acetylsalicylic acid and atorvastatin in patients with castrate-resistant prostate cancer (PEACE-4). Patent NCT03819101, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03819101
[99]
Clinicaltrials.gov. Aspirin and rintatolimod with or without interferon-alpha 2b in treating patients with prostate cancer before surgery. Patent NCT03899987, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03899987
[100]
Clinicaltrials.gov. Clinical study of antiviral and aspirin treatment in liver cancer after radical surgery. Patent NCT01936233, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01936233
[101]
Clinicaltrials.gov. Pembrolizumab in combination with anti-platelet therapy for patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Patent NCT03245489, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03245489
[102]
Clinicaltrials.gov. Adjuvant aspirin treatment for colon cancer patients. Patent NCT02467582, Available from: https://clinicaltrials.gov/ct2/show/NCT02467582
[103]
Clinicaltrials.gov. Aspirin for dukes c and high risk dukes b colorectal cancers (ASCOLT). Patent NCT00565708, Available from: https://clinicaltrials.gov/ct2/show/NCT00565708
[104]
Clinicaltrials.gov. RACIN in patients with advanced til-negative solid tumors (RACIN). Patent NCT03728179, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03728179
[105]
Clinicaltrials.gov. Anti-programmed cell death-1 ligand 1 (apdl-1) antibody atezolizumab, bevacizumab and acetylsalicylic acid in recurrent platinum resistant ovarian cancer. Patent NCT02659384, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02659384
[106]
Clinicaltrials.gov. Prostaglandin inhibition and immune checkpoint blockade in melanoma. Patent NCT03396952, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03396952
[107]
Clinicaltrials.gov. Dexamethasone, aspirin, and diethylstilbestrol in treating patients with locally advanced or metastatic prostate cancer. Patent NCT00316927, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00316927
[108]
Clinicaltrials.gov. The effect of aspirin on angiogenesis proteins in women on tamoxifen therapy. Patent NCT00727948, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00727948
[109]
Clinicaltrials.gov. Study of pembrolizumab, radiation and immune modulatory cocktail in cervical/uterine cancer (PRIMMO). Patent NCT03192059, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03192059
[110]
Chu, A.J.; Chou, T.H.; Chen, B.D. Prevention of colorectal cancer using COX-2 inhibitors: basic science and clinical applications. Front. Biosci., 2004, 9(1-3), 2697-2713.
[http://dx.doi.org/10.2741/1429] [PMID: 15353307]
[111]
Tołoczko-Iwaniuk, N.; Dziemiańczyk-Pakieła, D.; Nowaszewska, B.K.; Celińska-Janowicz, K.; Miltyk, W. Celecoxib in cancer therapy and prevention – review. Curr. Drug Targets, 2019, 20(3), 302-315.
[http://dx.doi.org/10.2174/1389450119666180803121737] [PMID: 30073924]
[112]
Zuo, C.; Hong, Y.; Qiu, X.; Yang, D.; Liu, N.; Sheng, X.; Zhou, K.; Tang, B.; Xiong, S.; Ma, M.; Liu, Z. Celecoxib suppresses proliferation and metastasis of pancreatic cancer cells by down-regulating STAT3/NF-kB and L1CAM activities. Pancreatology, 2018, 18(3), 328-333.
[http://dx.doi.org/10.1016/j.pan.2018.02.006] [PMID: 29525378]
[113]
Huang, C.; Chen, Y.; Liu, H.; Yang, J.; Song, X.; Zhao, J.; He, N.; Zhou, C.J.; Wang, Y.; Huang, C.; Dong, Q. Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Oncotarget, 2017, 8(70), 115254-115269.
[http://dx.doi.org/10.18632/oncotarget.23250] [PMID: 29383157]
[114]
Egashira, I.; Takahashi-Yanaga, F.; Nishida, R.; Arioka, M.; Igawa, K.; Tomooka, K.; Nakatsu, Y.; Tsuzuki, T.; Nakabeppu, Y.; Kitazono, T.; Sasaguri, T. Celecoxib and 2,5-dimethylcelecoxib inhibit intestinal cancer growth by suppressing the Wnt/β-catenin signaling pathway. Cancer Sci., 2017, 108(1), 108-115.
[http://dx.doi.org/10.1111/cas.13106] [PMID: 27761963]
[115]
Zhang, P.; He, D.; Song, E.; Jiang, M.; Song, Y. Celecoxib enhances the sensitivity of non-small-cell lung cancer cells to radiation-induced apoptosis through downregulation of the Akt/mTOR signaling pathway and COX-2 expression. PLoS One, 2019, 14(10), e0223760.
[http://dx.doi.org/10.1371/journal.pone.0223760] [PMID: 31613929]
[116]
Jendrossek, V. Targeting apoptosis pathways by Celecoxib in cancer. Cancer Lett., 2013, 332(2), 313-324.
[http://dx.doi.org/10.1016/j.canlet.2011.01.012] [PMID: 21345578]
[117]
Vaish, V.; Sanyal, S.N. Role of sulindac and celecoxib in the regulation of angiogenesis during the early neoplasm of colon: exploring pi3-k/pten/akt pathway to the canonical wnt/β-catenin signaling. Biomed. Pharmacother., 2012, 66(5), 354-367.
[http://dx.doi.org/10.1016/j.biopha.2012.01.004] [PMID: 22397759]
[118]
Clinicaltrials.gov. Chidamide + celecoxib in advanced metastatic colorectal cancer (CCmCC). Patent NCT05281276, Available from: https://www.clinicaltrials.gov/ct2/show/
[119]
Clinicaltrials.gov. Celecoxib with chemotherapy in localized, muscle-invasive bladder cancer (BLAST). Patent NCT02885974, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02885974
[120]
Clinicaltrials.gov. Oxaliplatin, Leucovorin Calcium, and Fluorouracil With or Without Celecoxib in Treating Patients With Stage III Colon Cancer Previously Treated With Surgery. Patent NCT01150045, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01150045
[121]
Clinicaltrials.gov. Celecoxib as Adjuvant Therapy to Chemotherapy in Patients With Metastatic Colorectal Cancer. Patent NCT03645187, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03645187
[122]
Clinicaltrials.gov. Gemcitabine and Celecoxib Combination Therapy in Treating Patients With R0 Resection Pancreatic Cancer (GCRP). Patent NCT03498326, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03498326
[123]
Clinicaltrials.gov. Neoadjuvant Celecoxib in Newly Diagnosed Patients With Endometrial Carcinoma (CELEBRIDO). Patent NCT03896113, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03896113
[124]
Clinicaltrials.gov. Sirolimus in combination with metronomic chemotherapy in children with recurrent and/or refractory solid and cns tumors (AflacST1502). Patent NCT02574728, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02574728
[125]
Clinicaltrials.gov. Toripalimab with or without celecoxib as neoadjuvant therapy in resectable dMMR/MSI-H colorectal cancer (PICC). Patent NCT03926338, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03926338
[126]
Clinicaltrials.gov. Nivolumab, Ipilimumab and COX2-inhibition in early stage colon cancer: an unbiased approach for signals of sensitivity (NICHE). Patent NCT03026140, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03026140
[127]
Clinicaltrials.gov. Chemokine modulation therapy and standard chemotherapy before surgery for the treatment of early stage triple negative breast cancer. Patent NCT04081389, Available from: https://www.clinicaltrials.gov/ct2/show/NCT04081389
[128]
Clinicaltrials.gov. Systemic therapy in advancing or metastatic prostate cancer: evaluation of drug efficacy (stampede). Patent NCT00268476, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00268476
[129]
Clinicaltrials.gov. Serial measurements of molecular and architectural responses to therapy (SMMART) PRIME Trial). Patent NCT03878524, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03878524
[130]
Clinicaltrials.gov. Metronomic treatment in children and adolescents with recurrent or progressive high risk neuroblastoma (METRO-NB2012). Patent NCT02641314, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02641314
[131]
Clinicaltrials.gov. Antiangiogenic therapy for children with recurrent medulloblastoma, ependymoma and ATRT (MEMMAT). Patent NCT01356290, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01356290
[132]
Clinicaltrials.gov. Cyclophosphamide with or without celecoxib in treating patients with recurrent or persistent ovarian epithelial, fallopian tube, or primary peritoneal cancer. Patent NCT00538031, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00538031
[133]
Clinicaltrials.gov. Window of Opportunity Study Targeting the Inflammatory Milieu. Patent NCT01881048, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01881048
[134]
Clinicaltrials.gov. N2012-01: Phase 1 study of difluoromethylornithine (dfmo) and celecoxib with cyclophosphamide/topotecan (DFMO). Patent NCT02030964, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02030964
[135]
Clinicaltrials.gov. Efficacy & Safety of rAd-IFN Administered With Celecoxib & Gemcitabine in Patients With Malignant Pleural Mesothelioma (INFINITE). Patent NCT03710876, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03710876
[136]
Clinicaltrials.gov. Gemcitabine and celecoxib in treating patients with metastatic pancreatic cancer. Patent NCT00068432, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00068432
[137]
Clinicaltrials.gov. Celecoxib and docetaxel in treating patients with non-small cell lung cancer. Patent NCT00030407, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00030407
[138]
Clinicaltrials.gov. Randomized controlled phase ii trial of preoperative celecoxib treatment in breast cancer. Patent NCT01695226, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01695226
[139]
Clinicaltrials.gov. Celecoxib and docetaxel in treating patients with advanced non-small cell lung cancer. Patent NCT00030420, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00030420
[140]
Clinicaltrials.gov. Celecoxib and radiation therapy in treating patients with locally advanced non-small cell lung cancer. Patent NCT00046839, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00046839
[141]
Clinicaltrials.gov. Celecoxib and trastuzumab in treating women with metastatic breast cancer. Patent NCT00006381, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00006381
[142]
Clinicaltrials.gov. Paclitaxel and carboplatin with or without celecoxib before surgery in treating patients with stage iiia nonsmall cell lung cancer. Patent NCT00062179, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00062179
[143]
Clinicaltrials.gov. Exemestane with celecoxib as neoadjuvant treatment in postmenopausal women with stage ii, iii, and iv breast cancer. Patent NCT00201773, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00201773
[144]
Clinicaltrials.gov. CPT-11/Cisplatin and celecoxib with radiation therapy for patients with unresectable non-small cell lung cancer (NSCLC). Patent NCT00346801, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00346801
[145]
Clinicaltrials.gov. Atorvastatin calcium and celecoxib in treating patients with rising psa levels after local therapy for prostate cancer. Patent NCT01220973, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01220973
[146]
Clinicaltrials.gov. Trial of celecoxib with preoperative chemoradiation for locally advanced rectal cancer. Patent NCT00931203, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00931203
[147]
Clinicaltrials.gov. Celecoxib in treating patients with stage iiib or stage iv non-small cell lung cancer. Patent NCT00104767, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00104767
[148]
Clinicaltrials.gov. Patent Cetuximab & celecoxib for metastatic colorectal cancer or colorectal cancer that cannot be removed by surgery. Patent NCT00466505, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00466505
[149]
Clinicaltrials.gov. Cisplatin, CPT-11 and celecoxib with radiation therapy and surgery for operable esophageal cancer. Patent NCT00137852, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00137852
[150]
Clinicaltrials.gov. Irinotecan, cisplatin, and radiation therapy with or without celecoxib in treating patients with stage ii, stage iii, or stage iv esophageal cancer. Patent NCT00520091, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00520091
[151]
Clinicaltrials.gov. Celecoxib and erlotinib in treating patients with stage IIIB or stage iv non-small cell lung cancer. Patent NCT00072072, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00072072
[152]
Clinicaltrials.gov. Celecoxib for the treatment of non-muscle invasive bladder cancer. Patent NCT02343614, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02343614
[153]
Clinicaltrials.gov. Gefitinib and celecoxib in treating patients with refractory non-small cell lung cancer. Patent NCT00068653, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00068653
[154]
Clinicaltrials.gov. Study on the neoadjuvant use of chemotherapy and celecoxib therapy in patients with invasive breast cancer. Patent NCT00135018, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00135018
[155]
Clinicaltrials.gov. Exemestane + celecoxib vs exemestane + placebo in metastatic breast cancer. Patent NCT00525096, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00525096
[156]
Clinicaltrials.gov. Gemcitabine, cisplatin, and celecoxib treatment of metastatic pancreatic cancer. Patent NCT00176813, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00176813
[157]
Clinicaltrials.gov. Combination chemotherapy and celecoxib in treating patients with advanced non-small cell lung cancer. Patent NCT00073866, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00073866
[158]
Clinicaltrials.gov. Celecoxib, fluorouracil, and radiation therapy in treating patients with stage ii or stage iii rectal cancer that can be removed by surgery. Patent NCT00336960, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00336960
[159]
Clinicaltrials.gov. Study of the combination carboplatin plus celecoxib in heavily pre-treated recurrent ovarian cancer patients (carbo-cox2). Patent NCT01124435, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01124435
[160]
Clinicaltrials.gov. Celecoxib, capecitabine, and irinotecan in treating patients with recurrent or metastatic colorectal cancer. Patent NCT00258232, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00258232
[161]
Clinicaltrials.gov. Celecoxib and erlotinib in treating former smokers with stage iiib or stage iv non-small cell lung cancer. Patent NCT00088959, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00088959
[162]
Clinicaltrials.gov. Celecoxib combined with fluorouracil and leucovorin in treating patients with resected stage iii adenocarcinoma (cancer) of the colon. Patent NCT00085163, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00085163
[163]
Clinicaltrials.gov. Combination chemotherapy treatments in patients with metastatic colorectal cancer. Patent NCT00230399, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00230399
[164]
Clinicaltrials.gov. Radiation therapy plus celecoxib, fluorouracil, and cisplatin in patients with locally advanced cervical cancer. Patent NCT00023660, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00023660
[165]
Clinicaltrials.gov. Celebrex with preoperative chemoradiation - rectal cancer. Patent NCT00188565, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00188565
[166]
Clinicaltrials.gov. Celecoxib and recombinant interferon alfa-2b in metastatic kidney cancer who have undergone surgery. Patent NCT01158534, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01158534
[167]
Clinicaltrials.gov. Combination chemotherapy with or without celecoxib in treating patients with metastatic colorectal cancer. Patent NCT00064181, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00064181
[168]
Clinicaltrials.gov. Erlotinib and celecoxib in treating patients with stage iiib or stage iv recurrent non-small cell lung cancer. Patent NCT00062101, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00062101
[169]
Clinicaltrials.gov. Celecoxib in treating patients with progressive metastatic differentiated thyroid cancer. Patent NCT00061906, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00061906
[170]
Clinicaltrials.gov. Irinotecan and celecoxib in treating patients with unresectable or metastatic colorectal cancer. Patent NCT00084721, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00084721
[171]
Clinicaltrials.gov. Celecoxib in treating postmenopausal women who are undergoing surgery for invasive breast cancer. Patent NCT00070057, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00070057
[172]
Clinicaltrials.gov. Celecoxib, paclitaxel, and carboplatin in treating patients with cancer of the esophagus. Patent NCT00066716, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00066716
[173]
Clinicaltrials.gov. Carboplatin and gemcitabine combined with celecoxib and/or zileuton in treating patients with advanced nonsmall cell lung cancer. Patent NCT00070486, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00070486
[174]
Clinicaltrials.gov. Erlotinib hydrochloride with or without celecoxib in treating patients with stage iiib-iv non-small cell lung cancer. Patent NCT00499655, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00499655
[175]
Clinicaltrials.gov. Bortezomib and celecoxib in treating patients with advanced solid tumors. Patent NCT00290680, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00290680
[176]
Clinicaltrials.gov. Erlotinib, celecoxib and reirradiation for recurrent head and neck cancer. Patent NCT00970502, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00970502
[177]
Clinicaltrials.gov. Celecoxib, recombinant interferon alfa-2b, and rintatolimod in treating patients with colorectal cancer metastatic to the liver. Patent NCT03403634, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03403634
[178]
Clinicaltrials.gov. Cyclophosphamide and celecoxib in treating patients with advanced cancer. Patent NCT00551889, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00551889
[179]
Clinicaltrials.gov. Etoposide and celecoxib in patients with advanced cancer. Patent NCT00551005, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00551005
[180]
Clinicaltrials.gov. Epirubicin and celecoxib in treating patients with hepatocellular carcinoma. Patent NCT00057980, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00057980
[181]
Clinicaltrials.gov. Etoposide, cyclophosphamide, thalidomide, celecoxib, and fenofibrate in relapsed or progressive cancer. Patent NCT00357500, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00357500
[182]
Clinicaltrials.gov. Celebrex - Cervix: Celecoxib in the treatment of patients with locally advanced carcinoma of the cervix. Patent NCT00152828, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00152828
[183]
Clinicaltrials.gov. Thalidomide, celecoxib, and combination chemotherapy in treating patients with relapsed or refractory malignant glioma. Patent NCT00047281, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00047281
[184]
Clinicaltrials.gov. Temozolomide, thalidomide, and celecoxib following radiation therapy in treating patients with newly diagnosed glioblastoma multiforme. Patent NCT00047294, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00047294
[185]
Clinicaltrials.gov. 6-TG, Capecitabine and Celecoxib Plus TMZ or CCNU for Anaplastic Glioma Patients. Patent NCT00504660, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00504660
[186]
Clinicaltrials.gov. Temozolomide alone or in combination with thalidomide and/or isotretinoin and/or celecoxib in treating patients who have undergone radiation therapy for glioblastoma multiforme. Patent NCT00112502, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00112502
[187]
Clinicaltrials.gov. Vinblastine, celecoxib, and combination chemotherapy in treating patients with newly-diagnosed metastatic ewing's sarcoma family of tumors. Patent NCT00061893, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00061893
[188]
Clinicaltrials.gov. ANGIOCOMB antiangiogenic therapy for pediatric patients with diffuse brain stem and thalamic tumors. Patent NCT01756989, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01756989
[189]
Clinicaltrials.gov. Celecoxib and radiation therapy in treating patients with stage ii or stage iii soft tissue sarcoma of the arm, hand, leg, or foot that has been removed by surgery. Patent NCT00450736, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00450736
[190]
Clinicaltrials.gov. A study of nasopharyngeal carcinoma (NPC) treated with celecoxib and ZD1839. Patent NCT00212108, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00212108
[191]
Clinicaltrials.gov. A proof-of-concept clinical trial assessing the safety of the coordinated undermining of survival paths by 9 repurposed drugs combined with metronomic temozolomide (cusp9v3 treatment protocol) for recurrent glioblastoma. Patent NCT02770378, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02770378
[192]
Itokawa, H.; Shi, Q.; Akiyama, T.; Morris-Natschke, S.L.; Lee, K.H. Recent advances in the investigation of curcuminoids. Chin. Med., 2008, 3(1), 11.
[http://dx.doi.org/10.1186/1749-8546-3-11] [PMID: 18798984]
[193]
Lamperti, M.; Maspero, A.; Tønnesen, H.; Bondani, M.; Nardo, L. Elucidation of the relationships between H-bonding patterns and excited state dynamics in cyclovalone. Molecules, 2014, 19(9), 13282-13304.
[http://dx.doi.org/10.3390/molecules190913282] [PMID: 25170950]
[194]
Simonyan, M.A.; Dib, K.; Pashkov, A.N.; Simonyan, A.V.; Myachina, O.V.; Ostrovskii, O.V. Synthesis and antiradical and antioxidant activity of cycvalon and its analogs. Pharm. Chem. J., 2007, 41(8), 403-406.
[http://dx.doi.org/10.1007/s11094-007-0087-1]
[195]
Hayun, H.; Jatmika, C.; Maras Maswati, E.; Salim, S.; Kurniawan, R.; Greffiana Chandra Adam Arditya Fajriawan, E.; Desthahrina Nareswara, A. Synthesis and free radical-scavenging activities of di-mannich bases of cyclovalone derivatives. Orient. J. Chem., 2017, 33(6), 2742-2757.
[http://dx.doi.org/10.13005/ojc/330607]
[196]
Markaverich, B.M.; Alejandro, M.A. Type II [3H]estradiol binding site antagonists: inhibition of normal and malignant prostate cell growth and proliferation. Int. J. Oncol., 1998, 12(5), 1127-1135.
[http://dx.doi.org/10.3892/ijo.12.5.1127] [PMID: 9538139]
[197]
Pantziarka, P.; Sukhatme, V.; Bouche, G.; Melhuis, L.; Sukhatme, V.P. Repurposing Drugs in Oncology (ReDO)-diclofenac as an anti-cancer agent. Ecancermedicalscience, 2016, 10, 610.
[http://dx.doi.org/10.3332/ecancer.2016.610] [PMID: 26823679]
[198]
Atzeni, F.; Masala, I.F.; Sarzi-Puttini, P. A review of chronic musculoskeletal pain: central and peripheral effects of diclofenac. Pain Ther., 2018, 7(2), 163-177.
[http://dx.doi.org/10.1007/s40122-018-0100-2] [PMID: 29873010]
[199]
Galisteo, A.; Jannus, F.; García-García, A.; Aheget, H.; Rojas, S.; Lupiañez, J.A.; Rodríguez-Diéguez, A.; Reyes-Zurita, F.J.; Quílez del Moral, J.F. Diclofenac N-Derivatives as Therapeutic Agents with Anti-Inflammatory and Anti-Cancer Effect. Int. J. Mol. Sci., 2021, 22(10), 5067.
[http://dx.doi.org/10.3390/ijms22105067] [PMID: 34064702]
[200]
Leidgens, V.; Seliger, C.; Jachnik, B.; Welz, T.; Leukel, P.; Vollmann-Zwerenz, A.; Bogdahn, U.; Kreutz, M.; Grauer, O.M.; Hau, P. Ibuprofen and diclofenac restrict migration and proliferation of human glioma cells by distinct molecular mechanisms. PLoS One, 2015, 10(10), e0140613.
[http://dx.doi.org/10.1371/journal.pone.0140613] [PMID: 26485029]
[201]
Poku, R.A.; Jones, K.J.; Van Baren, M.; Alan, J.K.; Amissah, F. Diclofenac enhances docosahexaenoic acid-induced apoptosis in vitro in lung cancer cells. Cancers, 2020, 12(9), 2683.
[http://dx.doi.org/10.3390/cancers12092683] [PMID: 32962236]
[202]
Duval, A.P.; Troquier, L.; Demartines; Dormond; Dormond, O. Diclofenac potentiates sorafenib-based treatments of hepatocellular carcinoma by enhancing oxidative stress. Cancers, 2019, 11(10), 1453.
[http://dx.doi.org/10.3390/cancers11101453] [PMID: 31569821]
[203]
Gerthofer, V.; Kreutz, M.; Renner, K.; Jachnik, B.; Dettmer, K.; Oefner, P.; Riemenschneider, M.; Proescholdt, M.; Vollmann-Zwerenz, A.; Hau, P.; Seliger, C. Combined modulation of tumor metabolism by metformin and diclofenac in glioma. Int. J. Mol. Sci., 2018, 19(9), 2586.
[http://dx.doi.org/10.3390/ijms19092586] [PMID: 30200299]
[204]
Clinicaltrials.gov. Topical vitamin D3, Diclofenac or a combination of both to treat basal cell carcinoma. Patent NCT01358045, Available from: https://www.clinicaltrials.gov/ct2/show/study/NCT01358045
[205]
Irvine, J.; Afrose, A.; Islam, N. Formulation and delivery strategies of ibuprofen: challenges and opportunities. Drug Dev. Ind. Pharm., 2018, 44(2), 173-183.
[http://dx.doi.org/10.1080/03639045.2017.1391838] [PMID: 29022772]
[206]
Barbagallo, M.; Sacerdote, P. Ibuprofen in the treatment of children’s inflammatory pain: a clinical and pharmacological overview. Minerva Pediatr., 2019, 71(1), 82-99.
[PMID: 30574736]
[207]
Gupta, S.; Srivastava, M.; Ahmad, N.; Bostwick, D.G.; Mukhtar, H. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate, 2000, 42(1), 73-78.
[http://dx.doi.org/10.1002/(SICI)1097-0045(20000101)42:1<73::AID-PROS9>3.0.CO;2-G] [PMID: 10579801]
[208]
Yoshimura, R.; Sano, H.; Masuda, C.; Kawamura, M.; Tsubouchi, Y.; Chargui, J.; Yoshimura, N.; Hla, T.; Wada, S. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer, 2000, 89(3), 589-596.
[http://dx.doi.org/10.1002/1097-0142(20000801)89:3<589::AID-CNCR14>3.0.CO;2-C] [PMID: 10931458]
[209]
Shen, W.; Zhang, X.; Du, R.; Gao, W.; Wang, J.; Bao, Y.; Yang, W.; Luo, N.; Li, J. Ibuprofen mediates histone modification to diminish cancer cell stemness properties via a COX2-dependent manner. Br. J. Cancer, 2020, 123(5), 730-741.
[http://dx.doi.org/10.1038/s41416-020-0906-7] [PMID: 32528119]
[210]
Akrami, H.; Aminzadeh, S.; Fallahi, H. Inhibitory effect of ibuprofen on tumor survival and angiogenesis in gastric cancer cell. Tumour Biol., 2015, 36(5), 3237-3243.
[http://dx.doi.org/10.1007/s13277-014-2952-3] [PMID: 25542229]
[211]
Andrews, J.; Djakiew, D.; Krygier, S.; Andrews, P. Superior effectiveness of ibuprofen compared with other NSAIDs for reducing the survival of human prostate cancer cells. Cancer Chemother. Pharmacol., 2002, 50(4), 277-284.
[http://dx.doi.org/10.1007/s00280-002-0485-8] [PMID: 12357301]
[212]
Endo, H.; Yano, M.; Okumura, Y.; Kido, H. Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70. Cell Death Dis., 2014, 5(1), e1027.
[http://dx.doi.org/10.1038/cddis.2013.550] [PMID: 24481441]
[213]
Akrami, H.; Moradi, B.; Borzabadi Farahani, D.; Mehdizadeh, K. Ibuprofen reduces cell proliferation through inhibiting Wnt/β catenin signaling pathway in gastric cancer stem cells. Cell Biol. Int., 2018, 42(8), 949-958.
[http://dx.doi.org/10.1002/cbin.10959] [PMID: 29512256]
[214]
Yurtdaş-Kırımlıoğlu, G.; Görgülü, Ş.; Berkman, M.S. Novel approaches to cancer therapy with ibuprofen-loaded Eudragit ® RS 100 and/or octadecylamine-modified PLGA nanoparticles by assessment of their effects on apoptosis. Drug Dev. Ind. Pharm., 2020, 46(7), 1133-1149.
[http://dx.doi.org/10.1080/03639045.2020.1776319] [PMID: 32476502]
[215]
Ali, AA; Al-Khafaji, T; Al-Obaidi, Z Synthesis of novel ibuprofen-tranexamic acid codrug: Estimation of the clinical activity against hct116 colorectal carcinoma cell line and the determination of toxicity profile against mdck normal kidney cell line. Int. J. Drug Del. Tech., 2019, 9, 226-235.
[http://dx.doi.org/10.25258/ijddt.9.2.18]
[216]
Pennock, N.D.; Martinson, H.A.; Guo, Q.; Betts, C.B.; Jindal, S.; Tsujikawa, T.; Coussens, L.M.; Borges, V.F.; Schedin, P. Ibuprofen supports macrophage differentiation, T cell recruitment, and tumor suppression in a model of postpartum breast cancer. J. Immunother. Cancer, 2018, 6(1), 98.
[http://dx.doi.org/10.1186/s40425-018-0406-y] [PMID: 30285905]
[217]
Arisan, E.D.; Akar, R.O.; Rencuzogullari, O.; Obakan Yerlikaya, P.; Coker Gurkan, A.; Akın, B.; Dener, E.; Kayhan, E.; Palavan Unsal, N. The molecular targets of diclofenac differs from ibuprofen to induce apoptosis and epithelial mesenchymal transition due to alternation on oxidative stress management p53 independently in PC3 prostate cancer cells. Prostate Int., 2019, 7(4), 156-165.
[http://dx.doi.org/10.1016/j.prnil.2019.09.003] [PMID: 31970141]
[218]
Husain, M.A.; Sarwar, T.; Rehman, S.U.; Ishqi, H.M.; Tabish, M. Ibuprofen causes photocleavage through ROS generation and intercalates with DNA: a combined biophysical and molecular docking approach. Phys. Chem. Chem. Phys., 2015, 17(21), 13837-13850.
[http://dx.doi.org/10.1039/C5CP00272A] [PMID: 25761147]
[219]
Summ, O.; Andreou, A.P.; Akerman, S.; Holland, P.R.; Hoffmann, J.; Goadsby, P.J. Differential actions of indomethacin: Clinical relevance in headache. Pain, 2021, 162(2), 591-599.
[http://dx.doi.org/10.1097/j.pain.0000000000002032] [PMID: 32796319]
[220]
Lucas, S. The pharmacology of indomethacin. Headache, 2016, 56(2), 436-446.
[http://dx.doi.org/10.1111/head.12769] [PMID: 26865183]
[221]
Shekhar, N.; Kaur, H.; Sarma, P.; Prakash, A.; Medhi, B. Indomethacin: An exploratory study of antiviral mechanism and host-pathogen interaction in COVID-19. Expert Rev. Anti Infect. Ther., 2022, 20(3), 383-390.
[http://dx.doi.org/10.1080/14787210.2022.1990756] [PMID: 34633277]
[222]
Mazumder, S.; De, R.; Debsharma, S.; Bindu, S.; Maity, P.; Sarkar, S.; Saha, S.J.; Siddiqui, A.A.; Banerjee, C.; Nag, S.; Saha, D.; Pramanik, S.; Mitra, K.; Bandyopadhyay, U. Indomethacin impairs mitochondrial dynamics by activating the PKCζ–p38–DRP1 pathway and inducing apoptosis in gastric cancer and normal mucosal cells. J. Biol. Chem., 2019, 294(20), 8238-8258.
[http://dx.doi.org/10.1074/jbc.RA118.004415] [PMID: 30940726]
[223]
Seetha, A.; Devaraj, H.; Sudhandiran, G. Indomethacin and juglone inhibit inflammatory molecules to induce apoptosis in colon cancer cells. J. Biochem. Mol. Toxicol., 2020, 34(2), e22433.
[http://dx.doi.org/10.1002/jbt.22433] [PMID: 31916655]
[224]
Clinicaltrials.gov. Enzalutamide and indomethacin in treating patients with recurrent or metastatic hormone-resistant prostate cancer. Patent NCT02935205, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02935205
[225]
Clinicaltrials.gov. IRX-2 regimen in treating women with cervical squamous intraepithelial neoplasia 3 or squamous vulvar intraepithelial neoplasia 3. Patent NCT03267680, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03267680
[226]
Clinicaltrials.gov. Pre-operative irx-2 in early stage breast cancer (ESBC). Patent NCT02950259, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02950259
[227]
Clinicaltrials.gov. IRX-2 regimen in patients with newly diagnosed stage ii, iii, or iva squamous cell carcinoma of the oral cavity (INSPIRE). Patent NCT02609386, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02609386
[228]
Clinicaltrials.gov. A phase ii neoadjuvant study of apalutamide, abiraterone acetate, prednisone, degarelix and indomethacin in men with localized prostate cancer pre-prostatectomy Patent NCT02849990, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02849990
[229]
Clinicaltrials.gov. Preoperative non-steroidal anti-inflammatory drugs(NSAID) to colorectal cancer patients. Patent NCT00473980, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00473980
[230]
Clinicaltrials.gov. A phase 2 clinical trial of the safety and effects of irx-2 in treating patients with operable head and neck cancer. Patent NCT00210470, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00210470
[231]
Clinicaltrials.gov. Indomethacin plus biological therapy in treating patients with advanced melanoma. Patent NCT00002535, Available from: https://www.clinicaltrials.gov/ct2/show/NCT00002535
[232]
Han, M.İ; Küçükgüzel, Ş.G. Anticancer and antimicrobial activities of naproxen and naproxen derivatives. Mini Rev. Med. Chem., 2020, 20(13), 1300-1310.
[http://dx.doi.org/10.2174/1389557520666200505124922] [PMID: 32368976]
[233]
Ha, M.W.; Paek, S.M. Recent advances in the synthesis of ibuprofen and naproxen. Molecules, 2021, 26(16), 4792.
[http://dx.doi.org/10.3390/molecules26164792] [PMID: 34443379]
[234]
Angiolillo, D.J.; Weisman, S.M. Clinical pharmacology and cardiovascular safety of naproxen. Am. J. Cardiovasc. Drugs, 2017, 17(2), 97-107.
[http://dx.doi.org/10.1007/s40256-016-0200-5] [PMID: 27826802]
[235]
Schjerning, A.M.; McGettigan, P.; Gislason, G. Cardiovascular effects and safety of (non-aspirin) NSAIDs. Nat. Rev. Cardiol., 2020, 17(9), 574-584.
[http://dx.doi.org/10.1038/s41569-020-0366-z] [PMID: 32322101]
[236]
Espinosa-Cano, E.; Huerta-Madroñal, M.; Cámara-Sánchez, P.; Seras-Franzoso, J.; Schwartz, S., Jr.; Abasolo, I.; San Román, J.; Aguilar, M.R. Hyaluronic acid (HA)-coated naproxen-nanoparticles selectively target breast cancer stem cells through COX-independent pathways. Mater. Sci. Eng. C, 2021, 124, 112024.
[http://dx.doi.org/10.1016/j.msec.2021.112024] [PMID: 33947532]
[237]
Kumar, G.; Madka, V.; Singh, A.; Farooqui, M.; Stratton, N.; Lightfoot, S.; Mohammed, A.; Rao, C.V. Naproxen inhibits spontaneous lung adenocarcinoma formation in KrasG12V mice. Neoplasia, 2021, 23(6), 574-583.
[http://dx.doi.org/10.1016/j.neo.2021.05.010] [PMID: 34091121]
[238]
Rius, B.; Clària, J. Principles, mechanisms of action, and future prospects of anti-inflammatory drugs. NSAIDs and Aspirin: Recent Advances and Implications for Clinical Management; Lanas, A., Ed.; Springer International Publishing: Cham, 2016, pp. 17-34.
[http://dx.doi.org/10.1007/978-3-319-33889-7_2]
[239]
P, J.J.; Manju, S.L.; Ethiraj, K.R.; Elias, G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur. J. Pharm. Sci., 2018, 121, 356-381.
[http://dx.doi.org/10.1016/j.ejps.2018.06.003] [PMID: 29883727]
[240]
Sunilchandra, U.; Ravikumar, C.; Rashmi, R. Analgesics in animal pain management. Pharma Innovation J., 2020, 9(4), 205-209.
[241]
Dewangan, R.; Tiwari, S. Physiology of pain and its management in veterinary patients. Pharma Innov., 2019, 8, 11-68.
[242]
Fiorucci, S.; Meli, R.; Bucci, M.; Cirino, G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? 1 1Abbreviations: NSAIDs, nonsteroidal anti-inflammatory drugs; COX, cyclooxygenase; LT, leukotriene; 5-LOX, 5-lipoxygenase; PG, prostaglandin; DFU, 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsuphonyl)-phenyl-2(5H)-furanone; and DFP, diisopropyl fluorophosphate. Biochem. Pharmacol., 2001, 62(11), 1433-1438.
[http://dx.doi.org/10.1016/S0006-2952(01)00747-X] [PMID: 11728379]
[243]
Sottnik, J.L.; Hansen, R.J.; Gustafson, D.L.; Dow, S.W.; Thamm, D.H. Induction of VEGF by tepoxalin does not lead to increased tumour growth in a canine osteosarcoma xenograft. Vet. Comp. Oncol., 2011, 9(2), 118-130.
[http://dx.doi.org/10.1111/j.1476-5829.2010.00240.x] [PMID: 21569197]
[244]
Lu, X.; Huang, L.; Zhang, W.; Ning, X. Tepoxalin a dual 5-LOX-COX inhibitor and erlotinib an EGFR inhibitor halts progression of gastric cancer in tumor xenograft mice. Am. J. Transl. Res., 2018, 10(11), 3847-3856.
[PMID: 30662635]
[245]
McQuerry, J.A.; Chen, J.; Chang, J.T.; Bild, A.H. Tepoxalin increases chemotherapy efficacy in drug-resistant breast cancer cells overexpressing the multidrug transporter gene ABCB1. Transl. Oncol., 2021, 14(10), 101181.
[http://dx.doi.org/10.1016/j.tranon.2021.101181] [PMID: 34298440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy