Abstract
Photoelectric catalytic water splitting for hydrogen production is considered a promising method for hydrogen production, which can convert clean and renewable solar energy into sustainable and pollution-free hydrogen energy. An in-depth understanding of the relationship between the properties and functions of photocatalytic materials can help design and prepare efficient photodegradable water systems. Among them, α-Fe2O3 has a suitable band gap, can absorb visible light below 600 nm, and has the advantages of abundant raw materials high stability, and has become one of the most promising photoelectrode materials. However, as a photoelectrode material, α-Fe2O3 has the shortcomings of short photogenerated hole diffusion distance, low oxidation kinetics, poor conductivity, ease to be corroding, and so on, resulting in a very low photoelectric conversion efficiency, which limits its application in the field of photoelectric catalysis. This paper reviews the research progress of α-Fe2O3 as a photoanode. Firstly, the principle of photoelectric catalytic water splitting for hydrogen production and the main preparation methods of α-Fe2O3 photoanode is described; Secondly, the research work on modification of α- Fe2O3 photoanode by morphology control, element doping, construction of the heterojunction, surface modification and thermal excitation assisted effect in recent years is introduced. The photochemical performance of α-Fe2O3 photoanode is enhanced by improving the photocurrent density and the transfer of photo-generated carriers.
Graphical Abstract
[http://dx.doi.org/10.1002/adma.201903415] [PMID: 31496036]
[http://dx.doi.org/10.1016/j.jcis.2022.02.039] [PMID: 35203034]
[http://dx.doi.org/10.1038/238037a0] [PMID: 12635268]
[http://dx.doi.org/10.1016/j.cej.2021.130946]
[http://dx.doi.org/10.1016/j.apcatb.2021.120983]
[http://dx.doi.org/10.1021/acsami.0c03051] [PMID: 32255600]
[http://dx.doi.org/10.1021/acsami.1c09665] [PMID: 34499482]
[http://dx.doi.org/10.1016/j.nanoen.2020.105190]
[http://dx.doi.org/10.1016/j.apcatb.2021.120995]
[http://dx.doi.org/10.1016/j.apcatb.2021.120269]
[http://dx.doi.org/10.1016/j.apcatb.2020.119189]
[http://dx.doi.org/10.1016/j.cej.2021.133061]
[http://dx.doi.org/10.1016/j.apcatb.2020.119217]
[http://dx.doi.org/10.1016/j.jechem.2020.04.034]
[http://dx.doi.org/10.1016/j.ijhydene.2020.07.111]
[http://dx.doi.org/10.1021/acsanm.9b00221]
[http://dx.doi.org/10.1088/1361-6528/abedec] [PMID: 33706303]
[http://dx.doi.org/10.1002/adom.201901275]
[http://dx.doi.org/10.1039/C8NA00264A] [PMID: 36132597]
[http://dx.doi.org/10.1021/nl500359e] [PMID: 24601797]
[http://dx.doi.org/10.1021/jp405291g]
[http://dx.doi.org/10.1021/jp809060p]
[http://dx.doi.org/10.1002/anie.201003110] [PMID: 20665613]
[http://dx.doi.org/10.1002/cssc.201000416] [PMID: 21416621]
[http://dx.doi.org/10.1002/aenm.202103867]
[http://dx.doi.org/10.1016/j.ijhydene.2020.04.071]
[http://dx.doi.org/10.1016/j.nanoen.2020.104648]
[http://dx.doi.org/10.1016/j.ceramint.2015.08.144]
[http://dx.doi.org/10.1021/acssuschemeng.9b02009]
[http://dx.doi.org/10.1039/C7TA01586K]
[http://dx.doi.org/10.1039/C5TA03362D]
[http://dx.doi.org/10.1021/jz4002983] [PMID: 26282969]
[http://dx.doi.org/10.1002/adfm.201600232]
[http://dx.doi.org/10.1088/1755-1315/714/2/022075]
[http://dx.doi.org/10.1016/j.jece.2019.102999]
[http://dx.doi.org/10.1016/j.cej.2016.03.062]
[http://dx.doi.org/10.1016/j.matlet.2018.11.089]
[http://dx.doi.org/10.1002/chem.201904430] [PMID: 31788871]
[http://dx.doi.org/10.1016/j.apsusc.2011.10.001]
[http://dx.doi.org/10.1016/j.ijhydene.2014.07.110]
[http://dx.doi.org/10.1016/j.apsusc.2018.12.061]
[http://dx.doi.org/10.1016/j.cattod.2018.10.010]
[http://dx.doi.org/10.1021/acsami.1c12597] [PMID: 34607433]
[http://dx.doi.org/10.1016/j.solener.2020.05.044]
[http://dx.doi.org/10.1016/j.electacta.2019.03.214]
[http://dx.doi.org/10.1016/j.ijhydene.2019.10.215]
[http://dx.doi.org/10.1016/j.solener.2021.04.022]
[http://dx.doi.org/10.1016/j.jelechem.2019.01.056]
[http://dx.doi.org/10.1016/j.scib.2019.07.008]
[http://dx.doi.org/10.1016/j.cej.2019.02.127]
[http://dx.doi.org/10.1039/C9NR09502K] [PMID: 31970358]
[http://dx.doi.org/10.1016/j.apsusc.2021.151472]
[http://dx.doi.org/10.1021/acscatal.5b02804]
[http://dx.doi.org/10.1021/acs.nanolett.7b01504] [PMID: 28817772]
[http://dx.doi.org/10.1039/C6EE00036C]
[http://dx.doi.org/10.1039/C6FD00206D] [PMID: 28276546]
[http://dx.doi.org/10.1002/adma.201601525] [PMID: 27167876]
[http://dx.doi.org/10.1021/acsami.1c08949] [PMID: 34387481]
[http://dx.doi.org/10.1016/j.cej.2022.135016]
[http://dx.doi.org/10.1016/j.apsusc.2019.143845]
[http://dx.doi.org/10.1016/j.jallcom.2018.01.334]
[http://dx.doi.org/10.1016/j.cej.2018.08.221]
[http://dx.doi.org/10.1016/j.ceramint.2019.05.219]
[http://dx.doi.org/10.1039/C6RA22895J]
[http://dx.doi.org/10.1016/j.solener.2019.02.066]
[http://dx.doi.org/10.1016/j.jallcom.2021.159376]
[http://dx.doi.org/10.1016/j.apsusc.2019.04.219]
[http://dx.doi.org/10.1016/j.electacta.2018.11.166]
[http://dx.doi.org/10.1016/j.renene.2018.10.067]
[http://dx.doi.org/10.1021/acsanm.1c02807]
[http://dx.doi.org/10.1016/j.cej.2019.01.112]
[http://dx.doi.org/10.1021/acsaem.1c02291]
[http://dx.doi.org/10.1021/acsaem.9b00548]
[http://dx.doi.org/10.1007/s10853-016-0085-3]
[http://dx.doi.org/10.1016/j.apsusc.2018.10.022]
[http://dx.doi.org/10.1016/j.jallcom.2021.158724]
[http://dx.doi.org/10.1016/j.ijhydene.2020.09.091]
[http://dx.doi.org/10.1021/acsami.1c08139] [PMID: 34374510]
[http://dx.doi.org/10.1002/ejic.201801200]
[http://dx.doi.org/10.1016/S1872-2067(21)63829-9]
[http://dx.doi.org/10.1002/cctc.202100913]
[http://dx.doi.org/10.1016/j.ijhydene.2020.07.277]
[http://dx.doi.org/10.1039/C5TA02108A]